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Abstract: Ban Khoang is a mountainous commune in Sa Pa district located in the central part
of Lao Cai province, Vietnam. Landslides occur frequently in this area and seriously affect the
local living conditions. To help the local authority in developing a landslide disaster action plan,
the statistical index method for landslide susceptibility mapping is applied. As the result, the
landslide susceptibility zonation (LSZ) map was created. The LSZ map indicates that areas of low,
moderate, high and very high landslide susceptibility zones are, respectively, 20.3 km2, 12.4 km2,
15.4 km2, and 5.2 km2; most of the observed landslide areas that are well predicted belong to high
or very high landslide susceptibility classes. In detail, 80% observed landslide areas and 78.57%
number of observed landslides were well predicted, and the area (AUC) under the receiver operating
characteristic (ROC) curve obtained 80.3%. Hence, the high and very high landslide susceptibility
classes in the LSZ map can be considered highly believable, and the LSZ map will be reliable to use
in the practice.

Keywords: natural hazards; landslide; susceptibility; GIS; Vietnam

1. Introduction

Ban Khoang is a mountainous commune in Sa Pa district, Lao Cai province of Vietnam,
where these landslides occur regularly (Figure 1). In particular, a vast landslide happened
in Can Ho A village, Ban Khoang commune in September 2013, causing 14 people loss
and severe property damage. Hence, predicting landslide hazards is very important for
the inhabitants and local administration of Ban Khoang commune to mitigate landslide
damage in this area.

According to the result of a nationwide project “Investigation, assessment and geohaz-
ards susceptibility zonation in mountainous areas of Vietnam” [1] recently, Ban Khoang is
one of 200 communes with highest level of landslides susceptibility in Vietnam.

Therefore, the LSZ mapping will be very necessary and helpful for local authorities
and people in landslide hazard prevention and mitigation, as well as developing a landslide
action plan. In addition, the LSZ map will be a technical foundation for practical activities
relevant to setting up landslide early warning systems.

The most straightforward initial approach to any study of landslide hazards is the
compilation of a landslide inventory and analyzing the relationship with different causative
factors to predict landslide-prone areas [2]. In Ref. [3], Carrara (1983) introduced the
so-called statistical approach for landslide hazard assessment. This technique has been
widely employed and has become one of the most popular approaches for landslide hazard

Water 2022, 14, 2814. https://doi.org/10.3390/w14182814 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14182814
https://doi.org/10.3390/w14182814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-8676-7832
https://orcid.org/0000-0003-1869-7726
https://orcid.org/0000-0003-3844-091X
https://doi.org/10.3390/w14182814
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14182814?type=check_update&version=2


Water 2022, 14, 2814 2 of 22

assessment worldwide. Combinations of factors that have led to landslides in the past are
identified statistically, and quantitative predictions are made for areas currently free of
landslides but with similar conditions. Since then, many other statistical approaches have
been proposed and used in landslide susceptibility mapping and analyses.
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Figure 1. In this study area, 28 landslides, covering 0.262 km2 (Figure 2), were identified (from 2012
up to May 2022) based on (1) field recognizance to investigate landslide occurrences, (2) collection
of historical literature on landslides, and (3) interpretation of available multi-serial google images
coupled with field verification.

Basically, statistical landslide susceptibility approaches are based on related spatial
information on past landslide activities (i.e., landslide presence/absence) to static geoen-
vironmental factors (e.g., topography, geology, geomorphology, land use, fault density,
soil, and drainage density) using statistical techniques. In Ref. [4], Steger et al. (2016)
commented that the generated empirical relation, commonly expressed as a relative sus-
ceptibility score, is then applied to each spatial unit of an area (e.g., grid cell, and slope
unit) [5–7]. The validation of spatial predictions is commonly evaluated by interpreting
inventory-based predictive performance estimates [8–10].

It is obvious that the landslide inventory is a vital component to obtaining high-quality
statistical landslide susceptibility models because most analysis steps are dependent on a
correct representation of past landslide occurrences [4,9,11–14].

Several studies compared statistical landslide susceptibility models produced from
heterogeneous inventories [4,15–19]. However, a differentiated evaluation of the propaga-
tion of potential inventory-based errors into landslide susceptibility models was hampered
due to the practical inseparability of positional accuracy and inventory completeness as
well as the lack of truly accurate reference inventories.

There are many previous works using the statistical approaches for landslide suscepti-
bility assessment (e.g., methods of statistical index, certainty factor, probability, weight of
evidence modeling, and logisitic regression). However, the selection of input parameters or
causative factors for landslide susceptibility mapping, the method for landslide suscepti-
bility mapping and landslide susceptibility index classification are still confused between
many studies.
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The statistical index method is considered the simplest and quantitatively suitable
method for statistical approaches for landslide susceptibility mapping. However, it has
been adopted by various researchers [19–27].

Therefore, in this study, the statistical index method is applied for landslide suscepti-
bility analyses of Ban Khoang commune in Sa Pa district, Lao Cai province of Vietnam. The
research result will play an important role for landslide hazard prevention and mitigation
in this mountainous commune in Vietnam.
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Figure 2. Map of landslide inventory in the study area.

2. Landslide Inventory

The study area, Ban Khoang commune selected for assessment of landslides suscepti-
bility (Figure 1) is about 53.3 km2.

The average size of the landslides in the study area is approximately 9369 m2, but the
details about width, depth, types, or causes of some landslides were not identified. Some
pictures of landslide inventory are displayed in Figure 3.
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Figure 3. Some landslide pictures in Ban Khoang commune, Sa Pa district, Lao Cai province of
Vietnam. (A) Landslide as debris flow occurred near hospital of Ban Khoang commune in 2013.
(B) Landslides near provincial road 155 in Ban Khoang commune. (C) Landslide on the provincial
road 155, the section closed to Can Hồ B village in Ban Khoang commune on 22 May 2022.

3. Landslide Causative Factors

The selection of causative factor maps for landslide susceptibility should be con-
sidered carefully based on relevance, availability and scale attributes. These are cum-
bersome in Vietnam, as systematic studies and inventories of spatial characteristics and
land cover features have only been initiated recently by different government institutions.
Therefore, such data are often lacking, incomplete, or on a scale that is not useful for
scientific purposes, especially in remote and rural regions as the present study area. Ham-
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pered by such constraints, eight digital causative factors map for landslide analysis could
be developed:

• Topography is intrinsically associated with landslides by slope gradient and other fac-
tors, such as weathering, precipitation, soil thickness, etc. Hence, topography strongly
affects landslides [28,29]. Ban Khoang is a mountainous area where the microclimate
is quite predominant. Hence, the aspect is considered an indirect landslide causative
factor in this study. A digital elevation map (DEM) of the study area with a pixel size
of 10 m by 10 m was obtained by using inverse distance weighted interpolation in
QGIS 3.6 from elevation points and contours of a topographic map, scale 1:10,000,
published by the Cartographic Publishing House, Vietnamese Ministry of Natural
Resources and Environment (2019). Then the aspect map of Ban Khoang commune
(Figure 4A) was developed based on the Aspect tool inside QGIS 3.6 software.

• In most landslide studies, slope gradient is considered a principal causative or trig-
gering factor. A slope map was derived from the DEM using the slope function tool
of QGIS 3.6. The slope map is in the form of a raster map with the same 10 m pixel
size as the DEM, but was converted to vector by separating the slope angles into six
classes: (1) flat-gentle slope (<5◦), (2) fair slope (5–15◦), (3) moderate slope (15–25◦),
(4) fairly moderate slope (25–35◦), (5) steep slope (35–45◦), and (6) very steep slope
(>45◦). The map of slope classes of Ban Khoang commune is displayed in Figure 4B.

• Geology and slope instability are strongly associated [30,31]. Hence, a geological map
of Ban Khoang (Figure 4C) was derived from the map of geology and mineral resources
of the Lao Cai sheet group, scale 1:50,000 by Lap et al. (2003) [32]. Figure 4C displays
the distribution of geological classes in Ban Khoang commune in Sa Pa district, Lao
Cai province of Vietnam.

• Geomorphology is considered an essential factor related to landslide occurrence in
the study area. Based on the analyses of the topological characteristics, geological
structures, neotectonic movements, and morphometries, six geomorphological units
can be identified in the study area by [33] (Figure 4D).

• Soil is an essential factor of slope instability in many settings [34,35]. A digital map of
soil was derived from previous work in Lao Cai province carried out by the National
Institute of Agriculture Planning and production (2019), identifying three types of
soil mechanics in the study area, i.e., (1) outcrop, (2) reddish-yellow humus soil on
claystone, and (3) reddish-yellow humus soil on magma rocks (Figure 4E). The soil
depth map (Figure 4F) was derived based on the soil depth information based on the
map of soil mechanics.

• Neotectonics contribute to slope instability by fracturing, faulting, jointing, and de-
forming foliation structures [36,37]. For this study, faults were extracted from the
map of geology and mineral resources scale 1:50,000. Additionally, lineaments were
interpreted from free available Landsat 8 captured by NASA in 2020. The fault and
lineament density was calculated as the total length of faults and lineament per 1 km2

(See Figure 4G).
• Studies have shown that the proximity to drainage axes with intensive gully erosion is

an important factor controlling the occurrence of landslides [38,39]. A map of river
density was derived on the basis of the digitizing river and stream courses on the
topographic map and interpolation in QGIS software (version 3.6). A map of the river
density class (Figure 4H) was created by subdividing the river density range values
into five classes: (1) <1000 m/km2, (2) 1000–2000 m/km2, and (3) 2000–3000 m/km2,
(4) 3000–4000 m/km2, and (5) >4000 m/km2.

• Vegetation augments slope stability primarily in two ways: (1) by removing soil
moisture through evapotranspiration and (2) by providing root cohesion to the soil
mantle [40]. A land-use map was obtained from the land-use map of Lao Cai published
by the land administration department of the Ministry of Natural Resources and
Environment, 2019 [41]. The land use composed of 10 land-use classes is displayed in
Figure 4I.
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Figure 4. Landslide causative parameters for landslide susceptibility mapping of Ban Khoang
commune.

4. Method for Landslide Susceptibility Analysis

The statistical index method is a bivariate statistical technique introduced by van
Westen in 1997 [20] for landslide susceptibility analyses. Other researchers, such as Ge-
bremedhin et al., 2021 [21], Mandal et al., 2018 [22], Wu et al., 2017 [23], Wang et al.,
2016 [24], Dieu et al., 2011 [25], Long, 2008 [19], Cevik and Topal, 2003 [27], and Oztekin
and Topal, 2005 [26], also applied this technique and termed it the statistical index method.
In the statistical index method, a weight value for a parameter class is defined as the natural
logarithm of the landslide density in the class divided by the landslide density in the entire
map [20].

Wij = ln
(

fij

f

)
(1)

where Wij is the weight of a class i of parameter j, fij the landslide density within the class i
of parameter j, and f the landslide density within the entire map. Hence, the statistical index
method is based on statistical correlation of the landslide inventory map with attributes
of different parameter maps. The Wij value in Equation (1) is only calculated for classes
that have landslide occurrences. If there are no landslide occurrences in a parameter class,
the Wij will be assigned to zero [20,30]. This also means that the parameter class having no
landslide occurrences will have no correlation with the landslide inventory. Hence, it does
not influence the calculation of the landslide susceptibility index.

In this study, nine landslide causative factors, i.e., (1) slope, (2) geology, (3) geomor-
phology, (4) soil depth, (5) soil type, (6) land use, (7) fault and lineament density, and (8)
river density (Figure 4), were used as the layer input for landslide susceptibility index
mapping. The workflow for landslide susceptibility mapping in Ban Khoang commune
is shown in Figure 5. Every parameter map is crossed with the landslide map, and the
density of the landslide in each class is calculated. The distribution of landslides for various
data layers and weight wij values are shown in Table 1. The distribution of landslides for
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various data layers, weight of class (Wij) of all the causative factors in the study area is
displayed in Table 2.
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Table 1. Distribution of landslides for various data layers, weight of class (Wij) of all causative factors
in the study area.
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Slope
<5◦ 11 0.42 2798 0.52 −0.2261

5–15◦ 537 20.43 45,087 8.46 0.8823
15–25◦ 580 22.07 114,691 21.51 0.0257
25–35◦ 508 19.33 182,665 34.26 −0.5723
35–45◦ 609 23.17 138,605 25.99 −0.1149
>45◦ 383 14.57 49,356 9.26 0.4539

Fault and lineament density
<500 m/km2 348 13.24 81,710 15.32 −0.1461

500–1000 m/km2 1103 41.97 235,319 44.13 −0.0502
1000–1500 m/km2 1170 44.52 178,785 33.53 0.2835
1500–2000 m/km2 7 0.27 35,889 6.73 −3.2296

>2000 m/km2 0 0.00 1499 0.28 0.0000

River density
<1000 m/km2 758 28.84 86,095 16.15 0.5802

1000–2000 m/km2 603 22.95 135,804 25.47 −0.1044
2000–3000 m/km2 684 26.03 113,416 21.27 0.2018
3000–4000 m/km2 250 9.51 96,950 18.18 −0.6478

>4000 m/km2 333 12.67 100,937 18.93 −0.4014

Soil depth
0 m 0 0.00 11,686 2.19 0.0000
1 m 175 6.66 94,253 17.68 −0.9763
2 m 2314 88.05 376,835 70.67 0.2198
3 m 139 5.29 50,428 9.46 −0.5812
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Table 1. Cont.

Landslide Causative Factors
Landslide

Occ.
Pixels

% Occ.
No. of

Pixels in
Domain

%
Domain Wij

Soil type
Reddish-yellow humus soil on magma rocks 1629 61.99 401,940 75.38 −0.1957

Outcrop 0 0.00 11,686 2.19 0.0000
Reddish-yellow humus soil on claystone 999 38.01 119,576 22.43 0.5277

Geomorphology
Ancient planation surface 93 3.54 59,101 11.08 −1.1417

Denudational and erosional slope on
metamorphic rocks 1597 60.77 193,797 36.35 0.5140

Denudational and erosional slope on granite
rocks 489 18.61 256,604 48.13 −0.9502

Quaternary sediment 427 16.25 9101 1.71 2.2533
Erosional steps in front of mountain 22 0.84 14,599 2.74 −1.1850

Geology
Sa Pả formation 262 9.97 32,774 6.15 0.4836

Cam Ðường formation 169 6.43 15,573 2.92 0.7893
Yê Yên Sun complex 571 21.73 69,501 13.03 0.5110

Po Sen complex 163 6.20 183,843 34.48 −1.7154
Ðá Ðinh formation 312 11.87 64,195 12.04 −0.0140

Bản Nguồn formation 1151 43.80 167,316 31.38 0.3334

Landuse
Protection reforestation land 1089 41.44 252,972 47.44 −0.1353

Rice land 241 9.17 29,879 5.60 0.4926
Annual crop land 2 0.08 33,860 6.35 −4.4242

Natural reforestation land 585 22.26 39,883 7.48 1.0906
Rural residential land 16 0.61 8229 1.54 −0.9302

Unused mountain land 682 25.95 152,292 28.56 −0.0958
Mountain land without forest 0 0.00 12,683 2.38 0.0000

Perennial land 0 0.00 619 0.12 0.0000
River and spring land 13 0.49 2660 0.50 −0.0085
Protection forest land 0 0.00 125 0.02 0.0000

Aspect
Flat 0 0.00 24 0.00 0.0000

North 422 16.06 80,933 15.18 0.0563
Northeast 904 34.40 103,501 19.41 0.5722

East 586 22.30 102,496 19.22 0.1484
Southeast 285 10.84 64,916 12.17 −0.1157

South 100 3.81 40,339 7.57 −0.6872
Southwest 102 3.88 33,324 6.25 −0.4764

West 58 2.21 54,362 10.20 −1.5303
Northwest 171 6.51 53,307 10.00 −0.4295

Table 2. Distribution of landslides for various data layers, weight of class (Wij) of all causative factors
in the study area.

Landslide Causative Factors LSIMin LSIMax LSIRange LSIDev

Slope −0.5723 0.8823 1.4546 −0.5183
Fault and lineament density −3.2296 0.2835 3.5131 −1.4628
River density −0.6478 0.5802 1.2280 −0.4851
Soil depth −0.9763 0.2198 1.1961 −0.5453
Soil type −0.1957 0.5277 0.7234 −0.3742
Geomorphology −1.1850 2.2533 2.5047 −0.9107
Geology −1.7154 0.7893 2.5047 −0.9107
Land use −4.4242 1.0906 5.5147 −1.5015
Aspect −1.5303 0.1484 2.1025 −0.6039
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From Tables 1 and 2, it can be noted the following:

• For the slope factor, there is an obvious distinction between classes with slope angles
5–15◦ and >45◦ compared to other classes. This indicates that landslides in the study
area are mainly occurring in areas with slope angles 5–15◦ and >45◦.

• The class of fault density of 1000–1500 m/km2 has the highest Wij value (0.2835)
compared to the remaining classes from all causative factors; hence, it has the highest
impact on landslides in the study area.

• Cam Ðường formation (Wij = 0.7893) are distinctly more favorable for landslides
compared to the other geological formations (Wij ≤ 0.5110).

• For the geomorphological factor, denudational and erosional slope on metamorphic
rocks, Quaternary sediment, also favor landslides.

• For the land-use factor, natural reforestation land is most favorable for landslide
occurrence. Other classes seem to have very little or no influence for landslides.

All Wij layers for the different causative factors were constructed with QGIS 3.6 software.
Next, these were summed up to obtain a resultant landslide susceptibility index map.

LSI =
n

∑
j=1

Wij (2)

where LSI is the landslide susceptibility index and n the number of parameters.
As the result, the LSI map of Ban Khoang commune was developed and is displayed

in Figure 6.
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5. Results and Discussion

Classifier methods that have been used in landslide classification are manual classifica-
tion [26,38,42–48], equal interval classification [49,50], standard deviation classification [51–55].
However, the authors usually do not explain the reasons for using a certain method in
previous works.

In this study, the manual classifier method was used to reclassify the LSI values into
four different susceptibility zones, according to the classification method that was proposed
by Galang (2004) [56]. The susceptibility classes are low, moderate, high, and very high.
Ideally, the classification method should satisfy the principle that higher landslide suscepti-
bility classes should capture more or most landslide occurrences. Therefore, it is assumed
that the expected number of observed landslide occurrences within a higher landslide
susceptibility class equals two times the expected numbers in the next lower landslide
susceptibility class. Hence, the expected numbers of observed landslide occurrences in
the very high landslide susceptibility class equals two times the expected numbers in the
high landslide susceptibility class, and so on. Based on this rule, it can be inferred that the
expected percentages of observed landslide occurrences in the low, moderate, high, and
very high landslide susceptibility classes are 6.7%, 13.3%, 26.7%, and 53.3% respectively.

Hence, the procedure is as follows. The landslide occurrence map is compared to the
LSI map, and the cumulative percentage of observed landslide values versus ranked LSI
values is calculated as shown in Figure 6. Three cut-off percentages of observed landslide
occurrence in the cumulative curve are used to identify the four landslide susceptibility
classes. It is 6.7% for separating the low from the moderate class, 20% for separating the
moderate from high class, and 46.7% for separating the high from the very high class, as
shown in Figure 7.
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As the result, the final map of landslide susceptibility zonation is shown in Figure 8.
The statistical index shows that areas of low, moderate, high and very high landslide
susceptibility zones are, respectively, 20.3 km2 (38.0%), 12.4 km2 (23.3%), 15.4 km2 (28.9%),
and 5.2 km2 (9.8%).

In addition, to minimize the damage caused by natural disasters caused by climate
change to people in Lao Cai province, Taiwan’s Soil and Water Conservation Bureau (SWCB)
and the Vietnam Institute of Science and Mineral Geology (VIGMR) have built a landslide
monitoring station in Ban Khoang commune, Lao Cai in November 2019.
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According to a survey by the VIGMR, Ban Khoang commune (Lao Cai province) is the
area most at risk of landslides in Lao Cai province. At the same time, it is also the place
with the highest risk of landslides in Vietnam. Therefore, installing a real-time landslide
monitoring station in these two areas is essential.

Within the framework of international cooperation among the SWCB, GIS.FCU (the
Geography information System Research Center of Taiwan Feng Chia University), VIGMR,
WeatherPlus company (Former is AgriMedia), the projects “Study, develop a pilot debris
flow early warning system in real time for mountainous areas of Vietnam” and “Study,
develop a pilot debris flow early warning system in real time for mountainous areas of
Vietnam” were applied to Ban Khoang area, Sa Pa town, Lao Cai province.

The real-time landslide early warning system deployed and installed in Ban Khoang
includes a series of sensors, such as geophone, water level, tensiometer sensor, infrared
cameras, and auto-rain gauges installed in three areas (Figure 9) (upstream (Figure 10) and
midstream (Figure 11), and downstream (Figure 12)) to observe and record changes in
weather conditions, such as precipitation, geology (by geogphone), hydrology (flow, water
level) and the surface movement of liquid mud, soil and rock. All data are collected and
processed on site (Figure 13) by the Data Processing Center.
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Figure 12. Downstream of the real-time landslide monitoring station.
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Figure 13. On-site station at the downstream of the real-time monitoring station.
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6. Validation of Landslide Susceptibility Map

The final map of landslide susceptibility zonation for the study area is shown in
Figure 8, and the area percentages of landslide susceptibility classes and posterior landslide
susceptibility of these classes in the final LSZ map are shown in Figure 14.
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Figure 14. Area percentage of LSZ classes and the observed landslide accumulation in each LSZ class.

The accuracy of the final LSZ map is evaluated based on the observed landslides. First,
Figure 13 shows that 80% observed landslide areas belonging to very high and high LSZ
classes. Secondly, the final LSZ map is checked by overlaying it with the observed landslide
map. In addition, As shown in Figure 14, there are various possibilities of different LSZs
coinciding with a landslide polygon. Because in the inventory of the observed landslide,
no distinction was made between the initiation part of the landslide and the areas of debris
or flows, there can be no complete correspondence between the LSZ classes (Figure 15) that
blue line is landslide area, and the complete observed landslide affected area. Hence, we
consider a landslide as having “good” prediction when at least part of it is situated in a
high or very high susceptibility zone. Otherwise, based on the above criteria, the model
predicts 28 landslides in the study area, as shown in Table 3.
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Table 3. LSZ validation result with observed landslide.

Accuracy of Prediction
Observed Landslide

Number Percentage (%)

Good 22 78.57
Wrong 6 21.43
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Table 3 indicates that 22 of the 28 observed landslides are well predicted (78.57%), and
only 6 of the total landslides are wrongly predicted (21.43%). Figure 16 shows the LSZ map
with the observed landslides indicating the different levels of prediction.
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Figure 16. Validation LSZ map with observed landslides of Ban Khoang commune.

The Area Under the Curve (AUC) is used to qualitatively analyze the prediction
accuracy of the landslide susceptibility map (Figure 17). The analysis results of the success
rate curve indicated that the statistical index model has an approximately high AUC value
of 0.803.
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Figure 17. AUC representing quality model a success rate curve.

In terms of model performance, the accuracy of the statistical index method for landslide
susceptibility mapping is approximately 80.3%, which is much closer to other studies (e.g., 74%
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in the work of Conoscenti et al. (2016) [57], 71% in the work of Camilo et al. (2017) [58], 75%
in the work of Youssef et al. (2015) [59], and 73.3% in the work of Shu et al. (2021) [60]). It must
be admitted that this accuracy is not superior, which mainly includes the following reasons:
one is that the data quality of the inventory is not very high, and the other is associated with
the limitation of statistically based methods and assumptions of the landslide classification
method.

Because we do not have such another area, a validation of the landslide susceptibility
was performed as follows:

• A total of 75% of the observed landslides in the study area is selected at random (see
Figure 18). These areas form the training data set. The actual selection was made
arbitrarily without considering causative factors. It was only taken into account to
spread the training data set as evenly as possible over the study area.

• On the basis of the training data set, a new LSZ map based on the statistical index
method for the whole study area was created (see Figure 19).

• The remaining 25% of the observed landslides in the study area is used to evaluate the
correctness of the new LSZ map.
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It can be seen that the 80.95% of landslide number has “good” prediction for the new
LSZ map based on 75% landslide training data set. Meanwhile, it is a higher value of
“good” prediction (83.33%) for the landslide validating data set.
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Figure 19. LSZ map based on 75% training landslides of Ban Khoang commune.

The area of landslide belonging to high and very high LSZ classes for the landslide
training data set is 80%. Meanwhile the similar value for the landslide validating data set
is obtained to be a little bit higher, with 81.2%. The model predictions for training and
validating landslides in the study area are shown in Table 4. Generally, the results show
that the target data can be predicted well with the modeling approach.

Table 4. LSZ validation result with training and validating landslide.

Accuracy
of Prediction

Landslide Training Data Set Landslide Validating Data Set

Number Percentage (%) Area (km2) Percentage % Number Percentage % Area (km2) Percentage %

Wrong 4 19.05 0.0512 20 1 16.67 0.0011 18.8
Good 17 80.95 0.2050 80 6 83.33 0.0047 81.2

7. Conclusions

Because most of the observed landslides are well predicted, the high and very high
landslide susceptibility classes in the final LSZ map can be considered highly believable.

For all landslides that are wrongly predicted, of course, due to the assumptions of
the landslide classification method, 6.7% and 13.3% of the total observed landslide areas
fall in the low and medium landslide susceptibility class, respectively. Hence, it is easy to
understand that some observed landslides are not correctly predicted.

The causes of these landslides remain unanswered in this study. This probably has to
do with some unique local conditions that promote landslides that were not considered in
the present analyses or errors or misinterpretations of the data and factor maps.

Finally, the good prediction can be evaluated based on observed landslides belonging
to very high and high LSZ classes, it can be seen that 80% observed landslide areas and
78.57% number of observed landslides were well predicted, and AUC obtained 0.803.
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Hence, the LSZ map was created, and the real-time landslide monitoring station will be
reliable to use in the practice.
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