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Abstract: When dyes are discharged in water bodies, mutagenic, carcinogenic and teratogenic
effects may be caused in both aquatic organisms and human beings. The use of biochar and the
implementation of advanced oxidation processes (AOPs) are alternative treatments that have been
used individually in the removal of dyes in wastewater. Besides being effective processes acting
separately, biochar and AOPs can be coupled, exhibiting synergetic effects in the treatment of dyes
contained in water. This work deals with the methods implemented to produce biochar from biomass,
its mechanism in the removal of dyes and associated sustainability issues. Additionally, the main
AOPs that have been utilized for the removal of dyes from water are covered, as well as the biochar-
AOP combined processes. The future prospects for the removal of dyes from water have been also
addressed. The coupling of biochar to AOPs has been proven to be more effective in the removal
and mineralization of dyes than the individual treatments. In this regard and considering the scarce
studies in the field, new horizons are opened on the treatment of water polluted with dyes.
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1. Introduction

Water pollution requires instant and realistic solutions [1]. A wide range of industrial
activities generates and discards high volumes of wastewater into the environment, causing
the pollution of water bodies [2]. The massive use of dyes around the word has caused the
presence of these substances in water [3]. When dyes are discharged into the environment,
they end up in rivers, lakes and other water bodies, resulting in negative impacts in the
aquatic ecosystem [4]. About 20,000 tons of textile dyes are released into water due to an
inefficient dyeing process [5]. From 17 to 20% of polluted water comes from the textile
industry [6]. Dyes can affect water transparency even at concentrations of 0.1 mg/L [7].
Coloration of water bodies interferes with light diffusion, altering photosynthetic processes
and, due to dye toxicity and recalcitrance potential, they become a hazard for aquatic life
and public health [8].

Conventional physicochemical and biological treatments, like coagulation–flocculation,
biological treatments, electrochemical reduction and membrane filtration, have been used to
eliminate dyes in wastewater. However, these methods have some disadvantages, including
low efficiency when dyes are present at low levels, sludge production and high operational
costs [9,10]. In this regard, biochar has been regarded as a promising adsorbing material to
treat water polluted with dyes, due to its low cost and sustainability [11]. As reported in the
literature, biochar can remove up to 98% of the dye contained in water [12,13]. In the same
way, advanced oxidation processes (AOPs) represent another alternative treatment to treat
dyes in water. The main chemical species involved in the high efficiency of AOPs for the
removal of dyes in the aquatic matrix is the hydroxyl radical (•OH). Additionally, sulfate
radicals (SO4

•−) can play a major role in the degradation of these pollutants [14]. In the
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elimination of dyes, AOPs have been shown to be an effective treatment, since efficiencies
up to 98% have been achieved [15].

Biochar and AOPs not only represent a potential removal of dyes as individual treat-
ments, but there is also evidence suggesting that the combination of these two treatments
might have a synergetic effect [16,17]. When biochar is used as a catalyst in AOPs, it can
increase the generation of •OH and SO4

•− [18]. Biochar ability as activator of hydrogen
peroxide (H2O2) and persulfate (S2O8) is due to the presence of oxygen-containing groups
and environmentally persistent radicals on its surface [19,20]. Biochar can be synthetized
with metal ions, metal oxides or metal composites, so that the role of biochar as a catalyst
is increased, making it suitable to be used along with AOPs, such as Fenton and photo-
catalysis [8]. When used together (biochar plus AOPs), dyes are not only removed in water,
but they are degraded to less harmful compounds and even mineralized. In this regard,
biochar-AOP combined treatment can efficiently decrease the negative impacts associated
with wastewater containing dyes [21]. Furthermore, the regeneration ability of biochar
gives it the option to be used in several cycles of reaction without reducing its efficiency,
making the biochar a cost effective and sustainable heterogeneous adsorbing material and
catalyst, with application in industrial wastewater treatment due to its low production and
operational costs [22,23].

Under this scenario, the objective of this work is to provide evidence that biochar
and AOPs can be coupled and used as a highly efficient treatment for the removal and
mineralization of dyes contained in water. In this regard, the thermochemical methods for
biochar generation are covered, as well as the biochar mechanism for the elimination of
dyes and its regeneration ability. Similarly, this work describes the most important AOPs
that have been used for the treatment of dyes in water. Finally, the role of biochar in the
implementation of AOPs for the treatment of dyes, its advantages, feasible transformation
and mechanisms for the activation of H2O2 and S2O8 are discussed.

2. Materials and Methods

The Scopus database was used to select scientific works that had been published up
to the year 2021. This database was used since it is regarded as the largest database in the
world. Therefore, it is considered as one of the most suitable to carry out this kind of studies
in the area of interest [24]. In Scopus, an initial search was conducted for scientific articles
dealing with the removal of dyes in wastewater by using biochar, AOPs and processes in
which both types of treatments were combined.

Three different search strings were carried out. In the first one, the keywords [TITLE-
ABS-KEY (“biochar” AND “wastewater”)] were used, and for the second and the third
ones, the search criteria [TITLE-ABS-KEY (“advanced” AND “oxidation” AND “processes”
AND “wastewater”)] and [TITLE-ABS-KEY (“biochar” AND “advanced” AND “oxidation”
AND “process”)] were used. For the first search, 2054 results were obtained from 2009,
which represents the year in which the first publications were reported, until 2021 (Figure 1).
The second search string yielded 5644 results, ranging from the year in which the first
publication was reported (1970) to 2021 (Figure 2). In turn, 138 documents were found in
the third search stage, which were reported from 2012 to 2021 (Figure 3).
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The central theme of the current work is the coupling of biochar and AOPs for the
removal of dyes in wastewater. Therefore, the documents found from the search string
related to the keywords [TITLE-ABS-KEY (“biochar” AND “advanced” AND “oxidation”
AND “process”)] were further analyzed. In Figure 4, the results were compiled and
classified depending on the type of document.
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Since the Scopus database is continuously updated, it is important to note that the
results illustrated here could change when the same search criteria are used again. Addi-
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tionally, the results for both the number of publications and publications per year, by type
of document and by country will be different from those presented here when the search
strings are modified.

3. Results

Using the first search string ([TITLE-ABS-KEY (“biochar” AND “wastewater”)]), 2054
results were obtained, with China being the country with the highest number of publica-
tions, followed by the United States and India. Although the largest number of publications
was found in China, the predominant language was English, with 94.7% of publications
written in this language. Moreover, 84% of the publications found under the first criterion
were scientific articles, 9.4% were review articles, and 6.6% were divided between confer-
ence papers, book chapters, conference reviews, errata, article data, editorials, short notes
and surveys.

In Figure 1, a growth in the number of publications is observed, with 2020 and
2021 being the years with the highest number of publications (471 and 660, respectively).
Concerning the second search (5644 results), China was again observed to be the country
with the highest number of publications, followed this time by the United States and Spain.
English was also the predominant language (~94%), as expected, followed by Mandarin
(~4%); the rest of the publications were written in Spanish, Portuguese and French, among
other languages. Under this search criterion, research and review articles represented the
two most reported types of documents (75% and 11.6%, respectively). In turn, Figure 2
shows that the publications related to the use of AOPs in wastewater treatment have an
ascending distribution from 1970 to 2021. This growth is constant from 2016 up to present.
2021 was thus the year with the highest number of publications, since 842 publications
were reported.

In turn, in the last search stage, which includes the main issue of the current work (i.e.,
the coupling of biochar and AOP in the removal of dyes in wastewater), 135 documents
of the total of results obtained (138 works) were published in English, with the remaining
3 being written in Mandarin. Figure 3 illustrates the rise in the number of publications
alluding to this main topic from 2012 to 2021, the latter being the year with the highest
number of publications (54). Figure 4 shows that the types of documents into which the
publications are divided are research articles, review articles, conference reviews, book
chapters and conference articles. Research articles comprised the majority of publications,
with a percentage of 73.2%. This fact suggests that there is an interest within the scientific
community in the experimental development of processes in which biochar and advanced
oxidation technologies are combined. In turn, the country with the highest number of
publications was China (94). This might be because China is the largest textile producer
in the world and is making efforts to fill the gaps in its legislation concerning wastewater
including dyes [24,25]. China was followed by the United States (19) and Australia (14).
Furthermore, in Latin America, the country with the highest number of publications was
Brazil (2), followed by Colombia and Argentina with one publication each. In the United
States, there has been a growing interest in the evaluation of the recovery of resources based
on wastewater. This may explain its growing interest in the development of wastewater
treatments [26]. In the case of Australia, which stands out as the third country with the
highest number of publications on the subject of biochar coupled with AOPs, there is re-
strictive legislation regarding wastewater discharges, in which maximum allowable values
for the discharge of wastewater with the presence of dyes are presented [27]. Therefore, the
need to implement effective treatments in the removal of dyes reflects the interest in the
development of new technologies worldwide [18].

From the results obtained in this research, a growing concern in the use of biochar and
AOPs in the treatment of wastewater is observed. Likewise, an increasing interest in the
integration of both treatments is found. Indeed, the application of biochar in the removal
of dyes is observed to be focused on the use of modified biochar, which in turn, can be
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coupled with AOPs, achieving high efficiencies in the removal and mineralization of the
dyes contained in water.

4. Discussion
4.1. Removal of Dyes by Biochar
4.1.1. Production of Biochar

Biochar is a carbon-rich by-product produced from the thermal decomposition of
biomass. Biomass used to produce biochar can come from different sources; any organic
material, agro-industrial waste, animal manure, microalgae, sewage sludge, wood and
agricultural waste are some of the biomass sources reported in literature [18]. It is important
to note that the biomass used in the production of biochar is usually a waste; this helps
with the management of waste and contributes to sustainable development [28]. Biochar is
produced via pyrolysis, hydrothermal carbonization, gasification, and torrefaction [29].

Pyrolysis is conducted in an oxygen free atmosphere [30]. Pyrolysis can be divided
into slow pyrolysis, fast pyrolysis, flash carbonation and microwave-assisted pyrolysis.
The differences between these types of pyrolysis are the heating rate, residence time and
the heating method [31]. In slow pyrolysis, the biomass is decomposed at temperatures
between 450 and 500 ◦C, with a heating range of 0.1 and 1 ◦C/s, and a residence time
from 5 to 30 min. During the process, nitrogen gas is used to avoid oxygen presence. Slow
pyrolysis is beneficial because biochar is produced in a higher amount in comparison with
the liquid and the gaseous products [30,32]. In turn, fast pyrolysis is done under high
temperatures, normally ranging from 850 to 1250 ◦C, with a heating range of 60 ◦C/min
and a short residence time from 0.5 to 1 s. In fast pyrolysis, the production of biochar
yield is less, and bio-oil is produced in a higher amount compared to that generated in a
slow process [33]. Gezahegn et al. [34] showed that biochar from fast pyrolysis has higher
concentrations of phytotoxic volatile fatty acids like acetic and pentanoic acids than biochar
derived from slow pyrolysis, suggesting that extending residence times in pyrolysis can
lead to a biochar free of toxic effects. Flash carbonation is conducted under temperatures
ranging from 800 to 1200 ◦C, with a retention time less than 0.5 s and a heating range of
more than 1000 ◦C/min; this process requires high pressures, usually higher than 1 MPa,
and produces high amounts of biochar [31,35,36]. In turn, microwave-assisted pyrolysis is
a process where biomass is heated by energetic radiation emitted from a microwave source;
this method provides a quick start up and ending of the heating process, and a higher
heating rate [36].

On the other hand, hydrothermal carbonization is carried out at temperatures ranging
from 180 to 300 ◦C in the presence of water and with a pressure above the water satu-
ration pressure to prevent water evaporation [37]. In hydrothermal carbonization, the
product is often known as hydrochar [38]. The process of gasification is carried out under
high temperatures, from 600 to 900 ◦C, and an oxidative atmosphere with the presence
of gasifying agents like air, steam, oxygen, carbon dioxide (CO2) or a mixture of these
gases [39]. The amount of biochar yield from gasification is generally less than the one
formed in pyrolysis because of the partial oxidation conditions in which some carbon is
converted into carbon monoxide (CO) [40]. It is important to note that biochar produced
from gasification of biomass can contain high levels of alkali and alkaline metals, as well
as polycyclic aromatic hydrocarbons (PAHs) [41]. In torrefaction, biomass is decomposed
in an inert atmosphere with temperatures ranging from 200 to 300 ◦C at a slow heating
rate [42]. During torrefaction, the biomass chemical structures are destroyed, causing a
significant removal of oxygen [43]. Moreover, in torrefaction, hydroxyl groups are removed
from biochar, leading to the production of hydrophobic groups [44].

4.1.2. Dye Removal by Adsorption Using Biochar

Biochar adsorption efficacy depends on the method and biomass used for its produc-
tion. The biochar surface area, pore structure and functional groups are affected by the
temperature used in the decomposition of biomass [45]; i.e., an increase in the temperature
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produces a biochar with a higher grade of carbonization, aromaticity, surface area, stability,
ash content and basic pH [46]. Some features of biochar improving its adsorption capacity
of pollutants are its high surface area, well-developed pore structure, high carbon content,
oxygenated functional groups and high cation exchange capacity [47]. The adsorption
mechanism of biochar includes electrostatic attraction, pore filling, π-π interactions, hy-
drophobic interactions, and H-bonding phenomena [48]. The oxygenated functional groups,
such as hydroxyl, carboxyl and ketone groups, present in the biochar surface are one of
the main active adsorption sites for dyes; these oxygenated compounds help with surface
complexation, H-bonding and electrostatic attraction. These functional groups also have
been found to contribute to dye removal by electron-transfer reactions [49]. It is reported
that biochar obtained from hydrothermal carbonization could contain more oxygenated
functional groups and, unlike pH and the surface area, an increase in the temperature
used in the decomposition of the biochar can reduce the abundance and diversity of the
oxygenated functional groups on biochar surface [50,51]. The aromatic structure of biochar
helps with dye adsorption. When biochar is produced at high temperatures, a large content
of π-electrons is generated, favoring interactions π-π and, subsequently, increasing dye
adsorption [52]. Biochar surface is usually high on hydroxyl ions (OH−); therefore, biochar
has a negatively charged surface that favors electrostatic attraction of positively charged
dyes molecules [53]. Biochar surface area and pore structure also increase biochar physical
adsorption capacity [48]. In Table 1, several studies where biochar has been used in the
elimination of dyes are compiled.

Table 1. Dye removal by adsorption using biochar.

Biomass
Thermal

Decomposition
Method

Dye Optimal Operation
Conditions

Removal
Efficiency

Adsorption
Mechanism Ref.

Chrysanthemum
morifolium Ramat

straw

Hydrothermal
carbonization

220 ◦C
Basic red 46

pH = 10;
[Biochar] = 0.03 g;

t = 120 min
53.19 mg/g

Electrostatic
attraction and

H-bonding-π-π
interaction

[54]

Chromolaena
odorata

Slow pyrolysis
800 ◦C for 3 h Indigo carmine [Biochar] = 30 mg

T = 30 ◦C; t = 2 h 98.8 mg/g

Physical
adsorption and

electrostatic
attraction

[55]

Pinus patula wood

Gasification
700 ◦C,

atmospheric air
as

gasification agent

Malachite green

pH =10;
[Biochar] = 9.80 g/L;

Biochar particle
size =150–300 µm;

t = 60 min;
[dye] = 50 mg/L

>99.70% Not specified [56]

Date palm
petioles

Slow pyrolysis
700 ◦C, 3 h of
retention time

Crystal violet pH = 7; T = 30 ◦C 209 mg/g

Electrostatic
attraction,

pore-filling,
H-bonding and
π-π interaction

[13]

Groundnut shell
Slow pyrolysis
350 ◦C during

120 min
Basic red 09 pH = 8; [Biochar] = 1 g/L;

T = 35 ◦C 46.3 mg/g Ion exchange [57]

Dye adsorption on biochar can be affected by the solution pH, biochar dosage and
temperature [58]. The pH of the solution can affect the adsorbate (in this case, the dye)
and the adsorbent (biochar). Depending on the pH, the dye can change its characteristics
and properties; likewise, the solution pH can impact biochar surface charge and the
availability of its functional groups [52]. Adsorbate and adsorbent have functional groups
that can be protonated or deprotonated, resulting in the production of different surface
charges. These surface charges depend on the solution pH and promote electrostatic
attraction or repulsion between the dye and the biochar [59]. Biochar dosage can have
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mixed effects on dye adsorption. Sometimes when the biochar dosage is increased, binding
sites increase too, enhancing dye adsorption; however, in other cases, the increase in
biochar dosage can lead to biochar particles binding together, reducing the adsorption
capacity [54,58]. Furthermore, the adsorption capacity can reach a stable level, so that
regardless the biochar dosage increase, the adsorption efficiency stays constant at a certain
value [60]. Temperature, as mentioned above, affects the adsorption capacity too, since an
increase in temperature decreases the viscosity of the solution, augmenting the dye mobility
and promoting intraparticle diffusion to the pores on the biochar surface [52]. Nevertheless,
an increase in temperature can have a negative effect on dye adsorption; when adsorption is
exothermic, there is a weak adsorption force between the active sites of biochar and the dye
molecule, resulting in a decrease in dye adsorption. Hence, the strength of the adsorption
force depends on whether the adsorption process is endothermic or exothermic [52,61].
Thus, the optimization of these parameters is of the utmost importance [62].

4.1.3. Biochar Regeneration and Final Disposal

The regeneration and reusability capacity of biochar can prolong its life, make it useful in
practical applications, reduce operation costs and help with sustainable development [63,64].
Biochar can be used in various cycles of adsorption-desorption and with the proper regen-
eration method, the efficiency of dye removal can show a minimal decline [58,65].

Thermal and chemical regeneration are two of the methods used for biochar regenera-
tion [52]. Thermal regeneration consists of the degradation of the adsorbate (i.e., dyes in
this case) present on biochar surface by applying heat. In turn, in chemical regeneration,
a solvent is used to achieve the removal or the decomposition of the dye present on the
biochar surface. In this method, the chemical agent used is usually an acid, a base or a
hot solvent. It may be highlighted that the aforementioned method is effective whether
the concentration of the dye is low [36]. Literature reports on the chemical regeneration of
biochar include the use of compounds such as methanol (CH3OH), acetic acid (CH3COOH),
sodium hydroxide (NaOH), acetone (C3H6O), benzene (C6H6), ethanol (C2H5OH) and
hydrochloric acid (HCl) as solvents, while for thermal regeneration, an activation of the
used biochar at 850 ◦C has been observed [36,65–69]. When the removal efficiency of the
regenerated biochar decreases considerably, and it is not possible or appealing to use the
biochar for another adsorption-desorption cycle, biochar should be disposed so that sec-
ondary pollution is avoided [65,69]. For the disposal of the biochar used, several methods
have been reported, including incineration for energy recovery, landfill disposal, bio-oil
and fertilizer production, and soil amendment [70,71]. It should be noted that for some of
these methods, dye molecules should not only be adsorbed on the biochar surface, but they
must be also degraded, since dyes can leach from the biochar surface, causing secondary
pollution [72]. Efforts must be made to find the safest disposal method for the biochar that
contains dyes, to reduce this secondary risk.

4.2. Dye removal by Advanced Oxidation Processes

AOPs are a group of physicochemical (ozonation, Fenton, peroxonation, sono-chemical
cavitation, UV/H2O2, UV/O3, UV/TiO2, UV/ZnO) and electrochemical (electrooxidation,
electro-Fenton) processes where the generation of oxidants such as OH• helps degrade
pollutants [73]. AOPs are known as highly efficient processes to treat wastewater due
to their high mineralization efficiency and rapid oxidation reaction rate [74]. AOPs are
based on the production of the non-selective OH•; however, depending on the process,
other reactive oxygen species (ROS) can be generated such as SO4

•−, hydroperoxyl radicals
(HO2

•) and superoxide radicals (O2
•−), which can degrade pollutants in water [75]. The

ROS generated in AOPs can react with the pollutants in three different ways: (i) hydrogen
abstraction, (ii) hydroxylation addition and (iii) electron transfer [73]. When AOPs are
used to treat wastewater that have inorganic ions such as chlorides (Cl−), carbonates
(CO3

2−), bicarbonates (HCO3
−), and phosphates (PO4

3−), those inorganic ions can act as
scavengers and introduce different types of reactive species that have a lower oxidant power.
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Therefore, the removal efficiency of the process decreases [76]. For the removal of dyes, the
application of AOPs, e.g., Fenton, UV/H2O2, sono-photocatalysis and persulfate-AOP, has
been reported [74,77–79].

4.2.1. Fenton Process

The Fenton reaction consists of the degradation of H2O2 by ferrous or ferric ions (Fe2+

and Fe3+, respectively); even though Fe3+ ions are more abundant and cost less than the Fe2+

ions, the formation of •OH is higher by using Fe2+ ions [80]. The Fenton process occurs
through the formation of radicals; all the reaction set represented by Equations (1)–(7)
occurs simultaneously. Along with the reactions expressed in Equation (1), the recycling of
Fe3+ ions to Fe2+ ions shown in reaction (5) plays an important role in the Fenton process
and can be the rate-determining step of the catalytic cycle [81]. The high oxidizing power of
•OH can completely mineralize complex and non-biodegradable organic substances such
as dyes [82]. The Fenton reaction like other AOPs could be affected by the presence of Cl−,
CO3

2−, HCO3
−, PO4

3−, NO3
−, NO2

− and SO4
2− ions, as these compounds can act as •OH

scavengers, decreasing the removal efficiency [83].

Fe2+ + H2O2 → Fe3+ + •OH + OH− (1)

Fe3+ + H2O2 → Fe2+ + HO2
• + H+ (2)

•OH + H2O2 → HO2
• + H2O (3)

•OH + Fe2+ → Fe3+ + OH− (4)

Fe3+ + HO2
• → Fe2+ + O2 + H+ (5)

Fe2+ + HO2
• + H+ → Fe3+ + H2O2 (6)

HO2
• + HO2

• (HO2
• + O2

•− + H+)→ H2O2 + O2 (7)

In the Fenton process, the concentration of H2O2 needs to be optimized to favor the
maximum generation of •OH, since when a concentration above the optimum of H2O2 is
used in the process, the rates of the reactions on Equations (2)–(7) are increased, leading to
a consumption of •OH and the generation of other radicals like HO2

• that have a lower
oxidation potential. Therefore, the removal efficiency of the Fenton process is decreased.
Moreover, when H2O2 is used in a high concentration, the chemical oxygen demand (COD)
of the treated water can increase [84,85].

Parameters including pH, temperature and Fe concentration must be optimized [80].
The importance of the solution pH is that at low pH values, H+ ions become a stronger
scavenger of •OH. Additionally, with a higher concentration of H+ ions, H2O2 tends to be
stabilized as hydroxyoxidanium (H3O2

+), resulting in the inhibition of Fe2+ regeneration.
On the other hand, at a high pH, Fe3+ ions tend to be hydrolyzed and precipitate, decreasing
the catalytic capacity of the Fe3+ ions. In fact, it has been shown that the optimum range of
pH in the Fenton process is from 2 to 4 pH units [85,86]. An increase in temperature can
cause a positive and negative effect. On the positive side, an increase in the system temper-
ature increases the reaction rate; however, temperature can facilitate the decomposition of
H2O2 [80]. When the iron concentration is not optimized, an excess of Fe2+ ions increases
the level of suspended solids within the solution, as well as the conductivity of the water,
leading to the formation of sludge containing iron [85].

To overcome the limitations of the conventional Fenton process, the heterogeneous
Fenton process, photo-Fenton process, sono-Fenton process, and electro-Fenton process
have been developed [86]. Nevertheless, all these processes have associated disadvantages.

Heterogeneous Fenton Process

In a heterogeneous Fenton process, solids containing insoluble iron such as iron oxide
(Fe2O3), magnetite (Fe3O4) and iron (III) oxide-hydroxide (FeOOH) or iron supported on a
solid like clay, carbon material, zeolite and polymer are used as suppliers of Fe2+ ions [87].
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In this type of process, the catalytic Fenton reaction occurs on the surfaces of the solid
catalyst. This helps prevent the leaching of iron, extends the operational pH range including
the usual wastewater pH (2–9) and reduces the concentration of iron in the formed sludge.
Additionally, the use of a solid catalyst leads to an easy separation, regeneration, and
reuse of the catalyst [84,86]. In a heterogeneous Fenton process, there is a possibility
that the iron leaches from the catalyst surface, meaning that the catalyst and H2O2 are
going to react and produce •OH by the homogeneous Fenton reaction (Equation (1)) as
well as by heterogeneous Fenton reactions [88]. The decomposition of H2O2 by means of
heterogeneous catalysts is described by Equations (8)–(11). In these equations, iron is in
the form of iron oxide present in goethite, and ≡ FeIII is the iron present in the goethite
surface [89].

≡ FeIII − OH + H2O2 → (H2O2)s (8)

(H2O2)s→ (≡FeII• O2H) + H2O (9)

(≡ FeII• O2H)→≡ FeII + HO2
• (10)

≡FeII + H2O2 →≡ FeIII-OH + •OH (11)

Photo-Fenton Process

The conventional Fenton process cannot lead to a complete mineralization [83]. There-
fore, to achieve this purpose and increase the effectiveness in the Fenton process, the
conventional Fenton process is assisted by sunlight or ultraviolet light (UV) at a wave-
length ranging from 290 to 400 nm. Light enhances the photolysis of H2O2 and promotes
the formation of Fe2+ ions by the reduction of Fe3+ ions [83]. The pathways of production
of Fe2+ ions and the photolysis of H2O2 are shown in Equations (12) and (13) [90]. Since
photo-Fenton process has the same problem with the solution pH as the conventional
Fenton, heterogeneous photo-Fenton processes have been investigated, with the design of
the right solid catalyst being the major challenge [91].

Fe3+ + H2O + hv→ Fe2+ + •OH + H+ (12)

H2O2 + hv→ 2•OH (13)

Electro-Fenton Process

The electro-Fenton process merges conventional Fenton and electrochemical technol-
ogy. In electro-Fenton the generation of H2O2 is in situ. The main reactions in the electro-
Fenton process are presented in Equations (14) and (15) [92]. As shown in Equation (14),
H2O2 is generated by two electron-oxygen reduction reactions and will react with Fe2+ ions,
producing •OH (Equation (15)). Similarly to other Fenton-related processes, electro-Fenton
can be homogeneous or heterogeneous [93].

O2 + 2H+ + 2e− → H2O2 (14)

Fe2+ + H2O2 → Fe3+ + •OH + OH− (15)

As described above, an advantage of the electro-Fenton process is the generation of
H2O2. This helps avoid the transportation of H2O2; however, the electro-Fenton process
has another three types of operation [94]: (i) H2O2 is added to the solution from the outside,
and the source of Fe2+ ions is a sacrificial iron anode (Equation (16)); (ii) Fe2+ ions are
electrogenerated with a sacrificial iron anode (Equation (16)) and H2O2 by an oxygen-
sparging cathode (Equation (17)); and (iii) H2O2 and Fe2+ ions are added to the solution
externally and •OH are produced in an electrolytic cell and in the cathode, Fe3+ ions are
reduced to Fe2+ ions (Equation (18)) [80]. Other advantages of the electro-Fenton process
are the production of less iron sludge than conventional Fenton, and that the reactants used
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in the process are economic and have low toxicity. Additionally, the process operation is
simpler in terms of control when compared to the conventional Fenton [95].

Fe→ Fe2+ + 2e− (16)

O2 + 2H+ + 2e− → H2O2 (17)

Fe3+ + e− → Fe2+ (18)

Sono-Fenton Process

When ultrasound is applied to water, the acoustic cavitation phenomenon is pro-
duced. This results from the application of sound waves with a frequency ranging from
20 to 1000 kHz by means of an ultrasound generator [96]. Cavitation generates microbub-
bles in the water that collapse, generating an adiabatic heating of the vapor that is in-
side the bubble [97]. This creates hot spots with temperatures above 5000 ◦C and ultra-
high pressure above 2000 atm. The energy that this process liberates can pyrolyze water
molecules, resulting in the formation of hydrogen radicals (•H), •OH and HO2

•, as well
as H2O2, as described by Equations (19)–(23) [97,98]. In these equations, ))) represents
ultrasonic irradiation.

H2O + )))→ H• + •OH (19)

O2 + )))→ 2O• (20)

H2O + O• → 2•OH (21)

O2 + H• → O• + •OH (22)

2•OH→ H2O2 (23)

When ultrasound is combined with the Fenton process, a higher amount of •OH is
produced. The combination of the processes causes mixing of the solution. This results
in an improvement in the contact between •OH and pollutants (dyes in this case), an
enhancement regeneration of Fe2+ ions, a reduction in the production of sludge and an
improvement of the clean and reactive surface of the solid catalyst; the latter occurs when
ultrasound is coupled with heterogeneous Fenton specifically [99,100].

4.2.2. UV/H2O2 System

When UV irradiation is combined with H2O2, two •OH are formed, as shown in
Equation (13) [101]. The UV/H2O2 process has several advantages, like no sludge produc-
tion and efficient removal of COD in a brief period of reaction time [102]. In this process,
parameters like the solution pH, ultraviolet (UV) lamp and temperature must be optimized;
i.e., the concentration of H2O2 must be optimized as covered previously, due to its ability
to scavenge •OH. In terms of the solution pH, this process performs better when the pH
solution is in the range from 3 to 5. Low or medium pressure UV lamps (LP-UV or MP-UV)
can be used, with the MP-UV lamps being better due to their ability to irradiate large spec-
trum waves faster than LP-UV lamps. Concerning the solution temperature, an increase
can lead to a higher amount of •OH, but a temperature above the optimum decomposes
H2O2 into water and oxygen [102].

4.2.3. Photocatalysis and Sono-photocatalysis

Sono-photocatalysis is a treatment where a catalyst is irradiated by UV light and at
the same time ultrasonic waves are applied to the solution [103]. In the literature, the use
of titanium dioxide (TiO2) and zinc oxide (ZnO) is reported as the main catalysts to be
used in these treatments of dyes in water [104]. The combination of photolysis, sonolysis
and catalyst results in the generation of electron-hole pairs at an elevated temperature and
pressure (due to cavitation) and, therefore, •OH are formed (Equations (24)–(29)). •OH
also are formed during the sonolysis of water molecules. This increases the level of the
•OH, resulting in the total mineralization of pollutants [105]. When in sono-photocatalysis
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the catalyst used is a heterogeneous one, an increase in the rate of formation of cavitation
microbubbles occurs, increasing the lysis of water molecules and, subsequently, the gen-
eration of •OH [106]. Furthermore, heterogenous cavitation can release the molecules of
the pollutants or by-products that are blocking the surface of the catalyst, increasing the
UV available sites and eliminating the mass transfer limitation that can occur during the
process [107].

TiO2 + hv→TiO2 (e− + h+) (24)

h+
(VB) + OH− ads→ •OH (25)

e−(CB) + O2 → O2
•− (26)

O2
•− + H+ → HO2

• (27)

2 HO2
• → H2O2 + O2 (28)

H2O2 + hv→ 2•OH (29)

Even though TiO2 has been widely used as a catalyst in AOPs, it can generate toxic
effects on the environment. Leite et al. [108] studied the ecotoxicity of TiO2 in its rutile form
in Mytilus galloprovincialis (known as Mediterranean mussel). When mussels were exposed
to TiO2, damage to mussel gills was reported in a dose-dependent manner. Additionally,
the mussels showed an increase in the content of lipofuscin in the central vessel, indicating
that TiO2 generates oxidative stress in the mussels. Unlike TiO2, ZnO is not toxic to the
environment and living organisms; and it is cheaper, therefore, it can be applied for a
large-scale water treatment [109]. It is important to note that the ZnO mechanism is similar
to that for TiO2 in sono-photocatalysis processes (Equations (30)–(34)).

ZnO + hv→ ZnO (e− + h+) (30)

h+
(VB) + OH− ads→ •OH (31)

e−(CB) + O2→ O2
•− (32)

O2
•− + H+ → HO2

• (33)

HO2
• + H+ + e−(CB) → H2O2 + ZnO (34)

4.2.4. Persulfate-Based AOPs

Persulfate-based AOPs have gained attention for the degradation of organic pollu-
tants such as dyes due to the advantages that SO4

−• have over •OH, including longer
half-life, stronger oxidation potential, diverse activation methods of persulfate and easy
storage and transportation. Additionally, persulfate-based AOPs are less dependent on
the operating conditions than H2O2-based AOPs [51,110,111]. Persulfate (SO2−), perox-
ymonosulfate (PMS, HSO5

−) and peroxydisulfate (PDS/PS, S2O8
2−) can be activated to

generate SO4
−• by thermal, UV and ultrasonic energy, catalysis (homogeneous and het-

erogeneous), transition metals and carbonaceous materials [110]. As shown in Equations
(30)–(33), when PDS/PS (Equation (35)) and PMS (Equation (36)) are photolyzed, sonolyzed
or thermally decomposed, they produce SO4

−•. Once SO4
−• are formed, they can react

with water (Equation (37)) or with OH- ions (Equation (38)), resulting in the generation of
•OH [111]. The activation of PMS and PDS/PS by catalysis is shown in Equations (39)–(42).
In turn, Equations (43) and (44) show the activation of PDS/PS by Fe2+ and Fe3+ ions,
respectively [112,113].

S2O8
2− + hv-heat-)))→ 2SO4

•− (35)

HSO5
− + hv-heat-)))→ SO4

•− + •OH (36)

SO4
•− + H2O→ SO4

2− + •OH + H+ (37)

SO4
•− + OH− → SO4

2− + •OH (38)
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Semiconductor + hv→ e−(CB) + h+
(VB) (39)

HSO5
− + e−(CB) → SO4

•− + OH− or SO4
2− + •OH (40)

S2O8
2− + e−(CB) → SO4

•− + SO4
2− (41)

HSO5
− + h+

(VB) → SO5
•− + H+ (42)

Fe2+ + S2O8
2− → Fe3+ + SO4

•− + SO4
2− (43)

Fe3+ + S2O8
2− +

1
2

O2→ SO4
•- + Fe+2 + SO4

2− + FeO2+ (44)

Parameters like pH and temperature can influence persulfate-based AOPs. When the
solution has an acidic pH, SO4

−• dominate oxidation; and under basic pH, the dominant
species are •OH. The acidic condition activation of PDS/PS only generates SO4

−•; in
turn, at basic conditions, SO4

−• react with OH− ions resulting in the generation of •OH
(Equation (38)) [76,112]. Concerning the influence of temperature on the efficiency of the
process, a temperature increase can enhance the decomposition of persulfate into SO4

−•;
meanwhile, when persulfate AOPs are conducted at room temperature, SO4

−• kinetics are
slower, decreasing the rate of degradation of organic pollutants [114].

Table 2 lists studies about the treatment of dyes contained in water by using AOPs.

Table 2. Dye treatment by using AOPs.

Advanced Oxidation Process Dye Operation Conditions Results Ref.

Sono-photocatalysis with
ZnO microparticles Rhodamine B

λ = 554 nm; pH = 5.8;
frequency = 59 kHz, [catalyst] = 0.5

g/L; [dye] = 2.5 mg/L

- ~100% removal of the dye
- Sono-photocatalysis generates

more •OH than sonolysis and
photocatalysis alone

[78]

Heterogeneous sono-Fenton
with magnetite (Fe3O4)

nanoparticles
Basic violet 10

pH = 3; [catalyst] = 1.5 g/L;
[H2O2] = 36 mM; ultrasonic

power = 450 W/L; [dye] = 30 mg/L

- 75.94% removal of the dye
- •OH were the most abundant

radical
[115]

Heterogeneous sono-Fenton
like with Fe3O4 nanoparticles

Reactive orange 107 (RO107)
and real textile wastewater

pH = 5 (simulated water), 8.1 (real
textile wastewater); [catalyst] = 0.8 g/L;
[H2O2] = 10 mM; frequency = 24 kHz

- ~100% removal and 87%
mineralization of RO107

- 79.25% removal of COD and
66.54% of total organic carbon
(TOC)

[116]

Photo-Fenton Congo red pH = 3; λ = 507 nm; [Fe2+] = 10 mg/L;
[H2O2] = 50 mg/L

- 93% removal of Congo red
- 86.54% and 79.9% removal of

COD and COT, respectively
[117]

Electro-Fenton Reactive red 195

pH = 3; [dye] = 50 mg/L; superficial
oxygen velocity = 0.012 cm/s;

t = 60 min;
current density = 2 mA/cm2

- Color removal efficiency was
≈100%

- 96% removal of COD
[118]

Sono-Fenton Acid violet 7
pH = 3; [Fe2+] = 10 mg/L;

[H2O2] = 50 mg/L; [dye] = 20 mg/L;
frequency = 40 kHz

- COD and dye removal were
81% and ≈100%, respectively

- Ultrasonic waves increased
•OH production

[119]

Persulfate sono-catalysis with
magnetic CaFe2O4

nanoparticles
Brilliant green (BG)

[Dye] = 50 mg/L; [catalyst] = 0.5 g/L;
[persulfate] = 200 mg/L;

frequency = 23 kHz; pH = 8.1

- 99.8% removal of BG
- SO4

•− and •OH where involved
in BG removal

[120]

4.3. Coupling Biochar with AOPs for the Elimination of Dyes in Water

Biochar has gained attention as a heterogeneous catalyst in AOPs due to its chemical-
saving synthesis, high dispersion of reactive sites, adjustable physicochemical properties,
pore structure and content of oxygen functional groups such as hydroxyl, carboxyl and
carbonyl, which can promote the activation of H2O2 and persulfate to •OH and SO4

−•,
respectively, as shown in Equations (45)–(48) [19]. Biochar as a by-product of thermal
decomposition of biomass can generate environmentally persistent free radicals [18]. Like
oxygen functional groups, environmentally persistent free radicals can activate H2O2 and
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persulfate; consequently, •OH and SO4
−• are generated. As expressed in Equations (49)

and (50), the catalytic mechanism of environmentally persistent free radicals on biochar
surface follows an electron transfer reaction to activate H2O2 and persulfate [20]. On the
other hand, light plays an important role when biochar is coupled with AOPs since light can
activate biochar, inducing the formation of environmental free radicals, •OH and singlet
oxygen (1O2) species [18,50,121], leading to an increase in the oxidation potential of the
combined system.

It is reported that free radicals are product of the homolytic break up (caused by the
thermal decomposition of biomass) of the α- and β-alkyl-aryl ether bonds, carbon–carbon
and carbon–oxygen bounds present in lignocellulose; therefore, environmentally persistent
free radicals are more abundant in biochar derived from lignocellulose [51]. When electrons
are transferred from the phenol and quinone fraction of the biomass to the transition metals,
which can be present in biomass or added before the thermochemical decomposition of
biomass, this can also form environmentally persistent free radicals [121]. It is important to
note that the environmentally persistent free radicals present on the biochar surface can
decrease with the increase in temperature when the thermochemical method is used for the
decomposition of biomass [122]. The content of environmentally persistent free radicals
tends to decrease after the oxidation process, reducing the efficiency of the process. In this
regard, the chemical modification of the biochar can overcome this limitation [123].

BCsurface-OH + H2O2 → BCsurface-O• + •OH + H2O (45)

BCsurface-OH + S2O8
2− → BCsurface-O• + SO4

•− + HSO4
− (46)

BCsurface-OOH + S2O8
2− → BCsurface-OO•− + SO4

•− +HSO4
− (47)

BCsurface-C = O + S2O8
2− → BCsurface-CO•− + SO4

•− + SO4
2− (48)

H2O2 + e− → •OH + OH− (49)

HSO5
− + e− → SO4

•− + OH− or SO4
2− + •OH (50)

4.4. Biochar Modification

Biochar can be modified by acid and alkaline treatments, heteroatomic doping and
metal impregnation [122]. In acid and alkaline treatments, the surface area, porosity and
functional groups containing oxygen are improved. With acid treatments, for example,
hydroxyl and carboxyl groups are increased, while in alkaline treatments, hydroxyl groups
increase on the surface of the biochar [124]. Acid or alkaline modifications consist of a
wash of acids or bases like HCl, sulfuric acid (H2SO4), phosphoric acid (H3PO4), nitric acid
(HNO3), NaOH and potassium hydroxide (KOH). This procedure can be done before or
after the biomass thermochemical decomposition [122,125]. Acid and alkaline treatments
have several disadvantages. Acid treatments can cause the decrease of biochar surface
area and alkaline treatments can cause corrosion to the equipment [19]. Heteroatoms like
nitrogen (N), sulfate (S), boron (B) and phosphorus (P) can change biochar electronic struc-
ture when it is doped with these atoms [126]. Heteroatom doping is usually performed by
adding the heteroatom to the biomass before the mixture is thermo-decomposed, ensuring
the distribution of the heteroatom through all the surface of biochar [127]. N doping can
enhance the catalytic capacity of biochar for PMS activation by increasing biochar basicity;
therefore, the adsorption of PMS on biochar porous and electron transfer reaction between
biochar and PMS are promoted [128]. Even though S doping is possible with biochar,
research has shown that doping biochar made from rice straw with S has a negative effect
on the catalytic ability of biochar. This effect can be ascribed to the substitution of oxygen
functional groups by S, causing a reduction in the ability of biochar to activate persulfate
or H2O2, and decreasing the degradation efficiency of the process [50]. In the case of N,
another way to obtain N-doped biochar is by self-doping with N. This method has been
described as a simple way to add N to the carbonaceous structure of the biochar maintain-
ing the biochar structure and obtaining a uniform distribution of the N atoms [129]. It is
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reported that to produce N-doped biochar, biomass containing a high content in proteins
is the most indicated type of biomass for this purpose, since this ensures that biochar has
high concentrations of N on the surface [130]. Additionally, Binda and coworkers [131]
produced a biochar at low temperature from Nannochloropsis sp., a marine microalga. The
production methodology used allowed for the natural self-doping of the biochar without
requiring harsh conditions, providing an efficient strategy for absorbing lead (II) ions in
aqueous solution. Lead was also efficiently adsorbed on magnesium oxide embedded N
self-doped biochar composites [132].

Metal impregnation of biochar is the modification done in most of the studies where
biochar is used as a catalyst in AOPs for the removal of dyes [8,11,21,133–135]. Metal
impregnation consists of immersing the biomass or biochar in a solution of metal salt or
metal oxide causing the incorporation of metals to the biochar surface or pores [124]. Salts
or oxides of metals like Fe, cobalt (Co), manganese (Mn), aluminum (Al), magnesium (Mg)
and copper (Cu) have been used for biochar metal impregnation [19,136]. When biochar is
modified by metal or metal oxides, there is an improvement in the adsorption efficiency,
recyclability and catalytic ability of biochar [41]. For the degradation of methylene blue
and methyl orange, Chu et al. [8] used biochar modified with two iron salts (Fe(II) chloride
tetrahydrate and Fe(III) chloride hexahydrate) by submerging food waste in a solution
containing both iron salts. Afterwards, the mixture was pyrolyzed and the Fe-biochar
was used as a heterogeneous catalyst in a sono-Fenton-like process. The Fe-biochar had a
synergetic effect in the sono-Fenton-like process by increasing the amount of •OH, hence
the degradation of the tested dyes was improved [8]. Furthermore, it is reported that the
biochar modified by Fe and Mn oxides showed an increase in environmentally persistent
radicals; therefore, the degradation efficiency of biochar was increased when it was used in
heterogeneous Fenton-like process [137]. In Fenton processes, biochar is mainly used as a
supporting material for Fe ions. Therefore, it is used in heterogenous Fenton processes. In
this combined process, Fe ions are immobilized on the surface of the biochar, promoting
the production of •OH and SO4

−• by the activation of H2O2 and persulfate [123].
Metal-based catalysis has the problem of metal leaching, which can cause secondary

pollution [51]. Researchers suggest that the use of iron metal composites, like cobalt ferrite
(CoFe2O4), can solve the problem of metal leaching. This does not only solve this problem,
but also makes the separation of the biochar simple due to the presence of magnetic metals,
such as Fe, and when composites are metals with different valence states the production
of ROS is increased due to the redox reactions caused by valence conversion between
metals [128].

TiO2 can be used as a catalyst in the photocatalyst process for the degradation of
dyes [138]. To use biochar as a supporter material for TiO2, the semiconductor must be
immobilized on the surface of biochar by wet impregnation and the sol-gel method [139].
Fazal et al. [140] synthesized TiO2-biochar by wet impregnation. These authors dispersed
biochar from macroalgae pyrolysis in isopropanol, followed by an addition of Ti(IV) iso-
propoxide. Ultrasound waves were then applied at a frequency of 35 kHz to obtain a
uniform mixture, which was heated in a hotplate until evaporation. To remove the solvent
content, the TiO2-biochar was heated in an oven and finally it was calcinated at 400 ◦C. The
TiO2-biochar used in a heterogeneous photocatalyst process showed higher degradation
efficiency for methylene blue than biochar and pure TiO2 acting individually. The effi-
ciency was increased when associated with a certain amount of dye adsorbed by biochar
and the generation of electron holes when TiO2 supported on biochar reacts with light
irradiation (Equation (24)). These electron holes cause the generation of •OH (Equation
(25)), which then react with the methylene blue molecules that are adsorbed on biochar
surface, causing the degradation of the dye [140]. In turn, the sol-gel method to immobilize
TiO2 on the biochar derived from the pyrolysis of coconut shell was used by Zhang and
Lu [141]. These authors started by mixing ethanol and butyl titanate Ti(C4H9O)4 by stirring
to obtain solution A. For solution B, ethanol (C2H5OH), deionized water and acetic acid
(CH3COOH) were mixed with polyethylene glycol (C2nH4n+2On+1). To obtain the sol-gel
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solution, solution B was then added dropwise to solution A, aged for 24 h, mixed with
the coconut shell biochar, aged again for 24 h and calcinated to obtain the TiO2-biochar
composite. Equations (51)–(55) show the involved reactions (≡Ti-O-R and R-O-H represent
butyl titanate and polyethylene glycol, respectively). The porous nature of the coconut
shell biochar favored the formation of TiO2 in its anatase form. The TiO2 coconut shell
biochar was used as a catalyst in a photocatalytic process in the degradation of brilliant blue
KN-R; the biochar favored the contact between TiO2 and the dye when it was adsorbed in
the porous structure of biochar. Additionally, biochar prevented the reaction of e- and h+,
enhancing the transfer of electron-hole pairs. Thereby, photogenerated h+ reacted with OH-

on the TiO2 surface, producing •OH and favoring the dye degradation [141].

Hydrolysis: ≡Ti-O-R + H2O→≡Ti-O-H + R-O-H (51)

Dehydration condensation: ≡Ti-O-H +≡Ti-O-H→≡Ti-O-Ti≡ + H2O (52)

Dealcoholation condensation: ≡Ti-O-R + ≡Ti-O-H→≡Ti-O-Ti≡ + R-O-H (53)

Solvent reaction: ≡Ti-O-R + R’-O-H→≡Ti-O-R´ + R-O-H (54)

Calcination: ≡Ti-O-R→ O=Ti=O + H2O + CO2 (55)

In addition to the use of biochar as a supporter material for TiO2, biochar has been
used as nanoparticles supported on TiO2 nanotube arrays recently. This type of process has
shown a good catalytic activity for the degradation of dyes in water [142]. Furthermore,
biochar has been used to modify TiO2 in order to improve the photocatalytic performance of
TiO2 [143]. Moreover, biochar dots have been utilized to sentitize TiO2 nanotubes, resulting
in the improvement of the photoelectric performance of the process [144].

ZnO-biochar composites have also been used in AOPs for the elimination of dyes in
water [145]. ZnO can improve the formation of environmentally persistent free radicals
on biochar surface by increasing its catalytic ability [121]. To produce the ZnO-biochar
composites, the ball milling method has been reported [139]. This method changes the
particle size of the biochar and can modify the functional groups present on the biochar
surface [146]. Ball milling is done in a machine where moving balls grind, break and
enhance the surface of biochar by a constant mixing and grinding [147]. Yu et al. [16]
used the ball milling method to synthesize biochar and ZnO, and used the composite in
a photocatalytic process to remove methylene blue in water. Biochar derived from the
bamboo stake pyrolysis and ZnO were mixed and ground in agate jars with agate balls.
The ZnO addition on the biochar surface enhanced biochar adsorption and catalytic ability;
thus, methylene blue removal was increased [16].

Table 3 shows a summary of studies where biochar has been used along with AOPs.

Table 3. Treatment of dyes by coupling biochar with advanced oxidation processes (AOPs).

Process Dye Operation Conditions Results Reference

Fe-biochar,
heterogeneous
Fenton process

Amaranth (AM)
Sunset yellow (SY)

Biochar: slow pyrolysis, waste coffee
grounds, 700 ◦C, biomass treated with

Fe(III) chloride (FeCl3)
pH = 3.0; [catalyst] = 0.4 g/L;

[H2O2] = 5.0 mM; T = 25 ◦C; t = 60 min

- AM and SY removal of 73.6% and 68%,
respectively. AM and SY mineralization
of 13.8% and 12.1%, respectively

- •OH causes the cleavage of azo (N=N)
functional groups. It dominates the
oxidation reaction

[21]

Photocatalyst with
ZnO-biochar Reactive red 97

Biochar preparation: Fast pyrolysis, pecan
nutshell, 800 ◦C, biomass treated with ZnO

before pyrolysis
pH = 7; t = 67 min

- 100% and 47.10% removal and
mineralization of the dye, respectively,
with the N=N bonds being broken by
•OH

- Zn-biochar shows better efficiency than
biochar or ZnO alone

[22]



Water 2022, 14, 2531 16 of 24

Table 3. Cont.

Process Dye Operation Conditions Results Reference

Persulfate-AOP
with biochar

Reactive brilliant red
X-3B

Biochar preparation: pyrolysis, food waste
digestate, 800 ◦C

pH = 3.78; [biochar] = 0.5 g/L; [PDS/PS] =
1.5 mM; T = 25 ◦C; t = 30 min

- 92.21% and 58.32% removal and
mineralization, respectively, of the dye

- O2
•− was the dominant radical, •OH,

1O2 and SO4
•− also participated in the

oxidation process
- Biochar was effective in the activation of

PDS/PS

[23]

Fe-biochar
heterogeneous

Fenton-like process
Rhodamine B

Biochar preparation: slow pyrolysis,
sawdust, 600 ◦C, biochar treated with a Fe3+

solution and pyrolyzed at 900 ◦C
pH = 6.5; [biochar] = 2.0 g/L;

[H2O2] = 4.0 mM; [dye] = 10 mg/L;
T = 30 ◦C

- >92.27% removal of the dye
- •OH dominate the oxidation reaction
- 58% and 34% reduction of COD and COT,

respectively

[133]

Photocatalyst with
ZnO-biochar Methylene blue

Biochar preparation: slow pyrolysis,
bamboo stakes, 600 ◦C, ball milling for

ZnO-biochar composite
pH = 6.0; [biochar] = 1.0 g/L;

[dye] = 160 mg/L; λ = 665 nm; t = 225 min

- 95.19% removal of the dye. Adsorption
was the main mechanism due to fast
kinetics

- ZnO nanoparticles in the biochar surface
had a strong photocatalytic activity.
Biochar improves the transfer of
photo-generated electrons

[16]

MnFe2O4-biochar,
heterogeneous
Fenton process

Rhodamine B

Biochar preparation: slow pyrolysis, poplar
wood flour, 600 ◦C, biochar treated with a

FeCl3, manganese sulfate (MnSO4) and
sodium hydroxide (NaOH) solution, and

dried to obtain Fe/Mn-biochar
pH = 4.8; [biochar] = 0.6 g/L;

[H2O2] = 115 mM

- 87.6% and 87.9% removal of the dye and
TOC, respectively

- O2
•− and •OH were the active species in

the rhodamine B oxidation
- Fe and Mn in the surface of biochar

activated H2O2 therefore producing •OH

[17]

Persulfate-AOP
with Mn/Fe-biochar Orange G

Biochar preparation: slow pyrolysis, sludge,
600 ◦C, biochar treated with a solution of

ferric chloride hexahydrate
(FeCl3·6H2O)/Mg(II) chloride

(MnCl2·4H2O), pyrolyzed again and treated
with ball milling

pH = 9; [biochar] = 0.4 g/L; [PMS] = 6 mM;
[dye] = 1500 mg/L; T = 25 ◦C; t = 24 h

- 75.23% removal of the dye
- •OH and SO4

•− played a main role
- Mn/Fe-biochar composite was efficient

in the activation of persulfate
- Mn and Fe had a synergetic mechanism,

favoring the persulfate activation

[148]

MnFe2O4-biochar,
heterogeneous

sono-Fenton-like
Methylene blue

Biochar preparation: slow pyrolysis, poplar
wood powder, 250 ◦C, biochar treated with

a FeCl3, MnSO4 and NaOH solution,
followed by heating

pH = 5; [biochar] = 0.7 g/L;
[H2O2] = 15 mmol/L; [dye] = 20 mg/L;

frequency = 20 kHz; T = 25 ◦C; t = 20 min

- 95% removal of the dye
- •OH and O2

•− were the main responsible
radicals for the dye treatment

- MnFe2O4-biochar composite was efficient
in the activation of H2O2

[149]

Photocatalyst with
TiO2-biochar Acid orange 7

Biochar preparation: slow pyrolysis,
Salvinia molesta, 350 ◦C, biomass pretreated
with titanyl sulfate TiOSO4 and titanium

isopropoxide (C12H28O4Ti)
[Biochar] = 20 mg/L; λ = 380–480 nm

- 90% removal of the dye
- O2

•− and •OH were involved in the
oxidation reactions

[150]

Fe-biochar,
heterogeneous

Fenton
Acid red 1

Biochar preparation: slow pyrolysis, coir
pith, 700 ◦C, biochar treated with a solution

of Fe(III) nitrate nonahydrate (Fe
(NO3)3·9H2O) and heated again

pH = 3; [biochar] = 4 g/L; [H2O2] = 16 mM;
[dye] = 50 mg/L

- 99.1% and 86.7% removal of acid red 1
and TOC, respectively.

- The reaction of Fe2+ and H2O2 occurred
in the surface of biochar, due to the high
chemical stability of biochar

- Minor leaching of iron

[151]

4.5. Biochar Reusability and Final Disposal

An advantage of using biochar as a catalyst in AOPs is its regeneration ability, which
gives it the chance to be used in various cycles [18]. The reusability of biochar when it is used
in AOPs makes the catalyst more cost-effective and sustainable [23]. Leichtweis et al. [22]
tested the reusability of biochar derived from the pyrolysis of pecan nutshell synthesized
with ZnO and used in the degradation of reactive red 97. To recover the biochar composite
after each experiment, the ZnO-biochar was washed with deionized water, filtered and
dried in an oven at a temperature of 60 ◦C for 1 h. After 9 cycles, the removal efficiency
of ZnO-biochar only decreased by 10% when compared to the first run. The reduction
was probably due to the blocking of biochar active sites by intermediates produced in the
catalytic reaction, decreasing the available active sites in the ZnO-biochar surface [22].
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Liu et al. [23] used biochar derived from the pyrolysis of food digestate as an activator
of persulfate in the degradation of reactive brilliant red X-3B and to analyze biochar
reusability. The authors tested 3 different regeneration methods: water washing, methanol
and re-pyrolysis. After water washing and methanol were used as regeneration methods,
biochar was unable to be used again in the activation of persulfate because the carbon
structure and functional groups on the biochar surface were damaged during the catalytic
reaction; hence, the removal efficiency of the process was seriously decreased. On the
other hand, re-pyrolysis of the biochar allows the biochar to be used for 5 cycles more with
minimum reduction in its efficiency when compared to the first cycle [23].

Rubeena et al. [151] used iron-doped biochar as a catalyst in a Fenton process for the
degradation of acid red 1. To test the Fe-biochar reusability after each cycle, the Fe-biochar
was washed with distilled water and dried for 24 h at 80 ◦C. Fe-biochar was used in 4 cycles;
in the first cycle, the removal efficiency of acid red 1 was 96.3% and it decreased to 89.4% in
the fourth cycle. The reduction in efficiency was due to blocking of biochar active sites by
the intermediate products generated in the catalytic reaction and due to some iron leaching
from the biochar surface [151].

Cheng et al. [17], after using MnFeSO4-biochar composite in the degradation of rho-
damine B, washed the biochar composite with distilled water prior to drying it at a tempera-
ture of 80 ◦C for 5 h. The biochar MnFeSO4 composites were used in 4 cycles of degradation,
showing a minimum decrease even in the fourth cycle (87.8% degradation of rhodamine
B). Due to magnetic properties, the biochar was also easy to be removed from the solution,
and the leached Fe and Mn ions were present at low concentrations.

Even though biochar used as a catalyst has shown good stability and reusability, its
final disposal must be considered [152]. As was described previously, when biochar is used
to remove dyes from water, several studies propose the use of disposal methods such as
landfill, energy recovery, bio-oil generation or use it as soil fertilizer or soil amendment.
However, to the best of the authors’ knowledge, there are no studies where biochar is
used as a catalyst in AOPs for the removal of dyes evaluating the final disposal of the
used catalyst. Taking into consideration that in some cases biochar must be modified with
metal ions, metal oxides or metal composites, further efforts must be made to assess the
ecotoxicity of the used biochar as a catalyst in the degradation of dyes by AOPs, because
not only the dyes on biochar surface could damage the environment and living organisms,
but compounds used during the synthesis of the biochar could also represent a risk.

5. Conclusions

From this analysis, biochar can be used to eliminate dyes in water. It can activate
H2O2 and S2O8, generating •OH and SO4

•−, allowing not only for the removal of dyes but
also for their degradation. Nonetheless, the ability of biochar to be used as a catalyst can be
enhanced by modifying the raw biochar. Therefore, biochar can be used in AOPs like Fenton
and other photo-catalytic AOPs. In this regard, the sustainability of the referred processes
is further increased. When coupling biochar with AOPs, the removal and degradation rate
of dyes rose in comparison with the rates resulting from the use of only biochar. In that
way, the dye is not only moved from liquid to solid phase, but it is also degraded into less
harmful compounds.

On the other hand, biochar can be regenerated. This ability of biochar gives the
opportunity to reduce the operational costs ascribed to wastewater treatments for industries
such as the textile industry. Additionally, research shows that it is safe to use the dye-loaded
biochar in energy recovery, as soil fertilizer or for soil amendment, as long as the regulatory
parameters are met.

Since one of the most claimed capacities of biochar is its sustainability, further studies
should be focused on the improvement of the catalytic ability of biochar, reducing the
necessity of modifying biochar with metals or other chemicals that can represent an en-
vironmental pollution risk. To achieve this purpose, researches should be conducted to
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understand more deeply the fundamentals involved in the activation of H2O2 and S2O8
by biochar.

In this regard, new horizons may be opened by assessing the efficiency of biochar on
real wastewater. This constitutes a research challenge in the near future.
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