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Abstract: In order to study the hydraulic performance and internal flow field of dual pumps in cen-
trifugal prefabricated pumping station under operation conditions, this paper carried out a numerical
calculation based on CFD software for dual pumps in a centrifugal prefabricated pumping station
under different flow conditions and verified the internal flow field through test. The results show that
the efficiency of centrifugal prefabricated pumping station under design conditions (Qd = 33.93 m3/h)
is 63.96%, the head is 8.66 m, the head at the starting point of the saddle area is 10.50 m, which is
1.21 times of the designed head. The efficiency of the high-efficiency zone of the prefabricated pump
station is 58.0~63.0%, and the corresponding flow range is 0.62Qd~1.41Qd (21.0~48.0 m3/h). The
uniformity of the inlet flow rate of impeller of pump 1 is 74.70%, and that of pump 2 is 75.57%. The
flow fields of water pumps on both sides are inconsistent. The results of the flow field indicate that
there are severe back flow phenomena at the prefabricated bucket intake, more back flow in the
bucket, and many eddies on the side wall. With the increase in flow rate, the eddy structure at the
intake expands continuously and moves towards the center area, which has a negative impact on the
flow field in the center area. The research results of this paper can provide a theoretical reference for
the research and operation of the same type of prefabricated pumping stations.

Keywords: prefabricated pumping station; centrifugal pump; energy characteristics; internal flow
field; test

1. Introduction

With the worsening weather in recent years, some areas are often damaged by flood
disasters, and the role of pumping stations is becoming increasingly prominent. Traditional
pumping stations are mainly concrete pumping stations, which are costly, have a long
construction period, and consume a lot of manpower and material resources. They cannot
be moved after construction [1]. In this context, prefabricated pumping stations have
gradually developed. Prefabricated pumping stations originated in Europe at the earliest.
They are small and movable new drainage and irrigation equipment that combine all
the components of the pumping stations into one unit. Compared with the traditional
concrete pumping station, the prefabricated pumping station has the advantages of simple
installation, short construction period, small area, good saving of land resources, and good
economic benefits. A prefabricated pumping station is a power water conveyance device
that integrates pumps, cylinders, pipes, and other components. At present, the research on
prefabricated pumping stations is mostly focused on engineering applications. The flow
pattern in the prefabricated pumping station is quite complex, and the bad flow pattern
often affects the stable operation of the pumping station, causing cavitation and vibration
of the pump and even damaging parts of the pump in serious cases. However, there is little
research on the operation capacity and internal flow field of the prefabricated pumping
station. The hydraulic performance and internal flow characteristics of the prefabricated
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pumping station are not clear, which makes it impossible to operate efficiently, stably, and
safely. Therefore, it is necessary to study the prefabricated pumping station in depth.

Some scholars have carried out some research on the prefabricated pumping station;
for example, related scholars pointed out that integrated prefabricated pumping station has
great advantages in volume, service efficiency, etc. [2], analyzed the strength of integrated
prefabricated pumping station cylinder [3], analyzed the sedimentation characteristics
of solids when multiphase flow in integrated prefabricated pumping station [4,5], and
analyzed the installation parameters of pumps in prefabricated pumping station [6]. There
are few studies on the integrated pumping station. The research focuses on engineering
application, structural design, and deposition of multiphase flow solids. There is little
research on its hydraulic performance and internal flow characteristics. Studies have
shown the advantages of using CFD methods for centrifugal pump characteristics and
flow field studies; for example, related scholars have used CFD methods to analyze the
energy characteristics of centrifugal pumps [7,8] and the pressure, velocity, and streamline
the distribution of centrifugal pumps [9], and the literature [10] shows that the energy
characteristics of centrifugal pumps can be studied using the SST k-ω turbulence model.
Related scholars have combined numerical calculations with experiments to analyze and
discuss the pump performance and internal flow patterns; for example, some scholars have
compared the numerical calculation results with experimental data for multiple working
conditions [11], studied the effect of cutouts on the guide vane on the pump performance
and internal flow [12], revealed the performance and internal flow characteristics of multi-
stage single suction centrifugal pumps, analyzed in detail the internal flow and pressure
field of centrifugal pumps [13], and analyzed the effect of impeller vane number and angle
on the performance of centrifugal pumps [14].

In this paper, considering the influence of structural components on the internal flow
field, the local dimensions of structural components are not simplified, and numerical
calculations and experimental analysis are used for the study with a view to gaining insight
into the hydraulic performance and internal flow characteristics of prefabricated pumping
stations in actual operation, revealing the undesirable flow patterns inside prefabricated
pumping stations, and providing theoretical guidance for the optimal design and opera-
tion of prefabricated pumping stations. The research in this paper has certain academic
significance and engineering application value.

2. Three-Dimensional Modeling and Numerical Calculation Setup
2.1. Calculation Model

In this paper, Solidworks software [15] is used to build the three-dimensional model
of the whole pumping station. When modeling, the influence of the structural components
such as motor, pipe, and flange in the pumping station on the water flow is considered. The
overall height of the cylinder is L = 1 m, the diameter of the cylinder is D = 1 m, and the
diameter of the intake and outlet is R = 100 mm. The pump used in this paper is a submerged
centrifugal pump with a diameter of impeller d = 100 mm, number of vanes of 3 pieces, and
speed n = 2900 r/min. The three-dimensional model is as shown in the Figure 1.

2.2. Meshing

In this paper, the water body parts inside the structural components are extracted
by SolidWorks software, and the three-dimensional model is meshed in Mesh software.
The mesh calculation area mainly includes the inlet section, prefabricated barrel, impeller,
guide vane, and outlet section. Because the fluid excises more structural components and is
more complex, this paper uses non-structural tetrahedral mesh for mesh division, and the
mesh is better adapted [16–18]. The fluid calculation mesh of the centrifugal prefabricated
pumping station is shown in Figure 2.
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Figure 1. General assembly drawing of three-dimensional model of centrifugal prefabricated pump-
ing station. 1. Inlet; 2. outlet; 3. round prefabricated barrels; 4. couplers; 5. submersible centrifugal 
pump 1; 6. submersible centrifugal pump 2. 
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Figure 2. Grid of each calculation domain. (a) Prefabricated barrel grid; (b) impeller grid; (c) worm 
gear grid; (d) outlet section grid. 

In this paper, seven scenarios with different numbers of meshes under the design 
condition (Qd = 33.93 m3/h) are selected for the numerical calculation of the centrifugal 
prefabricated pumping station, and the efficiency of the centrifugal prefabricated pump-
ing station is used as the evaluation index. It can be seen from Figure 3 that when the 
number of grids is between 0.9 million and 3 million, the efficiency changes greatly and is 
unstable. When the number of grids reaches 3.2 million, the efficiency curve basically re-
mains unchanged, indicating that the increase in the number of grids has little impact on 
the calculation results [19]. Considering the computer performance and the accuracy of 
the calculation results, this paper selects 3.2 million grids for numerical calculation. 

Figure 1. General assembly drawing of three-dimensional model of centrifugal prefabricated pump-
ing station. 1. Inlet; 2. outlet; 3. round prefabricated barrels; 4. couplers; 5. submersible centrifugal
pump 1; 6. submersible centrifugal pump 2.
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Figure 2. Grid of each calculation domain. (a) Prefabricated barrel grid; (b) impeller grid; (c) worm
gear grid; (d) outlet section grid.

In this paper, seven scenarios with different numbers of meshes under the design
condition (Qd = 33.93 m3/h) are selected for the numerical calculation of the centrifugal
prefabricated pumping station, and the efficiency of the centrifugal prefabricated pumping
station is used as the evaluation index. It can be seen from Figure 3 that when the number
of grids is between 0.9 million and 3 million, the efficiency changes greatly and is unstable.
When the number of grids reaches 3.2 million, the efficiency curve basically remains
unchanged, indicating that the increase in the number of grids has little impact on the
calculation results [19]. Considering the computer performance and the accuracy of the
calculation results, this paper selects 3.2 million grids for numerical calculation.
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Figure 3. Grid irrelevance analysis diagram. 

2.3. Boundary Conditions and Turbulence Model 
The inlet of a centrifugal prefabricated pumping station is on the side of the prefab-

ricated barrel, on the same level as the outlet. The condition for the inlet is set to Total 
Pressure, and the pressure magnitude is set to one atmosphere. The outlet is the outlet of 
the centrifugal prefabricated pumping station, and the outlet condition is set to Normal 
Speed. The solid wall is set to a no-slip boundary condition [20], the fluid has zero velocity 
near the wall, and the effect of wall roughness is not taken into account. The surface wall 
condition of the impeller is also set to the Rotating wall, and the surface wall condition of 
the cylinder, worm casing, and outlet section is set to the Static wall, applying the bound-
ary no-slip boundary condition. In this paper, the two pumps are arranged symmetrically 
on the central axis of the cylinder, two rotation axes are set for the numerical calculation, 
the vertical direction of the impeller centers of pump 1 and pump 2 are used to determine 
the respective rotation axes, the coordinate positions of pump 1 rotation axis are (0.235, 
0.1, 0.265), and pump 2 rotation axis coordinates are (−0.235, 0.1, −0.265). 

In the calculation area, the calculation area of the inlet section, the cylinder, the worm 
housing, and the outlet section are set to the static domain, and the calculation area of the 
impeller is set to the rotational domain. In this paper, the Frozen Rotor interfacing model 
is used as the dynamic and static interfacing model for the fluid connection between the 
impeller and the worm gear. The numerical calculation of the centrifugal prefabricated 
pumping station uses the Reynolds time-averaged N-S equation, and the turbulence 
model uses the SST k-ω [21,22] turbulence model, which absorbs the advantages of the 
standard k-ε model and the standard k-ω model, and adopts the automatic function at the 
boundary layer, which can better capture the flow at the boundary layer. The diffusion 
term and pressure gradient are represented by the finite volume method based on finite 
elements, and the convective term is in the High-Resolution Scheme. In the calculation, 
the pressure of the flow field is P; the velocities in the x, y, and z directions are u, v, and w; 
the convergence conditions of the turbulent kinetic energy k equation and the dissipation 
rate ε are set to 10−5, and in principle, the smaller the residuals are, the better. 
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2.3. Boundary Conditions and Turbulence Model

The inlet of a centrifugal prefabricated pumping station is on the side of the prefab-
ricated barrel, on the same level as the outlet. The condition for the inlet is set to Total
Pressure, and the pressure magnitude is set to one atmosphere. The outlet is the outlet of
the centrifugal prefabricated pumping station, and the outlet condition is set to Normal
Speed. The solid wall is set to a no-slip boundary condition [20], the fluid has zero velocity
near the wall, and the effect of wall roughness is not taken into account. The surface wall
condition of the impeller is also set to the Rotating wall, and the surface wall condition of
the cylinder, worm casing, and outlet section is set to the Static wall, applying the boundary
no-slip boundary condition. In this paper, the two pumps are arranged symmetrically on
the central axis of the cylinder, two rotation axes are set for the numerical calculation, the
vertical direction of the impeller centers of pump 1 and pump 2 are used to determine the
respective rotation axes, the coordinate positions of pump 1 rotation axis are (0.235, 0.1,
0.265), and pump 2 rotation axis coordinates are (−0.235, 0.1, −0.265).

In the calculation area, the calculation area of the inlet section, the cylinder, the worm
housing, and the outlet section are set to the static domain, and the calculation area of the
impeller is set to the rotational domain. In this paper, the Frozen Rotor interfacing model
is used as the dynamic and static interfacing model for the fluid connection between the
impeller and the worm gear. The numerical calculation of the centrifugal prefabricated
pumping station uses the Reynolds time-averaged N-S equation, and the turbulence model
uses the SST k-ω [21,22] turbulence model, which absorbs the advantages of the standard
k-ε model and the standard k-ω model, and adopts the automatic function at the boundary
layer, which can better capture the flow at the boundary layer. The diffusion term and
pressure gradient are represented by the finite volume method based on finite elements, and
the convective term is in the High-Resolution Scheme. In the calculation, the pressure of
the flow field is P; the velocities in the x, y, and z directions are u, v, and w; the convergence
conditions of the turbulent kinetic energy k equation and the dissipation rate ε are set to
10−5, and in principle, the smaller the residuals are, the better.

2.4. Calculation Formula
2.4.1. Control Equations

Turbulence control equation (N-S equation):

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂P

∂xi
+ [µ(

∂ui
∂xj

+
∂uj

∂xi
)] + Fi (1)

where t is time (s); ρ is fluid density (kg/m3); xi and xj are spatial coordinates; ui and
uj are the velocity components of the fluid parallel to the corresponding axes xi and xj,
respectively, and Fi is the volume force component in the i-direction; µ is the fluid dynamic
viscosity coefficient; P is the pressure (Pa).

The transport equation of the SST k-ω turbulence model can be expressed as:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj
[(µ +

µt

σk
)

∂k
∂xj

] + Gk − Yk + Sk (2)

∂(ρω)

∂t
+

∂(ρωui)

∂xi
=

∂

∂xj
[(µ +

µt

σω
)

∂ω

∂xj
] + Gω − Yω + Sω + Dω (3)

where Gk, Gω is the generating term of the equation; Yk, Yω is the generating term of
the diffusive action; Sk, Sω is the user-defined source term; Dω is the term generated by
the orthogonal divergence; k is the turbulent kinetic energy; ω is the turbulent special
dissipation; µt is turbulent dynamic viscosity coefficient.
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2.4.2. Hydraulic Performance Prediction

Centrifugal prefabricated pumping station head, expressed by the following equa-
tion [23,24]:

Hnet =


∫
s2

P2utds

ρQg
+ H2 +

∫
s2

u2
2ut2ds

2Qg

−


∫
s1

P1utds

ρQg
+ H1 +

∫
s1

u2
1ut1ds

2Qg

 (4)

where the first term on the right side of the equation is the total pressure at the outlet
section of the prefabricated barrel, and the second term is the total pressure at the inlet
section of the prefabricated barrel. Q—flow rate, m3/s; H1, H2—prefabricated barrel inlet
and outlet section elevation, m.

s1, s2—prefabricated barrel inlet and outlet section area; u1, u2—prefabricated barrel
inlet and outlet flow velocity at each point, m/s; ut1, ut2—prefabricated barrel inlet and
outlet section flow velocity normal component at each point, m/s.

P1, P2—prefabricated barrel inlet and outlet section at each point of the static pressure,
Pa; g—gravitational acceleration, m/s2.

The efficiency of centrifugal prefabricated pumping stations is [25–27]:

η =
ρgQHnet

N1 + N2
(5)

where N1—shaft power of pump 1, N2—shaft power of pump 2.
The shaft power of the centrifugal prefabricated pumping station is [28,29]:

N =
π

30
Tn (6)

where T—torque, N—m; n—rotational speed, r/min.

2.4.3. Uniformity of Flow Velocity Distribution

The uniformity of axial velocity distribution Vzu of the section at the impeller inlet
reflects the water inlet quality of the impeller, and the closer Vzu is to 100%, the more
uniform the water inlet of the impeller is, and its calculation formula is as follows [30]:

Vzu =

1 − 1
va

√√√√[
n

∑
i=1

(vai − va)
2

]
/n

× 100% (7)

where Vzu—uniformity of flow velocity distribution at impeller inlet, %; Va—arithmetic
mean of axial flow velocity at impeller inlet; Vai—axial velocity of each calculation unit at
impeller inlet, m/s; n—number of calculation units at impeller inlet.

3. Energy and Internal Flow Characteristics Analysis

In this paper, the numerical calculation results under different flow conditions are
extracted to analyze the flow field characteristics inside the centrifugal prefabricated pump-
ing station. The numerical calculations are divided into 12 flow conditions, which are
11.31 m3/h (0.33Qd), 16.96 m3/h (0.50Qd), 22.62 m3/h (0.67Qd), 28.27 m3/h (0.83Qd),
33.93 m3/h (1.00Qd), 39.58 m3/h (1.17Qd), 45.24 m3/h (1.33Qd), 50.89 m3/h (1.50Qd),
56.55 m3/h (1.67Qd), 62.20 m3/h (1.83Qd), 67.86 m3/h (2.00Qd), 73.51 m3/h (2.17Qd), and
79.17 m3/h (2.33Qd); design flow working condition is Qd = 33.93 m3/h.

3.1. Energy Characteristics Analysis

The numerical calculation results of the centrifugal prefabricated pumping station at
different flow rates are extracted, and the head and efficiency of centrifugal prefabricated
pumping station are calculated by Equations (4)–(6), followed by drawing the energy char-
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acteristic curve of the centrifugal prefabricated pumping station. The energy characteristics
are shown in Table 1 and Figure 4.

Table 1. Energy characteristics data table.

Flow Rate Q (m3/h) Head H (m) Efficiency η (%)

11.31 (0.33Qd) 10.50 45.05
16.96 (0.50Qd) 10.33 55.28
22.62 (0.67Qd) 9.91 59.77
28.27 (0.83Qd) 9.39 63.22
33.93 (1.00Qd) 8.66 63.96
39.58 (1.17Qd) 7.77 61.78
45.24 (1.33Qd) 6.84 60.36
50.89 (1.50Qd) 5.91 57.54
56.55 (1.67Qd) 4.93 53.17
62.20 (1.83Qd) 3.94 47.15
67.86 (2.00Qd) 2.92 39.18
73.51 (2.17Qd) 1.90 28.97
79.17 (2.33Qd) 0.57 9.98
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the head is 8.66 m. The head at the starting point of the saddle area is 10.50 m, which is 
1.21 times the design head, indicating that the operable head range for small flow is small 
and the operable head range for large flow is wide. Under the high flow rate condition (Q 
= 33.93~79.17 m3/h), the efficiency decreases gradually with the increase in flow rate. The 
slope of the efficiency curve change increases with increasing flow rate. When the flow 
rate is between 21.0~48.0 m3/h, the prefabricated pumping station is in the high-efficiency 
zone (the high-efficiency zone is defined as the range of flows where the efficiency of the 
optimal efficiency point decreases by 5%); at this time, the pumping station device effi-
ciency is around 58.0~63.0%. The head curve of the prefabricated pumping station gradu-
ally decreases with the increase in flow, from 10.50 m to 0.57 m, and the efficiency curve 
is parabolic with the increase in flow; the head curve is approximately straight with a 
small change in slope. 

Based on the post-processing of the numerical calculation results, the uniformity of 
flow velocity at the impeller inlet of pump 1 and pump 2 is calculated by Equation (7). 
The uniformity of flow rate is shown in Table 2 and Figure 5. 

Table 2. Uniformity of impeller inlet flow rate at different flow rates. 

Flow Rate Q 
(m3/h) 

Water Pump 1 Impeller Inlet 
Flow Rate Uniformity (%) 

Water Pump 2 Impeller Inlet Flow 
Rate Uniformity (%) 

11.31 (0.33Qd) 68.55 66.05 
16.96 (0.50Qd) 70.55 73.03 
22.62 (0.67Qd) 73.93 74.74 
28.27 (0.83Qd) 74.59 75.40 
33.93 (1.00Qd) 74.70 75.57 
39.58 (1.17Qd) 74.61 75.52 
45.24 (1.33Qd) 74.65 75.55 

Figure 4. Energy characteristic curve at different flow rates.

The calculation results of the energy characteristics of the centrifugal prefabricated
pumping station show that the efficiency of the prefabricated pumping station increases
with the flow rate under the small flow rate condition (Q = 11.31~33.93 m3/h), and at the
flow condition 0.33Qd (Q = 11.31 m3/h), the centrifugal prefabricated pumping station
enters the flow instability condition (saddle zone effect area), and this phenomenon can be
obviously found through the head, the head increases less from 0.50Qd to 0.33Qd, and the
slope of growth here is close to 0 from the head curve and reaches the maximum value at
the design condition (Qd = 33.93 m3/h) with the maximum efficiency value of 63.96% and
the head is 8.66 m. The head at the starting point of the saddle area is 10.50 m, which is
1.21 times the design head, indicating that the operable head range for small flow is small
and the operable head range for large flow is wide. Under the high flow rate condition
(Q = 33.93~79.17 m3/h), the efficiency decreases gradually with the increase in flow rate.
The slope of the efficiency curve change increases with increasing flow rate. When the flow
rate is between 21.0~48.0 m3/h, the prefabricated pumping station is in the high-efficiency
zone (the high-efficiency zone is defined as the range of flows where the efficiency of
the optimal efficiency point decreases by 5%); at this time, the pumping station device
efficiency is around 58.0~63.0%. The head curve of the prefabricated pumping station
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gradually decreases with the increase in flow, from 10.50 m to 0.57 m, and the efficiency
curve is parabolic with the increase in flow; the head curve is approximately straight with
a small change in slope.

Based on the post-processing of the numerical calculation results, the uniformity of
flow velocity at the impeller inlet of pump 1 and pump 2 is calculated by Equation (7). The
uniformity of flow rate is shown in Table 2 and Figure 5.

Table 2. Uniformity of impeller inlet flow rate at different flow rates.

Flow Rate Q (m3/h)
Water Pump 1 Impeller Inlet

Flow Rate Uniformity (%)
Water Pump 2 Impeller Inlet

Flow Rate Uniformity (%)

11.31 (0.33Qd) 68.55 66.05
16.96 (0.50Qd) 70.55 73.03
22.62 (0.67Qd) 73.93 74.74
28.27 (0.83Qd) 74.59 75.40
33.93 (1.00Qd) 74.70 75.57
39.58 (1.17Qd) 74.61 75.52
45.24 (1.33Qd) 74.65 75.55
50.89 (1.50Qd) 74.70 75.61
56.55 (1.67Qd) 74.74 75.66
62.20 (1.83Qd) 74.77 75.70
67.86 (2.00Qd) 74.79 75.72
73.51 (2.17Qd) 74.79 75.70
79.17 (2.33Qd) 74.78 75.67
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As can be seen from Figure 5, the variation pattern of flow uniformity with increasing
flow rate at the impeller inlet of pump 1 and pump 2 is essentially the same. Under the
small flow rate condition, the uniformity of flow velocity at the impeller inlet increases
with the increase in flow rate, and when the flow rate reaches 0.83Qd (Q = 28.27 m3/h),
the uniformity of flow velocity at the impeller inlet remains basically the same with the
increase in flow rate. Overall, the uniformity of flow velocity at the impeller inlet of pump 2
is greater than that of pump 1; at the design working condition (Qd = 33.93 m3/h), the
uniformity of flow velocity at the impeller inlet of pump 1 is 74.70%, and that of pump 2
is 75.57%, with a difference of 0.87%, which is caused by the different uniformity of flow
velocity at the impellers of pump 1 and pump 2 due to bias flow. When the flow condition
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is less than 0.83Qd (Q = 28.27 m3/h), the uniformity of flow velocity at the impeller inlet
decreases significantly, which indicates that the unevenness of the flow pattern inside the
prefabricated barrel of the centrifugal prefabricated pumping station increases at this time
and cannot provide a better impeller inlet water flow pattern.

3.2. Analysis of Internal Flow Characteristics

In the numerical calculation results of the centrifugal prefabricated pumping station,
six working conditions of 0.33Qd, 0.67Qd, 1.00Qd, 1.33Qd, 1.67Qd, and 2.00Qd are selected
for the analysis of the flow field inside the prefabricated pumping station, and in order to
better depict the flow field inside the prefabricated pumping station, four characteristic
sections as shown in Figure 6 are selected for analysis in this paper. The A1 section is the
horizontal cross section at the impeller inlet of the submersible centrifugal pump, A2 is the
cross section at the center of the precast barrel inlet, A3 is the horizontal cross section at the
highest liquid level of the precast barrel, and A4 is the vertical cross section at the center of
the precast barrel.

Water 2022, 14, 2705 9 of 17 
 

 

  
Figure 6. Schematic diagram of centrifugal prefabricated pumping station cross-section. 

The velocity and streamline distributions of A1–A4 sections of centrifugal prefabri-
cated pumping stations at 0.33Qd, 0.67Qd, 1.00Qd, 1.33Qd, 1.67Qd, and 2.00Qd flow condi-
tions are shown below. 

Cross-section A1 flow velocity and streamline distribution is shown in Figure 7. It 
can be seen from Figure 7 that in the small flow conditions, the prefabricated barrel inlet 
side flow velocity is less than the outlet side, the impeller inlet flow velocity distribution 
is also uneven, the flow velocity alternates between multiple velocity classes at the impel-
ler inlet, and there is a flow stratification effect, pump 1 and pump 2 in the middle of the 
water flow streamlines parallel to each other, in the prefabricated barrel along the water 
flow direction to see the left and right sides of the wall have vortex, and near the pump 2 
vortex area is larger than near the pump 1, the coupler waterward surface on both sides 
of the vortex also exists, the vortex at the wall is mainly caused by the backflow of the 
water impacting to the back wall of the prefabricated barrel, and the backflow at the cou-
pler is caused by the local structural features blocking the water. Under the high flow 
condition, the flow velocity at the impeller inlet is distributed periodically, the flow ve-
locity distribution in the prefabricated barrel is more dispersed, the streamline is disor-
derly, the vortex area on both sides of the prefabricated barrel wall increases compared 
with the low flow condition, and the area of the vortex area for flow conditions is about 
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Figure 6. Schematic diagram of centrifugal prefabricated pumping station cross-section.

The velocity and streamline distributions of A1–A4 sections of centrifugal prefabri-
cated pumping stations at 0.33Qd, 0.67Qd, 1.00Qd, 1.33Qd, 1.67Qd, and 2.00Qd flow condi-
tions are shown below.

Cross-section A1 flow velocity and streamline distribution is shown in Figure 7. It can
be seen from Figure 7 that in the small flow conditions, the prefabricated barrel inlet side
flow velocity is less than the outlet side, the impeller inlet flow velocity distribution is also
uneven, the flow velocity alternates between multiple velocity classes at the impeller inlet,
and there is a flow stratification effect, pump 1 and pump 2 in the middle of the water flow
streamlines parallel to each other, in the prefabricated barrel along the water flow direction
to see the left and right sides of the wall have vortex, and near the pump 2 vortex area is
larger than near the pump 1, the coupler waterward surface on both sides of the vortex
also exists, the vortex at the wall is mainly caused by the backflow of the water impacting
to the back wall of the prefabricated barrel, and the backflow at the coupler is caused by
the local structural features blocking the water. Under the high flow condition, the flow
velocity at the impeller inlet is distributed periodically, the flow velocity distribution in
the prefabricated barrel is more dispersed, the streamline is disorderly, the vortex area on
both sides of the prefabricated barrel wall increases compared with the low flow condition,
and the area of the vortex area for flow conditions is about twice as large as for small
flow conditions.
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Figure 7. Cross-section A1 flow velocity and streamline distribution. (a) 0.33Qd, (b) 0.67Qd, (c) 1.00Qd,
(d) 1.33Qd, (e) 1.67Qd, and (f) 2.00Qd.

Cross-section A2 flow velocity and streamline distribution is shown in Figure 8. It can
be obtained from Figure 8 that the inlet is a high-speed water flow area, which is fan-shaped
diffusion near the inlet of the prefabricated barrel, and the flow velocity decreases in a
gradient, with the increase in the flow rate, the speed at the inlet is accelerated, and the
fan-shaped diffusion area becomes larger. There are vortices on both sides of the inlet and
both sides of the barrel wall, and the vortices on both sides of the inlet gradually move
to the center of the prefabricated barrel with the increase in flow, and the streamlines in
the center of the prefabricated barrel are parallel, and there are streamlines intersecting at
pump 1 and pump 2, and the distribution of streamlines is more disorderly. Analyzed from
the change in working conditions, the vortices at the inlet and sidewall both increased with
the increase in flow rate. Analyzed from the position, the vortex on both sides of the inlet
has basically the same area compared to each other, indicating that the bias flow does not
affect the upstream flow pattern, so the symmetry is better. The area of vortex area near
pump 2 is larger than that near pump 1, indicating that there is an obvious bias flow inside
the prefabricated barrel.

Cross-section A3 flow velocity and streamline distribution is shown in Figure 9. It can
be obtained from Figure 9 that there is a low-velocity zone at the side wall of the precast
barrel wall, which is mainly due to the side wall effect, and there are three low-velocity
zones in the center of the precast barrel, which is mainly due to the existence of flanges in
these three places (as shown in Figure 6). There are vortices on both walls of the precast
barrel, the area of the vortex region is small compared to the A1 and A2 cross sections.
Analyzed in terms of the change in working conditions, and the area of the vortex zone
increases with the increase in the flow rate. With the increase in flow rate, the velocity
distribution in the prefabricated barrel changed obviously, producing a crescent-shaped
high-speed zone on the inlet side and multiple irregular high-speed zones on the outlet
side, and the streamline in the prefabricated barrel was disordered. When analyzed in
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terms of location, the area of the vortex zone near pump 2 is still larger than that near
pump 1, which is also caused by the bias flow effect in the prefabricated barrel.
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can be obtained from Figure 10 that the water flow in the inlet and outlet pipes is a high-
speed zone, and under the low flow condition, there are vortices on the upper and lower 
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outlet. Under the high flow condition, the velocity at the water inlet decreases in a gradi-
ent toward the center of the prefabricated barrel, and the vortex at the water inlet moves 
toward the center. The vortex on the upper side of the prefabricated barrel inlet is gradu-
ally smaller than the vortex on the lower side, and the velocity and streamline in the pre-
fabricated barrel are more chaotic. From the analysis of the change in working conditions, 
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Cross-section A4 flow velocity and streamline distribution is shown in Figure 10. It can
be obtained from Figure 10 that the water flow in the inlet and outlet pipes is a high-speed
zone, and under the low flow condition, there are vortices on the upper and lower sides
of the inlet, and there are many small vortices at the upper and lower sides of the outlet.
Under the high flow condition, the velocity at the water inlet decreases in a gradient toward
the center of the prefabricated barrel, and the vortex at the water inlet moves toward the
center. The vortex on the upper side of the prefabricated barrel inlet is gradually smaller
than the vortex on the lower side, and the velocity and streamline in the prefabricated
barrel are more chaotic. From the analysis of the change in working conditions, with the
increase in flow rate, the velocity of water at the inlet is accelerated, and the vortex structure
at the inlet becomes larger and pushes it to move to the center continuously, which affects
the flow field at the center of the prefabricated barrel. Analysis from the position of, due to
the influence of the flange structure, the flow of water above the outlet pipe is disturbed,
and the vortex is generated.
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Prefabricated pumping station wall pressure distribution is shown in Figure 11. From
Figure 11, the pressure on the inlet side of the prefabricated barrel of the prefabricated
pumping station gradually decreases with the increase in the flow rate until the maximum
flow rate of 2.00Qd; only a small part of the high-pressure area exists on the upper side
of the inlet and the upper side of the prefabricated barrel. Prefabricated pumping station
prefabricated barrel outlet side pressure with the flow rate increases, the low-pressure area
gradually decreases; until the maximum flow rate of 2.00Qd, the low-pressure area basically
does not exist. In the centrifugal pump outlet connection pipeline, with the increase in
flow, the low-pressure area becomes larger, mostly concentrated in the elbow of the double
pump sink pipe. As the flow rate increases, the low-pressure area also appears on the
waterward side of the centrifugal pump motor. Prefabricated barrel pressure distribution is
not uniform, mainly in the inlet and outlet side is not consistent, along the inlet and outlet
water axis, the symmetry of the left and right sides is slightly better, but also not completely
symmetrical, can also be found in the phenomenon of partial flow.
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Figure 11. Prefabricated pumping station wall pressure distribution diagram. (a) 0.33Qd, (b) 0.67Qd, 
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4.1. Test Bench Introduction 
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prefabricated barrel, Back-flow tank, Submersible centrifugal pump, Coupler, Inlet and 
Outlet pipes, Electromagnetic Flow meter, Pipeline pump, and PLC frequency control cab-
inet. The total length of the test bench is about 5 m, the diameter of the pipe is 100 mm, 
and the whole is a circulating system. The whole test bench is made of acrylic material to 
achieve transparent visualization and to be able to clearly observe the flow pattern of wa-
ter inside the centrifugal pumping station. Figure 12 shows the sketch of the centrifugal 
prefabricated pumping station test bench, Figure 13 shows the three-dimensional model 
of the centrifugal prefabricated pumping station test bench, and Figure 14 shows the phys-
ical drawing of the centrifugal prefabricated pumping station test bench. The flow rate is 
measured by an electromagnetic flowmeter (ZEF-DN100, range 0~120 m3/h, accuracy 
±0.5%), and the flow pattern is captured by a high-speed camera (OLYMPUS i-SPEED 3, 
working range 2000 fps full resolution, accuracy ±1 μs). 
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(c) 1.00Qd, (d) 1.33Qd, (e) 1.67Qd, and (f) 2.00Qd.

4. Experiment Equipment, Test and Result Analysis
4.1. Test Bench Introduction

Centrifugal prefabricated pumping station test bench has the following parts: Round
prefabricated barrel, Back-flow tank, Submersible centrifugal pump, Coupler, Inlet and Out-
let pipes, Electromagnetic Flow meter, Pipeline pump, and PLC frequency control cabinet.
The total length of the test bench is about 5 m, the diameter of the pipe is 100 mm, and the
whole is a circulating system. The whole test bench is made of acrylic material to achieve
transparent visualization and to be able to clearly observe the flow pattern of water inside
the centrifugal pumping station. Figure 12 shows the sketch of the centrifugal prefabricated
pumping station test bench, Figure 13 shows the three-dimensional model of the centrifugal
prefabricated pumping station test bench, and Figure 14 shows the physical drawing of
the centrifugal prefabricated pumping station test bench. The flow rate is measured by
an electromagnetic flowmeter (ZEF-DN100, range 0~120 m3/h, accuracy ±0.5%), and the
flow pattern is captured by a high-speed camera (OLYMPUS i-SPEED 3, working range
2000 fps full resolution, accuracy ±1 µs).

In this test, the centrifugal pump 3 was first adjusted to the rated speed n = 2900 r/min,
and then the flow rate of the inlet of the prefabricated pumping station was adjusted to
the design flow rate (Qd = 33.93 m3/h) by controlling the pipeline pump 6, and then the
high-speed camera was used to take pictures of the internal flow state of the integrated,
prefabricated pumping station.
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4.2. Analysis of Experimental Results 
In this paper, a high-speed camera is used to photograph the internal flow pattern of 
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red line is used to show the water flow to obtain pictures of the internal flow of the cen-
trifugal prefabricated pumping station at different moments under different orientations. 

Flow pattern of prefabricated pumping station. is shown in Figure 15. From Figure 
15, it can be seen that the tracer line on both sides of the barrel wall oscillates with the flow 
of water. The direction of oscillation is from the outlet to the inlet, which is consistent with 
the direction of streamline in the numerical calculation results. At the intake, the tracer 
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4.2. Analysis of Experimental Results

In this paper, a high-speed camera is used to photograph the internal flow pattern of
the prefabricated barrel under the design flow condition (Qd = 33.93 m3/h), and a tracer red
line is used to show the water flow to obtain pictures of the internal flow of the centrifugal
prefabricated pumping station at different moments under different orientations.

Flow pattern of prefabricated pumping station. is shown in Figure 15. From Figure 15,
it can be seen that the tracer line on both sides of the barrel wall oscillates with the flow of
water. The direction of oscillation is from the outlet to the inlet, which is consistent with the
direction of streamline in the numerical calculation results. At the intake, the tracer line can
be seen to swirl with the water flow on both sides, which indicates that there is a backflow
at the intake, and a vortex is generated. The internal flow characteristics are similar to
those of the numerical calculation; the experimental study of flow pattern visualization
is a verification of the numerical calculation results. The large variation in the position
of the tracer red line under different moments and the large oscillation also indicate the
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turbulence of the flow pattern in the prefabricated barrel of the centrifugal prefabricated
pumping station and the inconsistency of the flow line.
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5. Conclusions

This paper takes centrifugal prefabricated pumping station as the research object;
numerical calculation of different working conditions under double pumping operation
conditions and analysis and discussion of internal flow characteristics of prefabricated
pumping station are carried out. An acrylic visualization prefabricated pumping station
test bench was built to verify the numerical calculation results of centrifugal prefabricated
pumping station by experimentally filming the internal flow pattern of the prefabricated
pumping station, and the main conclusions are as follows.

(1) The calculation shows that the maximum value is reached at the design working
condition (Qd = 33.93 m3/h); the maximum efficiency value is 63.96%; the head is 8.66 m;
the head at the starting point of the saddle area is 10.50 m, which is 1.21 times of the design
head; the operable head range for small flow is small; and the operable head range for large
flow is wide. The efficiency of the prefabricated pumping station in the high-efficiency
zone is 58.0~63.0%, corresponding to the flow range of 0.62Qd~1.41Qd (21.0~48.0 m3/h).

(2) Through the numerical calculation, it can be obtained that the impeller inlet flow
uniformity increases with the increase in flow rate, and it is basically maintained at the
same value from 0.83Qd to 2.33Qd. The impeller inlet flow uniformity of pump 2 is greater
than that of pump 1. At the design working condition (Qd = 33.93 m3/h), the impeller inlet
flow uniformity of pump 1 is 74.70%, and that of pump 2 is 75.57%. The inlet flow fields of
the pumps on both sides are not consistent. When the flow condition is less than 0.83Qd
(Q = 28.27 m3/h), the uniformity of flow velocity at the impeller inlet increases significantly
and cannot provide a better impeller inlet flow pattern.
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(3) Through the numerical calculation of velocity and pressure cloud diagrams as
well as the experimental flow analysis, it can be obtained that the centrifugal prefabricated
pumping station has a serious backflow phenomenon at the inlet, and multiple vortexes are
generated. As the flow rate increases, the vortex structure at the inlet expands and moves
to the central area, which has a negative impact on the flow field in the central area. The
flow pattern in the prefabricated barrel was unstable, and there was a partial flow on the
left and right sides.

6. Suggestions

This paper reveals the energy characteristics and internal flow field of centrifugal pre-
fabricated pumping stations under double pump operation conditions through numerical
calculation and experimental analysis. However, because of the limited page, the research
work has achieved certain results, but there are still many problems that can be studied
and need to be further expanded and deepened in future work. In the future, we will start
the multi-disciplinary optimization design of centrifugal prefabricated pumping station
with multiple working conditions, and the research results of this paper can provide the
basis for the optimization design of centrifugal prefabricated pumping station.
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