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Highlights:

• Analysis of low-cost, bio-adsorbent bark of the D. viscosa plant, proved to be an efficient ad-
sorbent for the removal of methyl red dye from aqueous solution.

• The pseudo-second-order kinetic model and Freundlich adsorption isotherm appeared to be the
best fit for describing the adsorption of methyl red onto D. viscosa plant bark.

• D. viscosa plant bark as an adsorbent showed good adsorption capability in tap water and
river water.

Abstract: Methyl red (MR) dye, one of the azo dyes, is mutagenic and its persistence has negative
effects on the environment and people’s health. The current work is the first to demonstrate that
methyl red dye can be removed effectively and sustainably, utilizing biomass derived from the
bark of the Dodonaea viscosa (Hopbush) plant. The Hopbush bark shows effective adsorption of
MR, upto 73%, under optimized conditions in an aqueous medium. The experimental conditions
were optimized by examining the effect of time, initial dye concentration, pH and ionic strength
on the adsorption process in an aqueous medium. Maximum (i.e., 73%) adsorption of MR removal
(500 ppm) was observed in highly acidic conditions (pH = 1) at a contact time of 75 min. The pseudo-
second-order kinetic model and Freundlich adsorption isotherm appeared to be the most appropriate
for characterizing the MR’s adsorption onto the bark of the D. viscosa plant. Furthermore, it was
shown that bark powder outperformed animal charcoal, silica gel, and powdered flowers, as well
as the leaves of the same species, in terms of adsorption capacity. Thus, a natural adsorbent that is
inexpensive and readily available—the bark of the D. viscosa plant—can be used to effectively remove
harmful dyes from contaminated water and protect water resources from harmful pollutants.

Keywords: Dodonaea viscosa plant bark; animal charcoal; silica gel; adsorption kinetics;
adsorption isotherm

1. Introduction

All living things need water to survive. Animals and birds, as well as humans, depend
on clean water for survival. The water bodies become contaminated over time. When
waste is dumped into water directly or when noxious chemicals and microorganisms enter
water bodies, water pollution occurs. Water-related illnesses claim the lives of more than
5 million people annually, which is approximately 10 times as many as are killed in wars.
Two-thirds of the world’s population is predicted to reside in nations with moderate to
severe water shortages by 2025 [1]. Due to water pollution brought on by various human
activities, particularly industrial pollutants, just 0.01 percent of the 3% of pure water on
Earth may be utilized for human consumption[2]. The most significant cause of water
pollution (from several chemical kinds, the others of which have been excluded from this
study), from the perspective of wastewater treatment, is dyes.
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Dyes are colored organic compounds, mainly used in the textile, dyeing, tannery,
paper, pulp, and paint industries. Their effluents include various dyes, similar to those
from dye-manufacturing facilities, which cause numerous ecological issues [3]. Azo dyes
are the most prevalent of these dyes [4]. If these dyes are ingested through water, they can
result in neurochemical issues, allergies, infections of the eyes or skin, or irritations [4,5].
For the removal of dyes, a variety of treatment techniques are used, including ion exchange,
biological treatment, photocatalytic degradation, coagulation, etc. [6]. However, each of
them has its own limitations. Ion exchange, for instance, is non-selective, sensitive to
pH, and unable to handle highly-concentrated wastewater, while biological treatment
takes a very long time to complete the decolorization and fermentation processes, needs
a lot of space, and is less adaptable [7]. Unlike coagulation—which uses coagulants
that are typically non-biodegradable and monomers that have neurotoxic and cancerous
consequences—photocatalytic degradation requires an effective photocatalyst and con-
trolled circumstances, making the procedure very expensive. Adsorption is one of the most
efficient, cost-effective, and well-known processes for treating wastewater; as a result, it is
frequently used to remove dyes from wastewater [6].

Organic substances with the functional group RN=NR′, in which R and R′ are typ-
ically aryl, are known as azo dyes. They are a family of commercially-significant azo
compounds, or substances with the bond C-N=N-C. Methyl red (MR) is a mono-azo dye
with a (—N=N—) linkage, which is used in the production of textiles and other commer-
cial goods [8]. If ingested or inhaled, it might irritate the pharynx or digestive tract and
induce skin and ocular sensitivities [9,10]. Additionally, MR undergoes bioconversion into
2-aminobenzoic acid and N-N-dimethyl-p-phenylene diamine in environments where oxy-
gen is present, because it is mutagenic [11,12]. Many scientists, including Rajoriya et al. [13],
Xiang et al. [14], Dawadi et al. [15], Santhi et al. [16] and Mahmoud et al. [17], have tried to
discover a means by which to remove MR dye from water before releasing it into recipient
water bodies. Numerous bio-materials have been described as adsorbents in the literature,
including plant leaves [18–20], chitosan and chitin [20,21], crab shells [22], nutshells [22,23],
fruit pods [24,25], egg shells [26,27], fruit shells [28], agricultural wastes [29–31], fish
scales [32–34], and various others [35–39]. Plant barks are one of the most often employed
adsorbents in investigations involving the removal of contaminants from aqueous environ-
ments. Numerous investigations have been conducted in this area [40]. Eucalyptus [41,42],
flamboyant pod [43], African border [44], pine [45], Sycamore [46], Azollapinnata [47],
and many more plant species are among those researched. Plant barks can be used as
adsorbents for water treatment because they are inexpensive and have a number of other
benefits as well. Biomaterial-based adsorbents are less labor-intensive, as well as being envi-
ronmentally benign, and renewable [42,48]. Plant bark has the ability to absorb wastewater
contaminants on nonliving cells by extracellular and intracellular accumulation through
mild forces of contact, similar to the majority of other plant-based biomaterials. They are
suitable as an adsorbent for the desired adsorption process, as a result [49].

Bark from the D. viscosa plant was used as an adsorbent in this study to remove MR
dye. Common names for this evergreen plant with a quick growth rate include Hopbush
and Sanatha. It is both wild and ornamental, and wind and bees are among its pollinators.
It thrives in environments with temperatures between 18 and 38 degrees Celsius, although
it can even withstand conditions between 7 and 45 degrees Celsius [50]. The D. viscosa
plant, which is often found in mountainous locations, was collected in the wild, in the
Swabi district of Pakistan’s Khyber Pakhtun Khwa (KPK). To maximize the rate of MR
adsorption, the adsorption kinetics was studied, and the impact of pH, concentration, con-
tact time, and ionic strength was examined. The adsorption isotherm was also determined
in order to understand the adsorption process on our chosen adsorbent. The adsorbent
demonstrated outstanding dye-removal efficiency. Additionally, it demonstrated strong
MR dye adsorption capacity in both tap water and river water. By using the bark of the
D. viscosa tree as an effective adsorbent, which can also be utilized directly for the treatment
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of wastewater released from various industries containing MR, this work intends to protect
aquatic bodies from pollution caused by dyes from industrial effluents.

2. Materials and Methods

Methyl Red dye, which was used as an adsorbate in this study, is commonly used as
an indicator (see Supplementary Materials: Text E1 and Figures S1 and S2). The adsorbent
used was the bark of the D. viscosa plant. All the solutions were prepared in distilled water.
To maintain the pH of the MR dye solution, 0.5 M hydrochloric acid (Merck) and 0.5 M
sodium hydroxide (KOSDAQ listed company, Korea) solutions were used. For comparative
study, distilled water, tap water, and river water were used. The sample water was collected
from a canal in Hamlet district, Swabi, Pakistan. Sodium chloride salt was also used to
check the ionic effect of salt on the rate of adsorption.

The bark from the plant was taken and washed with distilled water five times and
then completely dried in the sunlight. After that, the bark was ground into powdery
form (Figure 1). The leaves and flowers were also washed with distilled water and then
dried and ground, following the same process as used for the bark of the D. viscosa plant.
The D. viscosa used in this research was wild, as shown in Figure 1, wherein (a) shows
the complete appearance of the plant, (b) shows the bark of the plant, and (c) shows the
powdered bark used during experiments. The 500 ppm solution of MR was prepared
by dissolving MR in water after shaking at 298 rpm for 40 min. To find the wavelength
maximum (λmax), the absorbance of the stock solution of adsorbate was noted in the
wavelength range of 380–465 nm. According to Figure S3 (see Supplementary Materials),
the wavelength; 433 nm shows maximum absorption. Therefore, further experiments were
carried out at 433 nm to record a time–course graph, showing decrease in absorbance as a
function of time. The batch experiment was performed by adding 100 mg of adsorbent to
the 10 mL solution of MR dye under continuous stirring (298 rpm), at room temperature
(25 ◦C), and the adsorbent was removed by centrifugation after adsorption. A series of
experiments was performed to investigate the effect of the different parameters: pH; initial
dye concentration; contact time; and ionic strength; on the adsorption of MR. The value of
the amount adsorbed or adsorption capacity; Qe was identified by Equation (1) [51,52].

Qe =
(Ci− Ce)V

W
(1)

Ci is the initial concentration, Ce is the final or equilibrium concentration, V is the total
volume of solution taken, and W is the amount of adsorbent used.

The percent removal of the adsorbate was determined by Equation (2) [52].

% removal =
Ci− Ce

Ci
× 100 (2)
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Figure 1. D. viscosa plant. (a) Plant (b) bark of plant (c) powdered bark.

Characterizations

Various instruments were used during the study. A digital orbital shaker was used to
ensure full mixing of biosorbent and dyes at 298 rpm at room temperature (a product of
PCSIR, Islamabad, Pakistan), while centrifugation was carried out at 1000 rpm for 50 min
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(Centrifuge 80-2, Changzhou, China). The absorbance was measured by the UV-visible
spectrophotometer (Model UV 3000, Hamburg, Germany).

3. Results and Discussion
3.1. Effect of pH on Adsorption

The solution of 500 ppm concentration was prepared and divided into ten beakers.
The total volume of each solution was 10 mL. Each solution was maintained at a different
pH, at a value between 1 and 10, i.e., beaker 1: pH = 1 and beaker 10: pH = 10, by using
0.5 M HCl (for acidic pH, i.e., from pH 1–6) and 0.5 M NaOH (for basic pH). A total
of 100 mg adsorbent (bark of D. viscosa plant) was added to each solution, to check the
effect of pH on adsorption. The adsorption capacity was determined and plotted against
the pH profile. Figure 2 shows the relationship of pH to the adsorption capacity of the
adsorbent (Qe). The adsorption capacity decreased with increasing pH and with lowering
the strength of protons. At pH = 1, where the adsorption capacity was high (i.e., 34 mg/g),
the greatest adsorption was observed. The adsorption capacity declined markedly from
pH = 2 (23 mg/g) to pH = 3 (e.g., 8 mg/g), then decreased noticeably less, until pH = 9
(e.g., from 8 mg/g to 2.5 mg/g), before remaining constant at pH = 10. The gradual decrease
in the adsorption capacity of bark may be due to electrostatic attraction in the negatively
charged dye and the positively charged surface of the adsorbent at pH 1–6. When the
pH of the solution increases, it results in an increased number of hydroxyl groups; hence
the number of positively charged sites decreases and results in less electrostatic attraction
between charges of adsorbate and surface area of adsorbent [12]. Further research was
conducted at pH = 1, where the adsorbent’s adsorption capacity was at its highest, in order
to follow the maximum adsorption rate in the shortest amount of time possible.
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Figure 2. Effect of pH on the adsorption of MR onto D. viscosa plant bark.

3.2. Effect of Concentration of MR Dye on Adsorption

Using the standard dilution formula, solutions of MR at various concentrations (rang-
ing from 20 ppm to 560 ppm) were prepared from a stock solution (600 ppm). HCl solution
(0.5 M) kept the liquids’ pH at 1. The D. viscosa bark powder (100 mg) was added to each
solution. The solutions were shaken for 60 min at 298 rpm and the suspended adsorbent
was separated from the solution by centrifugation. Figure 3 illustrates the relationship be-
tween the increasing MR concentrations and the adsorption capacity (Qe) of the adsorbent
we chose. Figure 3 demonstrates that as the initial concentration of the adsorbate increases,
the adsorption capacity also rises. This phenomenon may be a result of effective collisions
between the adsorbate and the adsorbent, which enhanced the adsorption capacity. The
obtained results indicate that when employing 100 mg of powdered D. viscosa bark powder,
the highest adsorption occurs in a 500 ppm solution.
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Figure 3. Effect of initial concentration (Ci) of adsorbate on the adsorption of MR dye on D. viscosa
plant bark.

3.3. Effect of Contact Time on Adsorption

The experiments were conducted under optimized experimental conditions, in order
to ascertain how contact duration affects the adsorption process. Eight solutions containing
500 ppm of MR dye, at pH-1, were prepared for this purpose, and 100 mg of bark powder
was added to each solution. Each solution’s adsorbent–adsorbate contact time ranged from
20 to 105 min. The association between contact time and amount adsorbed is shown in
Figure 4. The adsorption capacity of the adsorbent was found to increase with increasing
contact time, possibly as a result of the effective collisions and time for the adsorption
process to be completed. The comparative analysis of Figures 2–4 helps to identify that the
average adsorption capacity of the adsorbent is 35 mg/g.
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3.4. Effect of Ionic Strength on Adsorption

To determine the charge on the adsorbent, the impact of ionic strength on the adsorp-
tion capacity was observed. To explore the impact of ionic strength, the concentrations of
adsorbent, adsorbate, and protons (pH) were kept constant at 100 mg, 500 ppm, and pH = 1,
respectively. The concentration of NaCl was changed from 0.1 to 0.9 M. With increasing salt
concentration, a reduction in adsorption capacity was seen. Figure 5 depicts the relationship
between Qe and molar concentration of NaCl. The findings reveal that the adsorption
capacity reduced from 39.9 mg/g to 38.3 mg/g, possibly as a result of the positive charge
on the adsorbent’s surface because the MR dye has a negative charge. According to the
primary salt effect’s kinetic phenomenon, a decrease in the rate of the reaction or process oc-
curs when opposite charge carriers contact. This is evidence that the adsorbent’s positively
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charged surface interacts with the negatively charged MR dye through an electrostatic
interaction, favoring the high adsorption capacity in an acidic solution.
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3.5. Effect of Water Obtained from Different Resources on the Adsoprption of MR Dye

While the solutions were being prepared in various aqueous media (i.e., tap water,
distilled water, river water, and filtered river water), the MR dye concentration was main-
tained at 500 ppm, the pH of the solutions was kept at 1, and the contact time for adsorption
on a shaker was maintained at 75 min. The percentage of dye removal is shown in all media,
on a graph, to assess how different types of water affected equilibrium concentration after
adsorption (Figure 6). Filtered river water had the highest level of dye removal at 85.45%,
which could be attributed to the best performance of the adsorbent in real water samples
rather distilled water.
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Figure 6. Effect of water collected from different sources on percentage removal of MR dye.

3.6. Comparison between Leaves, Flowers, and Bark Powder of D. viscosa Plant

Three MR dye solutions at 500 ppm concentration, and at pH-1, were made in prepa-
ration for the adsorption process, using three various adsorbents. The D. viscosa plant’s dry
and powdered bark, leaves, and flowers served as the adsorbents in this experiment. The
purpose of this experiment was to evaluate the ability of other D. viscosa plant components
to adsorb substances. Observation and calculations show that the bark of the D. viscosa
plant removes 73% of the MR dye, while the leaves remove 60.8% of the dye and the
flowers remove 53.38% of the dye (Figure 7). It was determined that the MR dye had
a 36.64 mg/g adsorption capability on the bark of the D. viscosa plant. Comparatively,
the adsorption capacities for leaves and flowers were determined to be 30.49 mg/g and
26.70 mg/g, respectively.
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Figure 7. Adsorption of MR dye by bark, leaves, and flowers of D. viscose plant.

3.7. Comparison of Adsorbents: Bark Powder of D. viscosa Plant, Animal Charcoal and Silica Gel

To remove MR dye, we compared our chosen adsorbent to other commercially avail-
able adsorbents, and we calculated and compared each one’s adsorption capacity. The
D. viscosa plant bark showed a large adsorption capacity of 36.64 mg/g, whereas animal
charcoal showed 32.36 mg/g in the form of pellets and 21.59 mg/g in the form of powdered
charcoal, and silica gel demonstrated 24.60 mg/g in powder form. This was determined
from a comparative analysis of the adsorption capacities of the bark of the D. viscosa plant,
animal charcoal, and silica gel.

3.8. X-ray Diffraction Analysis

Before and after adsorption, the bark samples were subjected to X-ray diffraction (XRD)
examination (Figure 8). Peaks at 2θ = 15 show the presence of amorphous hemicelluloses,
whereas the peak at 2θ = 22 indicates the presence of cellulose in the sample [53–55].
In comparison to the unloaded adsorbent, the MR dye-loaded adsorbent’s XRD pattern
shows somewhat different peak locations. According to the XRD analyses, the adsorbent’s
crystallinity has changed as a result of the adsorption process.
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3.9. Order of Adsorpton Kinetics

To determine the adsorption kinetics, pseudo-first-order (PFO) and pseudo-second-
order (PSO) kinetic models were applied to the data (Figure 9). For the adsorption of
MR dye on the bark powder of Hopbush, the linear fit shows that the adsorption process
follows a PSO kinetics rather than a PFO (Figure 9a,b). When compared to the pseudo-first-
order reaction straight line graph, the value of R2 for the pseudo-second-order reaction



Water 2022, 14, 2831 8 of 12

straight line graph was found to be relatively near to 1. In light of the findings, a PSO
kinetics can be drawn. The pseudo-second-order kinetic model states that the adsorption
rate depends on both Qt (adsorption capacity at any time point “t”), and Qe (adsorption
capacity at equilibrium) [56]. The following equation illustrates the linear version of the
pseudo-second-order adsorption kinetics:

t/Qt = 1/k2Qe2+ t/Qe (3)

where, k2 denotes the pseudo-second-order rate constant, with dimension g mg−1 min−1.
A linear plot of t/Qt versus t yields Qe and k2 (Figure 9b), from the slope and intercept
of the plot, respectively. Table 1 displays several parameters derived from the straight-
line PFO and PSO graphs’ slopes and intercepts. The Qe value is close to the Qexp value,
according to the pseudo-second-order kinetic equation.
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Table 1. The kinetic parameters for the adsorption of MR on the D. viscosa plant bark powder.

Pseudo First Order Kinetic Model Pseudo Second Order Kinetic Model

k1 Qe R2 k2 Qe R2

−0.000213 13.9 0.86341 0.00328 39.75 0.96

3.10. Adsorption Isotherms

The experimental data were examined using Langmuir and Freundlich’s adsorption
isotherms. Table 2 displays the parameters derived from these isotherms. All adsorbent sites
must be equal and the adsorbent surface must be homogenous in order for the Langmuir
adsorption isotherm to exist [57]. As a result, the surface of the adsorbent develops a
monolayer of adsorbate. The well-known Langmuir equation applied is as follows:

Ce/Qe= Ce/Qm + 1/QmKL (4)

Ce is the dye concentration at equilibrium, expressed as ppm, while Qe provides the
adsorption capacity at equilibrium, which is defined as the quantity of dye adsorbed per
gram of adsorbent (mg g−1). Qm stands for the maximum amount of dye adsorbed per
gram of adsorbent (mg g−1). Similarly, KL stands for the Langmuir adsorption constant. The
value 0.694 was the calculated coefficient of determination (R2) for Langmuir adsorption
isotherm, thus indicating that the adsorption behaviour of the examined system does not
follow the presumptions of the Langmuir method.

The experimental data were additionally fitted with Freundlich asorption isotherm
to take into consideration surface heterogeneity, surface roughness, and the presence of
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different kinds of adsorption sites. The Freundlich adsorption isotherm has the following
linear form:

log Qe = log KF + 1/n log Ce (5)

The Freundlich constants KF and n are related to the capacity and intensity of ad-
sorption, respectively. The linear fit (R2) value of 0.983 shows that the adsorption process
obeys the Freundlich adsorption isotherm. In general, favourable Freundlich adsorption
is indicated by n (adsorption intensity) being less than unity. Table 2 displays the values
of these constants. According to Table 2, the MR dye adsorption on the bark powder of
the D. viscosa plant is a physisorption process. It also shows that not all adsorption sites
are homogenous, suggesting that multilayer adsorption may take place on the surface of
the adsorbent.

Table 2. Adsorption isotherm parameters for the adsorption of MR on D. viscosa plant bark.

Adsorbent
D. viscosa Plant Bark

(Powder)

Langmuir Isotherms Freundlich Isotherm

Qm mg g−1 KL
(Lg−1) R2 KF n R2

- 2.53614 −0.00688 0.694 0.00707 0.33664 0.983

3.11. Comparison of Adsorption Capacity of D. viscosa Plant Bark with Previous
Low-Cost Adsorbents

Table 3 shows a comparison of D. viscosa plant bark powder’s ability to adsorb MR dye
with that of other inexpensive adsorbents from earlier studies [58–60]. It was discovered
through this comparison that utilizing 100 mg of adsorbent per 10 mL of solution MR
dye (500 ppm and at pH-1) during a contact time of 75 min offers outstanding results.
Additionally, it is notable that this work’s adsorbent dose is lower than that of earlier
adsorbents and may remove a higher concentration of dye.

Table 3. Comparison of adsorption capacity of the bark powder of Hopbush (D. viscosa) with
previously studied adsorbents for the removal of MR dye from aqueous solution.

Adsorbents Adsorbent
Dose (mg)

λmax
(nm) pH Ci

(ppm)
Contact

Time (min)
Qe

(mg/g) % Removal Reference

Bark of D. viscosa 100 433 1 500 75 36.64 74 Present work

Parkia speciosa Pod 5000 410 - 10 30 - 100 [58]

Pomelo peels 1000 410 6.5 100 80 - 95 [61]

White Potato Peel Powder 1000 - 2 25 80 4.5 90.5 [59]

Bentonite clay 1600 536 2 100 25 - 98.4 [62]

Rice hulls 10,000 - 3 500 100 3.6 65 [63]

Activated carbon prepared
from Annona squmosa seeds 200 540 4 200 100 27.7 50 [51]

4. Conclusions

This study demonstrates the superior adsorption capacity of D. viscosa (Hopbush)
plant’s bark powder for MR dye removal. Without any chemical treatment, the adsorbent
is cost-effectively prepared by washing, drying in sunlight and grinding. The findings
showed an overall adsorption capacity of 36.64 mg/g at pH-1, and as a result, this adsorbent
may be better able to treat acidic waste water, with a high concentration of dye (500 ppm),
within 75 min. The bark of the D. viscosa plant has a greater capacity for adsorption than its
leaves and flowers. When compared to other adsorbents, however, the adsorption capacity
of the leaves and flowers, which is 30.49 mg/g and 26.70 mg/g, respectively, is still rather
good. The outcomes also demonstrate that Hopbush bark powder, with a percentage
MR dye removal value of 73.15%, has a greater adsorption capacity, when compared to
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charcoal powder, silica gel powder, and charcoal in the form of pellets, which have values
of: 64.72%, 49.06%, and 43.18%, respectively. The high availability, high percentage of dye
removal, ease of cultivation, and lack of need for chemical treatment make the bark of the
D. viscosa plant an efficient, affordable adsorbent. Additionally, the pseudo-second-order
kinetic model and the Freundlich adsorption isotherm both accurately depict the MR dye’s
adsorption process on the bark of the D. viscosa plant. Thus, water contamination can be
reduced using this natural, inexpensive adsorbent.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14182831/s1, Figure S1: Colour of methyl red at different pH;
Figure S2: Protonation of methyl red in acidic solutions; Figure S3: Plot of absorbance as a function of
wavelength to determine wavelength maximum (λmax); Explanation E1.
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hydrochar of grape pomace as a perspective adsorbent of pb2+ from aqueous solution. J. Environ. Manag. 2016, 182, 292–300.
[CrossRef] [PubMed]
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