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Abstract: The use of social media, such as Twitter, has changed the information landscape for citizens’
participation in crisis response and recovery activities. Given that drought progression is slow and
also spatially extensive, an interesting set of questions arise, such as how the usage of Twitter by
a large population may change during the development of a major drought alongside how the
changing usage facilitates drought detection. For this reason, contemporary analysis of how social
media data, in conjunction with meteorological records, was conducted towards improvement in the
detection of drought and its progression. The research utilized machine learning techniques applied
over satellite-derived drought conditions in Colorado. Three different machine learning techniques
were examined: the generalized linear model, support vector machines and deep learning, each
applied to test the integration of Twitter data with meteorological records as a predictor of drought
development. It is found that the integration of data resources is viable given that the Twitter-based
model outperformed the control run which did not include social media input. Eight of the ten
models tested showed quantifiable improvements in the performance over the control run model,
suggesting that the Twitter-based model was superior in predicting drought severity. Future work
lies in expanding this method to depict drought in the western U.S.

Keywords: drought; Twitter; machine learning; Colorado

1. Introduction

Drought is increasingly impacting the American West, threatening major water sup-
plies such as the Colorado River [1]. Due to drought’s slow and elusive emergence and
sometimes speedy intensification [2], the phenomenon presents a challenge for stakeholders
and society as a whole, in timely responsiveness [3]. The drought research community
has generally agreed that, due to its persistence, drought allows society to plan for miti-
gation strategies ahead of time as long as citizens are given actionable information about
the developing state of affairs [4]. However, despite state-of-the-art drought monitoring
and forecasting systems that are currently in place the drought-prone American West still
suffered multi-billion-dollar losses from recent severe drought conditions [5]. Given the
vulnerability of our society to future droughts, recent research has begun to examine not
only the physical mechanism of drought, but also how society responds to drought [6].
Moreover, in the sparsely populated American West, the situation is further hindered by
a lack of in situ meteorological and soil observations that underlies adequate drought
depiction as well as its prediction.

The use of social media, such as Twitter, has changed the information landscape for
citizens’ participation in crisis response and recovery activities [7,8]. Social media has been
used for information broadcasting during a variety of crisis events of both natural and
human origins [9]. The majority of these social media systems work on the principle of
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detecting variations from a baseline observation, such as the sudden increase in the use of
certain predefined lexicons, as illustrated in [10–13]. Given that drought is a slow-moving
process that is also spatially extensive [14], interesting questions arise on how Twitter usage
may change during the progress of a major drought, i.e., one that is felt by a population
at large, as well as how usage change might aid in the detection of drought. Past reports
such as [15,16] have revealed heightened peoples’ awareness, in recognizing the sudden
threats posed by floods or fires, in Twitter posts; however, questions as to their awareness
or information needs concerning droughts remain to be investigated. In the American
West, we are also interested in first, learning the feasibility of human perception of drought
through Twitter and second, can such observations can make up for data gaps in the ground
station network?

Over the past few years, the computer science research community has made advance-
ments in areas of machine learning and big data, which enables the use of technology
towards exploring social responses to drought. The research of drought forecasting us-
ing machine learning models has gained prominence in recent years. Models have been
developed using time series analysis [17,18], neural networks [19–24], fuzzy inference
systems [25], support vector regression [26–28] and different ensemble techniques [29,30].
Although different models techniques have been designed in order to better understand
and forecast drought, but various studies over the years have also suggested that a sin-
gle indicator is not enough to explain the complexity and diversity of drought [31,32].
These models mainly use meteorological and hydrological observations as input without
considering human-dimension data.

In the meantime, Twitter has made it easier to access past tweets through their Ap-
plication Programming Interfaces (APIs) that enable two computer applications to access
each other’s data. The aforementioned means that social media data affords an investi-
gator a huge source of unstructured big data. The use of deep learning techniques in a
variety of applications (including natural language processing) also has further enabled re-
searchers to analyze social media data at an expanded scale and with high accuracy [33,34].
Thus, the ability to obtain social media information coupled with the emergence of recent
computer science techniques suggests a fresh tactic towards evaluating drought emergence.

Social media postings feature human emotion, and various researchers have analyzed
social media data to extract sentiments of peoples’ opinions in various contexts. Such
approaches usually start by extracting text data from social media and then using sentiment
analysis methods to capture user opinions and attitudes about a wide variety of topics
including crisis management [11,35–40]. In the USA, "#drought" and related hashtags
on Twitter have been found to increase correspondingly during high–impact drought
events [8,41]. Researchers also have attempted to use data from Twitter to study climate
change perceptions [42,43]. The aforesaid studies reflect the potential of using social
media platforms like Twitter coupled with sentiment analysis methods for analyzing
the progression of a drought. Nonetheless, there are challenges associated with such
analysis: First, past studies such as [8,42] have found that peoples’ concerns about climate-
related matters were greatly influenced by media coverage, especially in the context of
climate association with droughts and heat waves. Second, it is particularly difficult to
automatically interpret humorous or sarcastic emotions in tweet content; this poses a
considerable impediment in sentiment analysis.

It is feasible that a coupled analysis of social media data along with other meteorologi-
cal sources, can enhance drought detection and capture the evolution of drought, especially
in data-sparse regions like those that pervade the Western U.S. The analysis presented here
features Twitter drought-related conversations during the most recent (2020–2021) drought
in Colorado and how the addition of Twitter data affected drought monitoring.

2. Methodology and Data

The use of Twitter data to mine public opinion usually is structured as a pipeline
that starts by collecting data regarding the event from Twitter, followed by processing and
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cleaning the data, and then finishes by passing the data through a prediction model. We
chose to collect Twitter data because it has grown to be popular in the USA, owing to its
effective 140-character tweeting capability where people can simply use their smartphones
to tweet about different topics. The prediction model is evaluated against the actual
outcomes of the event based on the chosen evaluation metrics.

2.1. Data Collection

Researchers developed a number of drought indices based on meteorological or hy-
drological variables for drought monitoring and forecasting. Examples of drought indices
include, but are not limited to, Standardized Precipitation Index (SPI), Standardized Precip-
itation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), Palmer
Moisture Anomaly Index (Z-index), and China-Z index (CZI). Among them, the Palmer
Drought Severity Index (PDSI, [44]) is one of the six more common drought indices for
North America [45]. The US Drought monitor https://droughtmonitor.unl.edu/ (accessed
on 2 July 2021), uses the PDSI as one of the many indices subjected to weighting of sub-
jective basis from individual authors. We obtained PDSI data from the gridMET dataset
from the Climatology Lab (http://www.climatologylab.org/gridmet.html, accessed on 2
July 2021). The data is updated once every 5 days. Besides PDSI, we also analyzed the
groundwater and soil moisture conditions derived from NASA’s Gravity Recovery and
Climate Experiment (GRACE) project given 94 their ability to measure the terrestrial water
storage (i.e., variations in water stored at all 95 levels above and within the land surface).
Through their “follow-on” satellites (GRACE-FO) and using data assimilation technique
with the Catchment Land Surface Model, the fields of soil moisture and groundwater
storage variations are derived from GRACE-FO’s liquid water thickness observation [46].
The groundwater and soil moisture data used here as complementary indicators to PDSI
are obtained from https://nasagrace.unl.edu/ (accessed on 2 July 2021).

Twitter lets researchers access its data through two different tiered Application Pro-
gramming Interface (API) services, Standard API and the Premium API. The Premium API
is a subscription-based service, whereas the Standard API is free and primarily limited by
a certain number of requests within a time frame. The premium tier of service provides
access to the past 30 days of Twitter data or to the full history of Twitter data. We started
by collecting tweets in real-time using the Standard Twitter API. For this, we searched
for keywords which are closely related to drought, such as ‘soil moisture’, ‘streamflow’,
‘drought’, ‘DroughtMonitor‘, ‘drought20’, ‘Drought2020’, ‘drought21’, ‘less water’, ‘crops’,
‘farmer’, ‘dry’, ‘dried’ etc. There could be many other terms or combination of terms for
use. As shown in Table 1, we see the top used words in 2019 and 2020 depending upon
their usage frequency in the tweets. We wrote a Python script for collecting tweets that
had location information of Colorado. However, using the real-time streaming setup has a
compromise in that most tweets did not have a geo-location attached to them.

Table 1. Sample of top used words in tweets describing drought in 2019 and 2020. Root words
are presented here for a better understanding. For example: [’pray’, ’praying’, ’prayer’, ’prayed’]
becomes [’pray’, ’pray’, ’prayer’, ’pray’].

Year Top Words Used in Order of Their Corresponding Frequency of Use

2019
drought, colorado, water, plan, river, colorado river, climate, condition, contingency,
monitor, change, dri, cowx, snow, droughtmonitor, continu, basin, need, help, news,

increase, record, west, southwest, wildfire, summer

2020
drought, url, colorado, water, condit, year, dri, extrem, climat, week,rt ,fire, chang,
cowx, wildfir, sever, area, across, droughtmonitor, time, record, rain, west, river,
moderate , weather, expand, experienc, impact, high, warm, southern, dryness

Next, we used Twitter’s Premium API to collect historical tweets along with the current
ones. The premium API helped us add another search term to our query in the form of

https://droughtmonitor.unl.edu/
http://www.climatologylab.org/gridmet.html
https://nasagrace.unl.edu/
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‘profile_region:colorado’. This helped identify the tweets regarding drought originating
from users whose profile location is in Colorado. Based on this method, we collected close
to 38,000 tweets originating from Colorado during 2019, 2020 & 2021 (For 2021 the data
collection period was January–April). Concerning the role of drought, the period in which
our models were trained coincided with a developing drought. Thus, the inclusion of data
that would incorporate times during which drought was varying could lead the models to
reflect better PDSI variations. However, there is a downside, in that tweets about drought
would decrease under “peace or leisure times" conditions (i.e., no drought tweets), in such
cases data would be fairly limited and there is not a clear way of fixing this issue.

2.2. Data Cleaning

One of the challenges of Twitter data mining was the data cleaning step. Twitter
users refer to the term “drought” in a variety of contexts, from referring to traditional
climate drought to “trophy drought” or “playoff drought” in the context of a sporting
event, and so on. Along with the above, another challenge we faced in data cleaning
concerns the localizing of the data. As previously mentioned, we collected tweets from
users whose ‘profile_region’ was set to ‘Colorado’ on Twitter. As a result, we had a number
of tweets which, although being generated from Colorado, described the drought status for
regions outside of Colorado. There were also instances where the term ‘drought’ was used
as a proper noun to refer to a very popular music label. In Table 2, we show some of the
common terms we searched for to clean our data. Although in most cases we were able to
completely remove a tweet if it contained one of the search terms, there were still some cases
where a tweet containing an above search term could also have some reference to drought
condition in Colorado. That made a labor-intense manual work, as we had to be careful
while removing tweets so that Colorado drought related tweets did not get removed by
mistake. This level of work echoes the saying “designing a good Machine Learning system
comes with ample Man Labor!”. We acknowledge that a complex linguistic technique could
have been developed for data cleaning but the main goal of this project was not to design a
perfect data cleaning algorithm. In Table 2, we present some of the search terms used to
remove tweets not related to meteorological drought.

Table 2. Sample of the search terms for data cleaning and it’s corresponding category.

Categories Search Terms

Sports
game, broncos, rams, sox, lakers, soccer, champion, super bowl, scoring, home

run, league, touchdown, @Rockies, medal, rockies division, coach, playoff,
hoops, jazz, galaxy, nuggets . . .

Location california, africa, australia, kansas, england, kingdom, somalia, sydney, pakistan,
india, costa rica, vietnam, britain, china, . . .

General elephants, koala, music, beyonce, lil wayne, cancer, rapper, aussie, song,
@GavinNewsom , . . .

Tweets usually contain a lot of information apart from the text, like mentions, hashtags,
urls, emojis or symbols. Normal language models cannot parse those data, so we needed
to clean up the tweet and replace tokens that actually contains meaningful information for
the model. The preprocessing steps we took are:

1. Lower Casing: Each text is converted to lowercase.
2. Replacing URLs: Links starting with ‘http’ or ‘https’ or ‘www’ are replaced by ‘<url>’.
3. Replacing Usernames: Replace @Usernames with word ‘<user>’. [e.g., ‘@DroughtTalker’

to ‘<user>’].
4. Replacing Consecutive letters: 3 or more consecutive letters are replaced by 2 letters.

[e.g., ‘Heyyyy’ to ‘Heyy’].
5. Replacing Emojis: Replace emojis by using a regex expression. [e.g., ‘:)’ to ‘<smile>’]
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6. Replacing Contractions: Replacing contractions with their meanings. [e.g.,“ca not” to
‘can not’]

7. Removing Non-Alphabets: Replacing characters except Digits, Alphabets and pre-
defined Symbols with a space. [e.g., $heat@t> to heat t]

As much as the above preprocessing steps are important, the actual sequence in which
the are performed is also important while cleaning up the tweets. For example, removing
the punctuation before replacing the urls means the regex expression cannot find the urls.
Same with mentions or hashtags. So in our data preprocessing step, we made sure that the
logical sequence of cleaning was followed. The final count of the tweets from Colorado for
2019–2021 after the data cleaning was 25,597.

2.3. Sentiment Analysis

The goal of sentiment classification is to predict the general sentiment orientation
conveyed by a user in a review, blog post or editorial. Such automated classification is
generally conducted by two main approaches, a machine learning approach based on
supervised learning of an annotated dataset, and a lexicon (or symbolic) approach which
is based on lexicons and rules. Supervised machine learning techniques (such as KNN,
Naive Bayes or SVM) use a manually annotated training dataset made up of samples
which labelled as positive or negative with respect to the target event (i.e., the problem).
Since these systems are trained on in–domain data, they do not scale well across different
domains and are not easily generalized. For example, let us consider a supervised dataset
consisting of labelled IMDB movie reviews, in which sentiments are labelled against the
reviews which were written by expert people in movie industry using different words
(dictionary) to explain their expert and lengthy opinions regarding movies. However
in our case, the tweets are usually written by non-experts and generally short, usually
1–2 sentences (less descriptive) each. Thus, if we want to use the labelled movie dataset
as our training data then it would not generalize well in case of tweets related to drought,
which is not in the same domain as the opinions on movies. Another drawback of the above
approach was that the training dataset needed to be sufficiently large and representative.
To our knowledge, there is no drought related labelled dataset that could be used for our
study. Towards that end, efforts have been made to develop techniques that rely less on
domain knowledge. Such techniques include discourse analysis and lexicon analysis which
takes into consideration several properties of natural language [47].

To associate sentiment orientation with the context of the words we use Opinion
lexicons. The idea is that each word in a sentence is treated in a way such that it holds critical
opinion information and therefore provide clues to document sentiment and subjectivity.
For that purpose, we used SentiWordNet introduced in [47,48], which provides a readily
available database of terms and semantic (synonyms, antonyms, preposition) relationships
built to assist in the field of opinion mining. Its aim was to provide term level information
on opinion polarity that had been built using a semi-automated process to derive the
opinion information by using the WordNet database [49], and no prior training data is
required. SentiWordNet is thus a lexical resource where every word on Wordnet is related
to three numerical scores, namely Pos(s): a positivity score Neg(s): a negativity score Obj(s):
an objectivity (neutrality) score. The scores are very precise, pertaining to the word itself
along with its context. For each term in the WordNet database, a corresponding polarity
score ranging from 0 to 1 is present in SentiWordNet. Each set of terms sharing the same
meaning, a.k.a synsets, is associated with three numerical scores each ranging from 0 to 1,
and the corresponding value indicates the synset’s objectiveness, positive and negative
bias. In SentiWordNet it is possible for a term to have non-zero values for both positive
and negative scores. A higher score carries a heavy opinion bias, or is highly subjective,
and a lower score indicates a term is less subjective.
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2.4. Machine Learning Methods

We chose 3 different machine learning techniques, generalized linear model, support
vector machines and deep learning to analyze the data. Generalized linear models (GLM)
are built on top of traditional linear models by maximizing the log-likelihood and also
involves parameter regularization. GLMs are particularly useful when the models have a
limited number of predictors with non-zero coefficients. The model fitting is comparatively
faster than traditional linear models as the computations happen in parallel. A support
vector machine (SVM) is defined as a technique that constructs a hyperplane or set of
hyperplanes in a high or infinite dimensional space, which can be used for classification,
regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane that
has the largest distance to the nearest training data points of any class (so-called functional
margin), since in general the larger the margin the lower the generalization error. This
SVM learning method can be used for both regression and classification and provides a
fast algorithm and good results for many learning tasks. Parameters to suit the problem
were selected by defining them in terms of a kernel function K(x,y). In short, SVM finds
an adequate function that partitions the solution space to separate the training data points
according to the class labels being predicted, under the assumption that future prediction
follows the same pattern.

Lastly, we adopted the deep learning (DL) model. The selected DL method is based on
a multi-layer feed-forward artificial neural network and the training process is optimized
using stochastic gradient descent using the back propagation step. The DL network
can contain many hidden layers consisting of neurons with tanh, rectifier and maxout
activation functions. The operator starts a 1-node local cluster and runs the algorithm on
it. It uses the default number of threads for the system with one instance of the cluster
as defined in RapidMiner. Details are referred to https://docs.rapidminer.com/latest/
studio/operators/modeling/predictive/neural_nets/deep_learning.html (accessed on 2
July 2022). The selected Deep Learning operator is used to predict the “survived attribute”
of the Twitter and GRACE datasets. Since the label is binominal, classification is first
performed to check the quality of the model, while the Split Validation operator is used to
generate the training and testing datasets. Our Deep Learning operator uses the default
parameters in RapidMiner. This means that two hidden layers, each with 50 neurons was
constructed. The operator then calculates the Accuracy metric for diagnostics.

2.4.1. Training Data and Control Run

To quantitatively evaluate the impact of social media data on the depiction of drought,
we needed a baseline model to compare with. So we first created a regression model
that only included meteorological variables gathered from the GRACE satellites as the
independent variables, along with PDSI values as the dependent variable. We extracted
shallow groundwater, root zone soil moisture and surface soil moisture from GRACE.
There are two goals associated with this control run. First is to show what percentage
of the observed variation in the PDSI values can be explained by the variation in the
meteorological variables based on GRACE observations. Second, the obtained percentage
would make the control run the benchmark for our social media-based models to compare
against. We should emphasize that evaluating the correspondence between PDSI and
GRACE measurements is not the focus of this paper.

We used the weekly GRACE data and PDSI data during the observation period in the
training dataset, between 1 January 2019 to 31 December 2020, resulting in 104 data points.
During the model training step, we separated out 40% of the data for testing purpose in
order to calculate the performance of models, which means that we used 41 of the 63 data
points and for testing. We also performed a 10-fold cross validation to remove bias in the
models being trained. We applied additional "lags" of these variables from 1 to 3 weeks be-
fore the current week’s values in order to capture the progression of drought in terms of the
weekly PDSI values. In total we had 12 independent variables as ‘features’ for building the
baseline model with weekly PDSI as the dependent variable. The 12 independent variables

https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/neural_nets/deep_learning.html
https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/neural_nets/deep_learning.html
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are as follows: groundwater, groundwater_1_week_before, groundwater_2_week_before,
groundwater_3_week_before, root_zone_soil, root_zone_soil_1_week_before, root_zone
_soil_2_week_before, surface_soil, root_zone_soil_3_week_before, surface_soil_1_week
_before, surface_soil_2_week_before, surface_soil_3_week_before.

Model 1 from Table 3 shows the baseline control run model, which is the simplest
model generated using only the meteorological variables. Figures 1–3 shows the results on
test dataset for the generalized linear model, support vector machine and deep learning
models, respectively. For each of those figures, the x-axis represents the true or the actual
PDSI values and the y-axis represents the predicted PDSI values.

Table 3. Different combinations of Twitter data when added as individual features to the control run
‘D’. ‘P’ represents the count of positive tweets. ‘N’ represents the count of negative tweets. ‘xN’ & ‘xP’
represent the count of negative and positive tweets ‘x’ week before, respectively.

Model Configuration

Model-1 Drought Indices (D)-control run

Model-2 D + N

Model-3 D + P + N

Model-4 D + P

Model-5 D + N + 1N

Model-6 D + P + 1P + N + 1N

Model-7 D + P + 1P

Model-8 D + N + 1N + 2N

Model-9 D + P + 1P + 2P

Model-10 D + P + 1P +2P + N + 1N + 2N

Figure 1. Result on the Test Set For Generalized Linear Model. The x-axis represents the true or the
actual PDSI values and the y-axis represents the predicted PDSI values. Each small blue circle in the
figures is represented by the tuple (PDSIactual , PDSIpred). The red dashed line is the reference line to
test the model performance.
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Figure 2. Same as Figure 1 but for Support Vector Machine model.

Figure 3. Same as Figure 1 but for Deep Learning model.

Each small blue circle in the figures is represented by the tuple (PDSIactual , PDSIpred),
where PDSIpred are the PDSI values predicted by the individual machine learning models
and PDSIactual are the actual PDSI values. The red dashed line is the reference line to test
the model performance and each point on the line is represented as (PDSIactual , PDSIactual),
thus the closer the blue circles are to the red line the smaller the error, and the better is the
model performance. Root Mean Squared Error (RMSE) and correlation coefficient were
chosen as the performance metrics and Table 4 shows the comparison of performance
between the different models. From Table 4, we can see that the RMSE values are almost
similar for all the cases and hence it is not possible to decide on a good model just based
on RMSE values in this case. On the other hand, the correlation values in Table 4 indicate
that there is a high correlation between predicted values and the actual PDSI values. From
the above results, we can say that the simple model generated using only meteorological
variables can be used as our baseline control run for our social media-based models to
compare against. This ‘drought’ control run henceforth is denoted by ‘D’.

Table 4. Results on Test Set for Generalized Linear Model, Support Vector Machines and
Deep Learning.

Models RMSE RMSE Std Dev Correlation Corr Std Dev

Generalized
Linear Model 0.603 ±0.116 0.936 ±0.015

Support Vector
Machines 0.584 ±0.1 0.955 ±0.006

Deep Learning 0.604 ±0.107 0.922 ±0.051



Water 2022, 14, 2773 9 of 22

2.4.2. Twitter Models

Before diving deep into building social media-based models, we wanted to examine
what words people commonly use in their tweets while referring to drought. Table 1 refers
to the top used words in 2019 and 2020 depending upon their usage frequency in the
tweets. Next, we proceeded with the sentiment analysis by using the ‘sentlex’ python
library (Available at https://github.com/bohana/sentlex) to generate the polarity score
of the relevant tweets. Upon initiation, the python library reads the SentiWordNet v3.0
language resource into memory and compiles word frequency data based on the frequency
distribution of lexicon words in NLTK’s Brown corpus. When we pass a sentence to
the library, it first tokenizes or breaks the sentences and tags the relevant part of speech
words (adjective, verb, noun and adverb) and assigns a tuple of numeric values (positive,
negative) indicating word polarity known to the lexicon. It should be noted that when
similar words in a sentence carry multiple meanings, then the opinion of each of those
words is averaged out to obtain the output tuple of numeric values (positive, negative).
In other words, the ‘sentlex’ library does not perform word sense disambiguation; rather, it
just separates the words by part of speech. In the final step, we compare the positive and
negative values of the tuple and then assign to a sentence, the label (positive or negative)
which has the highest value in the tuple. Table 5 shows some sample tweets with the
corresponding sentiment categories after using the ‘sentlex’ sentiment analysis library. We
note that Twitter users may fall into a certain age distribution (e.g., gender, geography,
geo-location, and education level), so collecting only Twitter data could bias the result with
respect to user groups.

2.4.3. Twitter–Data Model

Next, we added Twitter data to our control run and examined the changes in ex-
planatory power. Our goal was to see whether addition of social media data resulted in
a performance improvement over the control run model. The first step was to classify
each tweet as positive or negative by using the aforementioned sentiment analysis model.
The following step was to generate the counts of positive and negative tweets related to
drought per week.

Table 3 shows the different combinations of Twitter data when added as individual
features to the control run ‘D’. In Table 3, ‘P’ represents the count of positive tweets. ‘N’
represents the count of negative tweets. ‘wN’ and ‘wP’ represent the count of negative and
positive tweets ‘w’ weeks before, respectively. For example, ‘1P’ represents the count of
positive tweets 1 week before and ‘2N’ represents the count of negative tweets 2 weeks
before. In the next two sections we will be analyzing the results from two of the Twitter-
based models (Model 6 and Model 10 from Table 3).

We carried out our experiments about building a model able to predict PDSI values,
using RapidMiner (https://rapidminer.com/, accessed on 2 July 2021) which is an inte-
grated environment that enables efficient prototyping for machine learning applications
that can be used across various domains. RapidMiner has a wide selection of machine
learning models per the needs of the task in hand. Their software automatically optimizes
and chooses the best weight values for individual models depending on the dataset.

https://github.com/bohana/sentlex
https://rapidminer.com/
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Table 5. Sample positive and negative tweets referring to drought.

Original Tweet Processed & Formatted Tweet Category

With serious drought conditions likely to continue
into 2021, the state of Colorado has activated the

municipal portion of its emergency drought plan for
the second time in history. https://t.co/GqD6l5CDOl

(accessed on 9 September 2020)

with serious drought conditions likely to continue
into 2021 the state of colorado has activated the

municipal portion of its emergency drought plan for
the second time in history <url>

Negative

Much of the Colorado River basin is enveloped in
extreme or exceptional drought. The drought is

making for dry soil, which will mean runoff in the
spring is less effective as water seeps into the soil.

https://t.co/CVDFXFdihn (accessed on 9 September
2020)

much of the colorado river basin is enveloped in
extreme or exceptional drought the drought is

making for dry soil which will mean runoff in the
spring is less effective as water seeps into the

soil <url>

Negative

#CORiver drought plans have helped, but key
reservoirs are at historic lows, and more work is

needed to protect the river, and keep water flowing
to the millions that rely on its water, per a new report.
https://t.co/PDS0clALoM (accessed on 9 September

2020)

coriver drought plans have helped but key reservoirs
are at historic lows and more work is needed to
protect the river and keep water flowing to the

millions that rely on its water per a new report <url>

Negative

@JoshClarkDavis We are about to get hit 3 times with
storms in the next 5 days. With the drought we have
been in, it’s very exciting. Getting our snow pack just

to average would be big.

we are about to get hit 3 times with storms in the next
5 days with the drought we have been in it is very

exciting getting our snow pack just to average would
be big

Positive

All of Colorado is now in some level of drought,
but fortunately Northglenn has sufficient water in
storage for this time of year. Water conservation by

every one of our residents will make a huge
difference by helping to stretch our water reserves!

all of colorado is now in some level of drought but
fortunately northglenn has sufficient water in storage
for this time of year water conservation by every one

of our residents will make a huge difference by
helping to stretch our water reserves

Positive

The snowpack that feeds the Colorado River stands
at 75% of the median for this time of year—and that
line has dropped rapidly in just a few days. The soil

in the watershed, baked dry over the past year, is
starting to absorb melting snow like a sponge.

https://t.co/GAaPK2wqii (accessed on 15 December
2020)

the snowpack that feeds the colorado river stands at
75 of the median for this time of year and that line

has dropped rapidly in just a few days the soil in the
watershed baked dry over the past year is starting to

absorb melting snow like a sponge <url>

Positive

3. Results

We used the aforementioned machine learning techniques of generalized linear model,
support vector machine and deep learning to train all of our Twitter-based models. The re-
sults are presented and discussed herein.

Model-6 D + P + N + 1P + 1N: The rationale behind this model was to capture the
effect of people’s opinion on Twitter from the current week in observation along with
their opinion from the previous week, and how the combined change in user perception
regarding drought was reflected on the change in PDSI values. In machine learning terms,
our goal was to see if a high percentage of the observed variation in the PDSI values can be
explained by the variation in the features. The results comparing the RMSE and correlation
coefficient of the test results are shown in Table 6. If we compare Tables 4 and 6, we can
see that the correlation values have improved for the generalized linear model and deep
learning techniques, while the RMSE values have improved for the generalized linear
model and support vector machine techniques. We can see a similar effect in Figures 4–6
where the blue circles are closer to the reference red line as compared to the ones in the
case of the control run model. Although the improvement in performance is not significant,
we can see that adding social media data as features gave more prediction power to the
control run ‘D’.

https://t.co/GqD6l5CDOl
https://t.co/CVDFXFdihn
https://t.co/PDS0clALoM
https://t.co/GAaPK2wqii
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Table 6. Results on Test Set for Generalized Linear Model, Support Vector Machines and Deep
Learning for Model 6: D + P + N + 1P + 1N.

Models RMSE RMSE Std Dev Correlation Corr Std Dev

Generalized
Linear Model 0.578 ±0.066 0.941 ±0.043

Support Vector
Machines 0.492 ±0.123 0.948 ±0.043

Deep Learning 0.624 ±0.135 0.93 ±0.026

Figure 4. Result on Test Set For Generalized Linear Model using Model 6 from Table 3. The x-axis
represents the true or the actual PDSI values and the y-axis represents the predicted PDSI values.
Each small blue circle in the figures is represented by the tuple (PDSIactual , PDSIpred). The red dashed
line is the reference line to test the model performance.

Figure 5. Result on Test Set For Support Vector Machine using Model 6 from Table 3. The x-axis
represents the true or the actual PDSI values and the y-axis represents the predicted PDSI values.
Each small blue circle in the figures is represented by the tuple (PDSIactual , PDSIpred). The red dashed
line is the reference line to test the model performance.

Model-10 D + P + N + 1P + 1N + 2P + 2N: Similar to the previous model, the goal was
to capture the change in the user perception regarding drought over a “two-week period”.
Similar to the previous model, our goal was to see if a high percentage of the observed
variation in the PDSI values can be explained by the variation in the features. The results
comparing the RMSE and correlation coefficient of the test results are shown in Table 7.
If we compare Tables 4 and 7, we can see that the correlation values with the inclusion
of Twitter data have improved for all three cases and correspondingly the RMSE values
have also improved for all three machine learning techniques. These effects are shown
in Figures 7–9 where the blue circles are closer to the reference red line as compared
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to the control run model. If we compare the results in Tables 6 and 7, we can see that
there is a slight improvement in the performance due to the addition of an extra week
of user perception from Twitter. Although the above performance improvements are not
astonishing, we can still see that adding social media data as features resulted in a better
prediction performance than simply using GRACE data alone.

Figure 6. Result on Test Set For Deep Learning using Model 6 from Table 3. The x-axis represents
the true or the actual PDSI values and the y-axis represents the predicted PDSI values. Each small
blue circle in the figures is represented by the tuple (PDSIactual , PDSIpred). The red dashed line is the
reference line to test the model performance.

Table 7. Results on Test Set for Generalized Linear Model, Support Vector Machines and Deep
Learning for Model 10: D + P + 1P + 2P + N + 1N + 2N.

Models RMSE RMSE Std Dev Correlation Corr Std Dev

Generalized
Linear Model 0.516 ±0.088 0.96 ±0.017

Support Vector
Machines 0.497 ±0.0112 0.956 ±0.042

Deep Learning 0.554 ±0.051 0.941 ±0.045

Figure 7. Result on Test Set For Generalized Linear Model using Model 10 from Table 3. The x-axis
represents the true or the actual PDSI values and the y-axis represents the predicted PDSI values.
Each small blue circle in the figures is represented by the tuple (PDSIactual , PDSIpred). The red dashed
line is the reference line to test the model performance.
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Figure 8. Result on Test Set For Support Vector Machine using Model 10 from Table 3. The x-axis
represents the true or the actual PDSI values and the y-axis represents the predicted PDSI values.
Each small blue circle in the figures is represented by the tuple (PDSIactual , PDSIpred). The red dashed
line is the reference line to test the model performance.

Figure 9. Result on Test Set For Deep Learning using Model 10 from Table 3. The x-axis represents
the true or the actual PDSI values and the y-axis represents the predicted PDSI values. Each small
blue circle in the figures is represented by the tuple (PDSIactual , PDSIpred). The red dashed line is the
reference line to test the model performance.

Performance of Other Twitter Based Models: In this section, we will discuss the per-
formance of all the models listed in Table 3. Figures 10–12 shows the performance com-
parison of individual Twitter-based models (Models 2–10 in Table 3) over the control run
(Model 1 in Table 3). The x-axis in Figures 10–12 represent the difference between the
RMSE values for the control run and the Twitter-based models. The y-axis represents
the difference between the correlation coefficient values between the control run and the
Twitter-based models. The coordinate position where the blue lines intersect is where the
performance (in terms of RMSE and correlation coefficient) of the Twitter-based models
and the control run are the same. In order to classify a model to be a better performer in
comparison to the control run, its correlation value need to be higher and the corresponding
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RMSE value needs to be lower. Thus, a better performing model would appear in the top
left quadrant in Figures 10–12. If models fall in the top right quadrant, then the perfor-
mance improvement only exists in terms of the correlation coefficient. If the models fall
in the bottom left quadrant then the performance improvement is only for RMSE. Finally,
if the models fall in the bottom right quadrant then there is no performance improvement.
From Figures 10–12, we can see that, except for two cases (Model 2 and 5), the Twitter-based
models have shown a better performance over the control run model.

We also constructed Figure 13, which shows the overall performance improvements of
the two best-performing models, Model 6 and Model 10 in comparison to the baseline con-
trol run model. Each solid circle in Figure 13 represent either Model 6 or Model 10, which is
a Twitter-based model (T_RMSEmodel , T_R2

model), where model denotes either deep learning,
support vector machine or generalized linear model. Each hollow circle in Figure 13 rep-
resents the control run model (C_RMSEmodel , C_R2

model) for either deep learning, support
vector machine or generalized linear model. Arrows are drawn between the control run
and Twitter-based models to visually delineate the performance improvements between
the control run and the Twitter-based models (Model 6 and Model 10). A better performing
model will have a lower RMSE value and a higher correlation coefficient (R2) and the
bottom right corner is the area which has the lowest RMSE and highest correlation values.
Thus, any model for which the arrow points towards the bottom right means that the
particular Twitter-based model has gained improvement over the control run. In Figure 13,
we can see that the generalized linear model of both Model 6 and Model 10 has a marked
improvement over Model 1. We can also see that the performance improvement is greater
in case of Model 10, which contains user perceptions from the current time period as well
as from one and two weeks before. In the case of support vector machine (SVM), we see
that there is no significant performance improvement for both models. In terms of the deep
learning model, a performance improvement is evident in Model 10 but not in Model 6,
which has an increased RMSE value. From these results, we can say that Model 10 was the
overall better performer and showed quantifiable improvement over the control run model.

Figure 10. Improvement over control run for Generalized Linear Model. The x-axis represents the
difference between the RMSE values for the control run and the Twitter-based models. The y-axis
represents the difference between the correlation coefficient values between the control run and the
Twitter based models.
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Figure 11. Improvement over control run for Support Vector Machine. The x-axis represents the
difference between the RMSE values for the control run and the Twitter-based models. The y-axis
represents the difference between the correlation coefficient values between the control run and the
Twitter based models.

Figure 12. Improvement over control run for Deep Learning. The x-axis represents the difference
between the RMSE values for the control run and the Twitter-based models. The y-axis represents
the difference between the correlation coefficient values between the control run and the Twitter
based models.

The following section summarizes the performance of our trained models on new
and unseen data of 2021. We performed this analysis by first collecting Twitter data from
Colorado during January–April 2021 (17 weeks of data). After cleaning the data and
removing tweets based on the keywords and search terms in Table 2, we were able to
retain 4960 tweets. In a similar way as described in the previous sections, we applied the
sentiment analysis model to the tweets and gathered the count of the number of positive
and negative tweets per week for evaluation time period. We also collected the necessary
GRACE and PDSI data for the same time period, while we ran this analysis for all the
models listed in Table 3, for brevity we will only discuss the performance result for the
“best performing model”, i.e., Model 10 (D + P + N + 1P + 1N + 2P + 2N).
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Figure 13. Performance comparison for Model 4 and Model 10 w.r.t. Model 1, which is the baseline
control run, on the Test Dataset. The x-axis represents the correlation coefficient (R2, R-Squared) and
the y-axis represents the RMSE values. The arrows indicate performance improvements between the
control run and the Twitter-based models. Each solid circle represents a Twitter-based model. Each
hollow circle represents the control run model.

Figures 14–16 show the prediction results for Model 10 when compared to the control
run model. In each figure, x-axis represents the actual PDSI values and y-axis represents
the predicted PDSI. The red circles are the predictions by Model 10 represented by tuple
(PDSIactual , PDSIt_pred), where PDSIt_pred are the PDSI values predicted by Model 10 and
PDSIactual are the actual PDSI values. Similarly, the green hollow circles in the figures
are the predictions by the control run model and is represented by the tuple (PDSIactual ,
PDSIc_pred). The blue dashed line is the reference line to test the model performance
and each point on the line is represented as (PDSIactual , PDSIactual), thus the closer the
green and red circles are to the blue line, the smaller the error and the better is the model
performance. From Figures 14–16, we can see that the red circles (Twitter-based model) are
much closer to the blue line than the green circles (control run model). From these results
we can conclude that the Twitter-based model consistently outperforms the control run in
predicting the PDSI.

In Figure 17, the x-axis represents the R2 values and the y-axis represents RMSE.
Arrows are drawn between the circles representing control run and Twitter-based model
for the deep learning, support vector machine and generalized linear model techniques,
respectively. The arrows determine any performance improvement between the control
run and the Twitter-based model (Model 10). The fact that all arrows are pointing to the
bottom right, which indicates lower RMSE and higher R2, means that Model 10 indeed
outperforms the control run model.
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Figure 14. Result on unseen data during January-April 2021 using Generalized Linear Model and
Model 10 from Table 3. The x-axis represents the true or the actual PDSI values and the y-axis
represents the predicted PDSI values. The red circles are the predictions by Model 10 and the green
hollow circles in the figures are the predictions by the control run model. The blue dashed line is the
reference line to test the model performance.

Figure 15. Result on unseen data during January-April 2021 using Support Vector Machine and
Model 10 from Table 3. The x-axis represents the true or the actual PDSI values and the y-axis
represents the predicted PDSI values. The red circles are the predictions by Model 10 and the green
hollow circles in the figures are the predictions by the control run model. The blue dashed line is the
reference line to test the model performance.
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Figure 16. Result on unseen data during January-April 2021 using Deep Learning and Model 10
from Table 3. The x-axis represents the true or the actual PDSI values and the y-axis represents the
predicted PDSI values. The red circles are the predictions by Model 10 and the green hollow circles in
the figures are the predictions by the control run model. The blue dashed line is the reference line to
test the model performance.

Figure 17. Overall performance comparison of Model 10 w.r.t control run model on data from
January–April 2021.

Lastly, there could be a point of discussion about the possible effects of the release
of the new drought.gov site released in January 2021. Although there is a possibility that
recently initiated drought chatters might affect the tweet volume, it should be noted that
we did not use the 2021 data to train our models. Furthermore, our models only tell us if it
was a positive or negative tweet, so if people have retweeted the NIDIS tweets then our
system was able to capture that engagement.
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4. Conclusions

In this study, we tested the feasibility of developing social-media-based models,
supplementary to meteorological predictors, to anticipate PDSI and drought in Colorado.
The starting point was to build the control run model; this was trained using weekly
hydrologic and PDSI data during the observation period (1 January 2019 to 31 December
2020). Shallow groundwater, root zone soil moisture and surface soil moisture was extracted
frrom GRACE data and “lags” of 1–3 weeks for each of the variables were applied prior to
the current week’s values; this in order to capture the progression of drought. As noted
previously 12 variables were utilized to build a regression model where PDSI was the
dependent variable. Subsequently, a control run model was constructed by using three
different machine learning techniques, i.e., a generalized linear model, support vector
machines, and deep learning. The meteorological control run model was treated as the
baseline in the evaluation of the impact of including social media data in the machine
learning models.

Next, by using Twitter as the social media-based platform, tweets were collected based
on keywords which were closely related to drought. It was found that there were user
discussions were varied regarding drought during the time period of study. Throughout
the analysis of the frequency of different words used, we observed a change in the user
perception of drought as it continued to worsen over the 2019–2020 period. Furthermore,
noteworthy was that a considerable number of tweets in the period of the analysis included
links to government and academic websites serving as sources of information about drought
conditions; this observation supports the notion that people used Twitter not only to
complain about degrading drought conditions, but also as a source of information with
respect to drought. Next, by generating the polarity score of the tweets as either positive
or negative, we added the different combinations of scores to the control run model.
The different combinations delineated here served as Twitter-based models.

To conclude, the results indicate that Twitter-based machine learning model can
improve the forecast of PDSI in times of a developing drought. Of the 10 models tested,
eight showed quantifiable improvements in the performance over the control run model
in terms of RMSE and correlation coefficient. This is supportive of the hypothesis that
including social media data adds value to the PDSI depiction. Such an improvement
is further reinforced by testing the control run and Twitter-based models on previously
unseen data during January–April 2021. We found that the Twitter-based model consistently
outperformed the control run in predicting the PDSI values as the drought worsened.

Machine learning (ML) models have gained prominence in the area of drought fore-
casting. Researchers have developed models using time series analysis [17,18], neural
networks [19–24], fuzzy inference systems [25], support vector regression [26–28] and dif-
ferent ensemble techniques [29,30] to detect and forecast drought. Despite the new insights
machine learning can provide, recent studies suggest that any single indicator alone is not
enough to explain the complexity and diversity of drought [31,32].

ML models also thrive on good quality data. One of the important improvements
lies in data collection. Thus, increasing the training dataset in terms of both Twitter and
meteorological data can lead to an improvement of ML models. A further improvement
would be in the sentiment analysis step, like how to reduce vulnerability to drought
through an improved understanding of the interactions between society and physical
processes, while there is a growing appreciation that the information landscape for citizens‘
participation in crisis response and recovery activities is improving, it is not clear what the
role of social media will be in slow developing threats as the case for drought. An improved
language model could be deployed that could capture the word(s) embedded in tweets
that depict how people tweet with respect to drought over different periods of time.

In this work, we focused on Colorado from where we were able to collect good quality
Twitter data regarding drought. Since drought has been worsening over the American
West, we believe that our approach could be used to study drought progression across
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other states such as Utah, Arizona, California and Nevada. Thus, another future goal is to
study how well the Twitter-based models perform across different states.

Author Contributions: Conceptualization, S.M. and S.W.; methodology, S.M. and S.W.; software,
S.M.; validation, S.M., S.W. and J.L.; formal analysis, S.M.; investigation, S.M.; resources, S.W.,
R.G. and J.L.; data curation, S.M.; writing—original draft preparation, S.M.; writing—review and
editing, S.M., S.W., D.H., J.L. and R.G.; visualization, S.M., S.W. and J.L.; supervision, S.W.; project
administration, S.W. and J.L.; funding acquisition, S.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This project was funded by National Integrated Drought Information System (NIDIS)
through NCAR/UCAR as a sub-award of NA18OAR4310253B. Simon Wang is partially supported by
U.S. Department of Energy, Office of Biological and Environmental Research program under Award
Number DE-SC0016605. This publication is also supported by the Utah Agricultural Experiment
Station as paper #9607.

Institutional Review Board Statement: USU IRB Approval Code: 12855. Approval Date: 6 June 2022.

Informed Consent Statement: Written informed consent has been obtained from the patient(s) to
publish this paper.

Data Availability Statement: Data are available upon request.

Acknowledgments: The authors appreciate the publication support by UCAR’s CPAESS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fonseca, F.; Metz, S. Lake Mead Drops to a Record Low Amid Drought. 2021. Available online: https://www.latimes.com/

world-nation/story/2021-06-11/lake-mead-key-reservoir-colorado-river-record-low-drought#:~:text=Lake%20Mead%2C%20
a%20key%20reservoir%20on%20the%20Colorado%20River%2C%20has,feet%20at%2011%20p.m.%20Wednesday (accessed on 11
June 2021).

2. Wang, S.Y.; Santanello, J.; Wang, H.; Barandiaran, D.; Pinker, R.; Schubert, S.; Gillies, R.; Oglesby, R.; Hilburn, K.; Kilic, A.; et al.
An intensified seasonal transition in the Central U.S. that enhances summer drought. J. Geophys. Res. 2015, 120, 8804–8816.
[CrossRef]

3. Switzer, D.; Vedlitz, A. Investigating the Determinants and Effects of Local Drought Awareness. Weather Clim. Soc. 2017,
9, 641–657. [CrossRef]

4. Shafiee-Jood, M.; Deryugina, T.; Cai, X. Modeling Users? Trust in Drought Forecasts. Weather Clim. Soc. 2021, 13, 649–664.
[CrossRef]

5. Smith, A.B. U.S. Billion-Dollar Weather and Climate Disasters, 1980—Present (NCEI Accession 0209268), 2020. Available online:
https://www.ncei.noaa.gov/access/billions (accessed on 10 August 2021).

6. Bolinger, B. How Drought Prone Is Your State? A Look at the Top States and Counties in Drought Over the Last Two Decades,
2019. Available online: https://www.drought.gov/news/how-drought-prone-your-state-look-top-states-and-counties-drought-
over-last-two-decades (accessed on 10 August 2021).

7. Sutton, J.; Palen, L.; Shklovski, I. Backchannels on the Front Lines: Emergent Uses of Social Media in the 2007 Southern California
Wildfires. In Proceedings of the 5th International ISCRAM Conference, Washington, DC, USA, 4–7 May 2008.

8. Smith, K.H.; Tyre, A.J.; Tang, Z.; Hayes, M.J.; Akyuz, F.A. Calibrating Human Attention as Indicator Monitoring #drought in the
Twittersphere. Bull. Am. Meteorol. Soc. 2020, 101, E1801–E1819. [CrossRef]

9. Hughes, A.; Palen, L. Twitter Adoption and Use in Mass Convergence and Emergency Events. Int. J. Emerg. Manag. 2009,
6, 248–260. [CrossRef]

10. Abdelhaq, H.; Sengstock, C.; Gertz, M. EvenTweet: Online Localized Event Detection from Twitter. Proc. VLDB Endow. 2013,
6, 1326–1329. [CrossRef]

11. Cameron, M.A.; Power, R.; Robinson, B.; Yin, J. Emergency Situation Awareness from Twitter for Crisis Management. In
Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16–20 April 2012; WWW ’12 Companion;
Association for Computing Machinery: New York, NY, USA, 2012; pp. 695–698. [CrossRef]

12. Mathioudakis, M.; Koudas, N. TwitterMonitor: Trend Detection over the Twitter Stream. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010; SIGMOD ’10; Association for
Computing Machinery: New York, NY, USA, 2010; pp. 1155–1158. [CrossRef]

13. Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake Shakes Twitter Users: Real-Time Event Detection by Social Sensors. In Proceedings
of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; WWW ’10; Association for
Computing Machinery: New York, NY, USA, 2010; pp. 851–860. [CrossRef]

https://www.latimes.com/world-nation/story/2021-06-11/lake-mead-key-reservoir-colorado-river-record-low-drought#:~:text=Lake%20Mead%2C%20a%20key%20reservoir%20on%20the%20Colorado%20River%2C%20has,feet%20at%2011%20p.m.%20Wednesday
https://www.latimes.com/world-nation/story/2021-06-11/lake-mead-key-reservoir-colorado-river-record-low-drought#:~:text=Lake%20Mead%2C%20a%20key%20reservoir%20on%20the%20Colorado%20River%2C%20has,feet%20at%2011%20p.m.%20Wednesday
https://www.latimes.com/world-nation/story/2021-06-11/lake-mead-key-reservoir-colorado-river-record-low-drought#:~:text=Lake%20Mead%2C%20a%20key%20reservoir%20on%20the%20Colorado%20River%2C%20has,feet%20at%2011%20p.m.%20Wednesday
http://doi.org/10.1002/2014JD023013
http://dx.doi.org/10.1175/WCAS-D-16-0052.1
http://dx.doi.org/10.1175/WCAS-D-20-0081.1
https://www.ncei.noaa.gov/access/billions
https://www.drought.gov/news/how-drought-prone-your-state-look-top-states-and-counties-drought-over-last-two-decades
https://www.drought.gov/news/how-drought-prone-your-state-look-top-states-and-counties-drought-over-last-two-decades
http://dx.doi.org/10.1175/BAMS-D-19-0342.1
http://dx.doi.org/10.1504/IJEM.2009.031564
http://dx.doi.org/10.14778/2536274.2536307
http://dx.doi.org/10.1145/2187980.2188183
http://dx.doi.org/10.1145/1807167.1807306
http://dx.doi.org/10.1145/1772690.1772777


Water 2022, 14, 2773 21 of 22

14. Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al.
The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [CrossRef]

15. Glaser, M. California Wildfire Coverage by Local Media, Blogs, Twitter, Maps and More. 2007. Available online: http:
//mediashift.org/2007/10/california-wildfire-coverage-by-local-media-blogs-twitter-maps-and-more298/ (accessed on 11 June
2021).

16. Stelter, B. How Social Media is Helping Houston Deal with Harvey Floods. 2017. Available online: https://money.cnn.com/2017
/08/28/media/harvey-rescues-social-media-facebook-twitter/index.html#:~:text=Hundreds%20of%20stranded%20Texas%20
residents,high%20the%20flood%20waters%20were (accessed on 11 June 2021).

17. Ömer Faruk, D. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell.
2010, 23, 586–594. [CrossRef]

18. Han, P.; Wang, P.; Zhang, S.; Zhu, D. Drought forecasting based on the remote sensing data using ARIMA models. Math. Comput.
Model. 2010, 51, 1398–1403. [CrossRef]

19. Mishra, A.; Desai, V. Drought forecasting using feed-forward recursive neural network. Ecol. Model. 2006, 198, 127–138.
[CrossRef]

20. Santos, J.; Portela, M.; Pulido-Calvo, I. Spring drought prediction based on winter NAO and global SST in Portugal. Hydrol.
Process. 2014, 28, 1009–1024. [CrossRef]

21. Le, M.H.; Corzo, G.; Solomatine, D.; Nguyen, L.B. Meteorological Drought Forecasting Based on Climate Signals Using Artificial
Neural Network—A Case Study in Khanhhoa Province Vietnam. Procedia Eng. 2016, 154, 1169–1175. [CrossRef]

22. Belayneh, A.; Adamowski, J.; Khalil, B.; Quilty, J. Coupling machine learning methods with wavelet transforms and the bootstrap and
boosting ensemble approaches for drought prediction. Atmos. Res. 2016, 172, 37–47. [CrossRef]

23. Ali, Z.; Hussain, I.; Faisal, M.; Nazir, M.; Hussain, T.; Muhammad, Y.s.; Shoukry, A.; Gani, S. Forecasting Drought Using
Multilayer Perceptron Artificial Neural Network Model. Adv. Meteorol. 2017, 2017, 5681308. Available online: https://www.
hindawi.com/journals/amete/2017/5681308/(accessed on 11 June 2021). [CrossRef]

24. Mouatadid, S.; Raj, N.; Deo, R.; Adamowski, J. Input selection and data-driven model performance optimization to predict the
Standardized Precipitation and Evaporation Index in a drought-prone region. Atmos. Res. 2018, 212, 130–149. [CrossRef]

25. Ali, M.; Deo, R.; Downs, N.; Maraseni, T. An ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar
standardized precipitation index. Atmos. Res. 2018, 207, 155–180. [CrossRef]

26. Ganguli, P.; Janga Reddy, M. Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach.
Hydrol. Process. 2014, 28, 4889–5009. [CrossRef]

27. Deo, R.; Kisi, O.; Singh, V. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square
support vector machine and M5Tree model. Atmos. Res. 2016, 184, 149–175. [CrossRef]

28. Xu, L.; Chen, N.; Xiang, Z.; Chen, Z. An evaluation of statistical, NMME and hybrid models for drought prediction in China. J.
Hydrol. 2018, 566, 235–249. [CrossRef]

29. Khajehei, S.; Hamid, M. Towards an Improved Ensemble Precipitation Forecast: A Probabilistic Post-Processing Approach. J.
Hydrol. 2017, 546, 476–489. [CrossRef]

30. Zhang, R.; Chen, Z.Y.; Xu, L.J.; Ou, C.Q. Meteorological drought forecasting based on a statistical model with machine learning
techniques in Shaanxi province, China. Sci. Total Environ. 2019, 665, 338–346. [CrossRef] [PubMed]

31. Hayes, M.; Svoboda, M.; Comte, L.; Redmond, D.; Pasteris, P. Drought Monitoring: New Tools for the 21st Century. Drought
Water Cris. Sci. Technol. Manag. Issues 2005, 53, 69. [CrossRef]

32. Wardlow, B.D.; Anderson, M.C.; Verdin, J.P. Remote Sensing of Drought: Innovative Monitoring Approaches; CRC Press: Boca Raton,
FL, USA, 2012.

33. Tang, D.; Wei, F.; Yang, N.; Zhou, M.; Liu, T.; Qin, B. Learning Sentiment–Specific Word Embedding for Twitter Sentiment
Classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014-
Proceedings of the Conference, Baltimore, MD, USA, 22–27 June 2014; Volume 1, pp. 1555–1565. [CrossRef]

34. Severyn, A.; Moschitti, A. Twitter Sentiment Analysis with Deep Convolutional Neural Networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015;
SIGIR ’15; Association for Computing Machinery: New York, NY, USA, 2015; pp. 959–962. [CrossRef]

35. Agarwal, A.; Xie, B.; Vovsha, I.; Rambow, O.; Passonneau, R. Sentiment Analysis of Twitter Data. In Proceedings of the
Proceedings of the Workshop on Languages in Social Media, Portland, OR, USA, 23 June 2011; LSM ’11; Association for
Computational Linguistics: Portland, OR, USA, 2011; pp. 30–38.

36. Liu, B. Sentiment Analysis and Opinion Mining; Morgan & Claypool Publishers: Williston, VT, USA, 2012.
37. Lachlan, K.A.; Spence, P.R.; Lin, X. Expressions of risk awareness and concern through Twitter: On the utility of using the

medium as an indication of audience needs. Comput. Hum. Behav. 2014, 35, 554–559. [CrossRef]
38. Gruebner, O.; Lowe, S.; Sykora, M.; Shankardass, K.; Subramanian, S.; Galea, S. Spatio-Temporal Distribution of Negative

Emotions in New York City After a Natural Disaster as Seen in Social Media. Int. J. Environ. Res. Public Health 2018, 15, 2275.
[CrossRef]

39. Mittal, A.; Patidar, S. Sentiment Analysis on Twitter Data: A Survey. In Proceedings of the 2019 7th International Conference on
Computer and Communications Management, Bangkok, Thailand, 27–29 July 2019; ICCCM 2019; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 91–95. [CrossRef]

http://dx.doi.org/10.1175/1520-0477-83.8.1181
http://mediashift.org/2007/10/california-wildfire-coverage-by-local-media-blogs-twitter-maps-and-more298/
http://mediashift.org/2007/10/california-wildfire-coverage-by-local-media-blogs-twitter-maps-and-more298/
https://money.cnn.com/2017/08/28/media/harvey-rescues-social-media-facebook-twitter/index.html#:~:text=Hundreds%20of%20stranded%20Texas%20residents,high%20the%20flood%20waters%20were
https://money.cnn.com/2017/08/28/media/harvey-rescues-social-media-facebook-twitter/index.html#:~:text=Hundreds%20of%20stranded%20Texas%20residents,high%20the%20flood%20waters%20were
https://money.cnn.com/2017/08/28/media/harvey-rescues-social-media-facebook-twitter/index.html#:~:text=Hundreds%20of%20stranded%20Texas%20residents,high%20the%20flood%20waters%20were
http://dx.doi.org/10.1016/j.engappai.2009.09.015
http://dx.doi.org/10.1016/j.mcm.2009.10.031
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.017
http://dx.doi.org/10.1002/hyp.9641
http://dx.doi.org/10.1016/j.proeng.2016.07.528
http://dx.doi.org/10.1016/j.atmosres.2015.12.017
https://www.hindawi.com/journals/amete/2017/5681308/
https://www.hindawi.com/journals/amete/2017/5681308/
http://dx.doi.org/10.1155/2017/5681308
http://dx.doi.org/10.1016/j.atmosres.2018.05.012
http://dx.doi.org/10.1016/j.atmosres.2018.02.024
http://dx.doi.org/10.1002/hyp.9966
http://dx.doi.org/10.1016/j.atmosres.2016.10.004
http://dx.doi.org/10.1016/j.jhydrol.2018.09.020
http://dx.doi.org/10.1016/j.jhydrol.2017.01.026
http://dx.doi.org/10.1016/j.scitotenv.2019.01.431
http://www.ncbi.nlm.nih.gov/pubmed/30772564
http://dx.doi.org/10.1201/9781420028386.ch3
http://dx.doi.org/10.3115/v1/P14-1146
http://dx.doi.org/10.1145/2766462.2767830
http://dx.doi.org/10.1016/j.chb.2014.02.029
http://dx.doi.org/10.3390/ijerph15102275
http://dx.doi.org/10.1145/3348445.3348466


Water 2022, 14, 2773 22 of 22

40. He, Y.; Wen, L.; Zhu, T. Area Definition and Public Opinion Research of Natural Disaster Based on Micro-blog Data. Procedia
Comput. Sci. 2019, 162, 614–622. [CrossRef]

41. Kam, J.; Stowers, K.; Kim, S. Monitoring of Drought Awareness from Google Trends: A Case Study of the 2011–2017 California
Drought. Weather Clim. Soc. 2019, 11, 419–429. [CrossRef]

42. Kirilenko, A.; Molodtsova, T.; Stepchenkova, S. People as sensors: Mass media and local temperature influence climate change
discussion on Twitter. Glob. Environ. Chang. 2015, 30, 92–100. [CrossRef]

43. Chen, X.; Zou, L.; Zhao, B. Detecting Climate Change Deniers on Twitter Using a Deep Neural Network. In Proceedings of
the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China, 22–24 February 2019; ICMLC ’19;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 204–210. [CrossRef]

44. Palmer, W. Meteorological Drought. Weather Bureau Research Paper No. 45; US Department of Commerce: Washington, DC,
USA, 1965.

45. Tian, L.; Yuan, S.; Quiring, S.M. Evaluation of six indices for monitoring agricultural drought in the south-central United States.
Agric. For. Meteorol. 2018, 249, 107–119. [CrossRef]

46. Houborg, R.; Rodell, M.; Li, B.; Reichle, R.; Zaitchik, B.F. Drought indicators based on model-assimilated Gravity Recovery and
Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 2012, 48, W07525. [CrossRef]

47. Esuli, A.; Sebastiani, F. SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining. In Proceedings of the Fifth
International Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, 22–28 May 2006; European Language
Resources Association (ELRA): Genoa, Italy, 2006.

48. Baccianella, S.; Esuli, A.; Sebastiani, F. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion
Mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta,
Malta, 19–21 May 2010; European Language Resources Association (ELRA): Valletta, Malta, 2010.

49. Miller, G.A.; Beckwith, R.; Fellbaum, C.; Gross, D.; Miller, K.J. Introduction to WordNet: An On-line Lexical Database. Int. J.
Lexicogr. 1990, 3, 235–244. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2019.12.030
http://dx.doi.org/10.1175/WCAS-D-18-0085.1
http://dx.doi.org/10.1016/j.gloenvcha.2014.11.003
http://dx.doi.org/10.1145/3318299.3318382
http://dx.doi.org/10.1016/j.agrformet.2017.11.024
http://dx.doi.org/10.1029/2011WR011291
http://dx.doi.org/10.1093/ijl/3.4.235

	Introduction
	Methodology and Data
	Data Collection
	Data Cleaning
	Sentiment Analysis
	Machine Learning Methods
	Training Data and Control Run
	Twitter Models
	Twitter–Data Model


	Results
	Conclusions
	References

