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Abstract: In this study, an ensemble machine learning model was developed to predict the recovery
rate of water quality in a water treatment plant after a disturbance. XGBoost, one of the most popular
ensemble machine learning models, was used as the main framework of the model. Water quality
and operational data observed in a pilot plant were used to train and test the model. Disturbance
was determined when the observed turbidity was higher than the given turbidity criteria. Therefore,
the recovery rate of water quality at a time t was defined during the falling limb of the turbidity
recovery period. It was considered as a relative ratio of the differences between the peak and
check for observed turbidities at time t to the difference between the peak turbidity and turbidity criteria. The
updates root mean square error—observation standard deviation ratio of the XGBoost model improved from
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0.730 to 0.373 by pretreatment, removing the observation for the rising limb of the disturbance from

the training data. Moreover, Shapley value analysis, a novel explainable artificial intelligence method,
Interpretation of Water Quality

was used to provide a reasonable interpretation of the model’s performance.
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and reservoirs used for drinking water supply threaten public health, and water treat-
ment plants are crucial public facilities for providing safe water to the public. Thus, the
optimization of water treatment plant operations is essential for the stable supply of safe
drinking water.
The quality of drinking water produced in a water treatment plant is affected by
various factors, including the quality of raw water, the composition of water treatment
BY facilities, and the operational conditions of the treatment processes. Natural disasters,
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and leakage of drinking water. One common accident in water treatment plant operations
is the suspension of coagulants (e.g., poly aluminum chloride) owing to the malfunction
of the agent supply system. This malfunction results in an increase in the turbidity of the
subsequent processes, which represents the status of disturbance in the water treatment
process. Turbidity is the most widely used index that quantitatively represents the status
of water quality in a drinking water treatment plant. An increase in turbidity represents
an increase in the degree of contamination, including organic materials, nutrients, and
heavy metals [6,7].

Considering the proper management of water supply systems, the prediction of water
quality caused by various malfunctions, including disasters, is essential. Recent studies
have provided a methodological approach using statistical methods or advanced machine
learning to predict or quantify the damage to social infrastructure caused by various disas-
ters [4,8,9]. Inoue et al. [10] used deep learning and support vector machines for anomaly
detection in water treatment plants [11]. Recently, Chen and Guestrin [12] developed an
ensemble risk assessment model to determine the risk grade of rainstorm disasters in target
areas using random forest (RF) and deep neural networks. The application of machine
learning for the management of water treatment systems is still being studied. Furthermore,
water quality in drinking water supply systems is difficult to predict because various
physical, chemical, and biological factors affect the quality of drinking water produced in
water treatment plants [6,11,13].

Practically, post-disaster management is crucial for the proper management of water
treatment systems. Recovery or post-disaster management is an emerging issue in the man-
agement of public infrastructure [14,15]. Moreover, studies on the application of advanced
machine learning models to predict water quality in water resources and water treatment
systems have increased [16-19]. However, studies on the quantification and prediction of
recovery stages in water treatment plants after disasters and related disturbances are still at
an early stage.

Artificial neural networks (ANNSs) were some of the first machine learning algorithms
to be developed, and various advanced algorithms (e.g., ensemble machine and deep learn-
ing algorithms) have been continuously developed to overcome the limitations of previous
models. For example, deep learning has been developed to overcome the limitations of con-
ventional ANNSs, such as vanishing gradients and overfitting [20-22]. Tree-based ensemble
machine learning models, such as RFs and gradient boosting decision trees (GBDTs), are
some of the most popular and widely used machine learning models. Ensemble machine
learning models have been increasingly applied in water quality management studies
recently [23,24]. The ensemble model is composed of multiple independent tree-based
models known as weak learners, and model performance can be improved by determining
the final model prediction obtained by combining the results of each weak learner [25-27].

This study provides a methodological approach to quantify the recovery rates of water
quality after the occurrence of malfunctions in water treatment plants. Considering the first
part of the study, an ensemble machine learning model was developed to predict recovery
rate by the following steps: (i) the recovery rate was defined as the change in turbidity
after disturbance in the water treatment process; and (ii) a machine learning model was
developed from pilot-scale field operational data, with XGBoost (XGB), the most popular
GBDT algorithm, being used as the main structure of the model framework. Regarding the
second part of the study, explainable artificial intelligence (XAI) was used to provide an
understandable interpretation of the model’s performance. A machine learning model is
often referred to as a black box model. A limitation on the practical application of a machine
learning model for managing water treatment plants is that the results from the machine
learning model are hardly interpretable. Recently, Dunnington et al. [28] compared the
performance of a physically based model with that of three machine learning models in
predicting organic carbon removal in a water treatment system. Their study emphasized the
importance of model result interpretability in the practical application of machine learning
models. The XAl is a novel method that provides an interpretation of the performance of a
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machine learning model based on characteristics and relationships. Therefore, it overcomes
an important limitation of black box-based machine learning models and improves the
practicability of advanced machine learning models [29-31]. In this study, a novel XAI
method, the Shapley value (SHAP), was used to analyze the model’s performance and
provide an understandable interpretation of the model’s predictions [32].

2. Materials and Methods
2.1. Pilot Plant Operation

Operational data for water treatment processes were measured in a pilot-scale water
treatment plant (pilot plant) (Figure 1) located at the Bupyung Water Treatment Plant Office
in Incheon City, South Korea. The processes applied at the pilot plant involved an intake
tank, a flash-mix tank, a flocculation and settlement tank, and a filtration tank. The hourly
water quality observational data from the pilot plant were used for the model development
in this study, as shown in Table 1. Hourly turbidity and pH were measured using electronic
sensors, the water level was measured using an ultrasonic level sensor, and the flow rate
was measured using an electromagnetic sensor.

oH Turbidity  Turbidity
Q
—) | — —)

Intake tank Flocculation and Filtration tank
settlement tank

—

Figure 1. Schematic of a pilot-scale water treatment plant.

Table 1. Observed water quality at each reactor in the pilot-scale water treatment plant.

Reactor Observed Input Variable
Flow rate (Q_R1, m3/d)
3 7 4
Intake tank (17.96 m~) Water level (L_R1, m)
Flocculation and settlement tank Turbidity (TB_R2, NTU),
(25.15 m3) pH (PH_R2)
Filtration tank (1.44 m3) Turbidity (TB_R3, NTU)

2.2. Model Development
2.2.1. Definition of the Recovery Rate

The turbidity of water after filtration is one of the most representative indices of water
quality status. First, the criteria for abnormal turbidity (T;) were determined, and the
disturbance period was defined as the period when the observed turbidity was higher than
Ty, as shown in Figure 2. Thus, the disturbance period started after the observed turbidity
became higher than the criterion T;. Moreover, the turbidity increased continuously until it
reached the maximum turbidity during the disturbance (Tmax). Thereafter, the turbidity
decreased until it became lower than T;. The recovery rate (R) of turbidity at time t during
the falling limb of the disturbance was determined from the relative ratio of the differences
between Tyax and T; to the differences between T and Ty (1). R was calculated from
the instance immediately after the turbidity reached Tmax to the instance the turbidity
decreased below T;. Defining the recovery rate in this study, R is considered as 100%
during the rising limb of the turbidity after the disturbance.

o Tonax — Tt

R = fmax  °t
Tmux_Tr

@
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R (%): recovery rate of turbidity during the falling limb disturbance at time t;
Tax (NTU): maximum turbidity during a disturbance event;

Tr (NTU): criteria for abnormal water quality;

Ty (NTU): turbidity observed at time t.
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Figure 2. Schematic of the recovery rate in a water treatment process.

2.2.2. Operation Scenario

Disturbance with respect to water quality caused by an accident was simulated in the
pilot plant. The fine particles in the water were aggregated into larger-sized particles by
adding a coagulant so that the particles were removed in the succeeding filtration process.
The suspension of the coagulant thus caused increased turbidity in the water treatment
process, including in the filtration tank. In this study, there were seven events of disturbance
imitated by the suspension of coagulant (poly aluminum chloride 12%) inputted during
the entire operation period (Table 2). The observed data during the observation period
(Table 2), including the simulated disturbance period, were used for the training and testing
of a machine learning model to predict R during the falling limb disturbance in the water
treatment process.

Table 2. Operation scenario of water treatment plant disturbance.

Event No. Period of Coagulant Suspension Observation Period
1 10:30-16:30, 23 September 2020 Period 1: 01:00 21 September 2020-23:00 27 September 2020
2 06:30-16:30, 29 September 2020 Period 2: 01:00 29 September 2020-22:00 5 January 2021
3 14:37-19:37, 22 February 2021
4 09:21-15:21, 24 February 2021 Period 3: 01:00 13 February 2021-22:00 28 February 2021
5 08:24-15:24, 25 February 2021
6 09:34-17:35, 3 March 2021 Period 4: 00:00 3 March 2021-22:00 5 March 2021
7 10:29-19:29, 4 March 2021

2.2.3. Data Split for the Training and Testing of the Model

The observed data for the four observation periods (Periods 1-4 in Table 2) were
used for model development. A total of 469 observations from 21 September 2020 to
26 February 2021 and 118 observations from 27 February 2021 to 5 March 2021 were used
for the training and testing of the machine learning model, respectively (Figure 3). The
ratio of the data used for training and testing of the machine learning model was 80:20.

2.2.4. Input Variables

Five observed input variables (Table 1) were used as independent variables for model
development, and the recovery rate, R, calculated using (1), was used as the dependent
variable predicted by the model. The turbidity of the effluent in the filtration tank, TB_R3,
is approximately 0.05 NTU in normal conditions, and peak TB_R3 ranged from 0.50 NTU
to0 2.16 NTU in the imitated abnormal condition. The criterion for the abnormal condition T
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was determined as 0.1 NTU. Furthermore, R was calculated from the turbidity value in the
filtration tank (TB_R3) during the falling limb of TB_R3.

Training Testing
25
Event 2 Event 6
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é Event 1
z 15 Event 5
P
S 10 Event 4
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=
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Figure 3. Turbidity observation for training and testing.

2.2.5. Pretreatment of the Input Variable

The proposed model predicted the recovery rate R during the falling limb of the
disturbance period. During the rising limb of the disturbance, recovery was not calculated
because the peak point of the disturbance cannot be estimated until it reaches the peak
value. Thus, R was considered to be 100% (normal status) in both the normal operation
period and the rising limb of the disturbance period (Figure 2). The model considered this
status by training it using a dataset that excluded the rising part of the data. The rising
part was determined using a logical (2). The data that fulfilled the logical condition in (2)
at time t were excluded from the training dataset. This pretreatment was not applied to
the test data. The model performances with pretreatment using (2) (Model 1) and without
pretreatment (Model 2) were compared by training the model for each case.

If Tout > Ty and Teyq > Ti @)

T; (NTU): observed turbidity at time t;
T;+1 (NTU): observed turbidity at time t+1.

2.2.6. Post-Treatment of Machine Learning Results

R was only defined during the falling limb of the disturbance period, and R during the
rising limb was determined as R = 100%. The logical (3) was used for the model prediction
result during the rising limb of disturbance as a post-treatment to consider this status in the
machine learning developed in this study. Regarding (3), R at time t+1 was considered as
100%; therefore, R at the peak of the rising limb in the model prediction was determined as
100%. Considering the definition of the recovery rate, the predicted R was also determined
as 100% when it was larger than 100%.

If Tout > Ty and Tyyq > Ty, then Ryyq = 100% 3)

2.3. Machine Learning Model Selection

The recovery rate, R, is determined based on the change in turbidity, which is affected
by the condition of the water quality in previous processes in water treatment plants. In
this study, the GBDT, a tree-based ensemble learning algorithm, was used to predict the
recovery rate after disturbance in a water treatment plant. The GBDT and the RF are popular
ensemble learning models [33-35]. The RF is composed of multiple individual decision
tree models, where the average of the individual decision tree models is determined as
the final result of the model prediction. In contrast, the GBDT is composed of a sequence
of decision tree models known as weak learners (Figure 4). The results of the previous
decision tree model affect the results of the subsequent decision tree model by assigning
a higher weight to data with higher residual errors in the previous decision tree model.
Through this process, model performance is improved in the subsequent step [25,26].
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Figure 4. Schematic of the GBDT data processing.

The GBDT is optimized by minimizing the objective function, which is composed of
two parts: the loss function (/) and the regularization function (€2), where X is an input
variable and 6y is an independent and identically distributed random vector ((4), (5) and
Figure 4) [36]. The loss function (I) represents the total sum of the differences between the
observation (y;) and the model prediction (f;) in each decision tree model for all the input
data samples (1). The regularization function reduces complexity and prevents overfitting
of the machine learning model (5). In (4), f; corresponds to an individual k-decision tree
with weight w, TL is the number of leaves on the tree, a represents the complexity of each
leaf, and B is a parameter that scales the penalty [12,36].

T=Y" 1)+ 2115:1 Q(fx) 4)

O(fi) = aTL+ 5plJul? ©

In this study, XGB, one of the most popular GBDT models, was used to develop an
ensemble machine learning model to predict recovery rates in water treatment processes
after disturbance. The model was developed using the Python XGB library [12,36-38],
where the hyperparameters of the model were optimized by a grid search method using
the scikit-learn grid search library [37].

2.4. Model Evaluation

Three evaluation indices were used to evaluate the prediction performance of the
XGB model: the Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), and
RMSE-observation standard deviation ratio (RSR) (6)—(8). The value of NSE ranges from
—oo to 1, where NSE approaches 1 when the model prediction shows a better fit with the
observations. The RMSE values ranged from 0 to co. The RMSE is calculated from the
root-squared mean of the squared differences between the observation and prediction.
A smaller RMSE represents a better model prediction performance. The value of the
RSR ranges from 0 to 1, where the RSR approaches 0 when the model prediction shows
a better fit with the observation. The model prediction is considered satisfactory when
RSR < 0.70 [39,40].
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M moder: model prediction;
M; ops: Observation;
M,; 4ps: mean of the observed values.

2.5. XAl for Model Interpretation

A machine learning model is often known as a black box model because of limitations
on the understandable interpretations of model performance results. The XAl is a novel
method for providing an understandable interpretation of how a model prediction is
determined from the input variables used in the model’s development. Moreover, SHAP
analysis is one of the most representative XAI algorithms that provides an interpretation of
model performance by comparing model prediction results with different combinations
of input variables [32]. The SHAP value was calculated for each input variable from
the weighted mean of the marginal contribution of the input variable (9) [32]. Through
this analysis, SHAP provides quantified values for the contribution of the target input
variables with respect to model performance. In this study, SHAP analysis was used to
provide an understandable interpretation of the contribution of the input variables to the
model’s performance.

o f |5|!(V—V|!S—1)!{gsu{i}(xsu{i})_gs(xs)] )

SCF\{i}

J;: SHAP of the ith input variable;

V: set of all input variables;

S: all subsets of input variables without the ith input variable;

xs: values of the input variables in S without the ith input variable;
Xsu(i): the data set that includes the ith input variable;

gs(xg): prediction based on input xg.

3. Results and Discussion
3.1. Water Quality of the Pilot Plant

The characteristics of all input variables used for the model development are summa-
rized in Table 3. The five variables observed in the pilot plant were used as independent
variables, and the recovery rate, R, calculated using (2), was used as the dependent variable
for the XGB model development.

Table 3. Characteristics of the input variables.

Variables Min Max Average Standard Deviation
Q_R1(m3/d) 0 15.345 7.188 5.135
Indenend L_R1(m) 0.744 1.902 1.832 0.159
n ePegl ent TB_R2(NTU) 0.144 10.000 1.852 1.912
vanables pH _R2 5.531 8.712 7.151 0.998
TB_R3(NTU) 0.045 2.156 0.175 0.342
Dependent variable R 1.659 100.00 97.312 12.813
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3.2. Model Prediction of Recovery Rate

The performances of the two XGB models (Model 1 with pretreatment and Model 2
without pretreatment) were compared, and the two models were optimized with three
hyperparameters (1 estimator, max depth, and learning rate) using a grid search method.
The optimal hyperparameters for each model are summarized in Table 4. The XGB model
quantitatively predicted water quality recovery during the falling limb of the disturbance
until the water quality recovered to a defined normal status. The observation and the
prediction results of the two XGB models using the testing data are compared in Figure 5.
The evaluation results show that the model’s performance is improved by the pretreatment
of the input variables used for training the XGB model, where the prediction of Model 1
shows a better fit with a one-to-one line. The evaluation results of the two XGB models
using these three indices are compared in Table 5. The values of NSE, RMSE, and RSR
improved from 0.467 to 0.860, 10.310 to 5.280, and 0.730 to 0.374, respectively, when the
rising limb of the turbidity in the filtration tank was excluded from the pretreatment process
of the training data. Pretreatment was not applied to the test data. This result indicates that
the XGB model is appropriately trained using the pretreatment process.

Table 4. Hyperparameters of the model’s optimization.

Hvperparameter Optimal Value
yperp Model 1 Model 2
n estimator 50 50
Max depth 2 2
Learning rate 0.2 0.1

n estimator: number of trees to fit; max depth: maximum tree depth for base learners; learning rate: Boosting
learning rate.

100 1
K
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80+ A AL A &
7
- 1
& 601 o o A’/’ o8
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o 40.
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0O 20 40 60 8 100
observation

Figure 5. Comparison of the model predictions with the observations.

Table 5. Summary of the model evaluation results.

Model NSE RMSE RSR
Model 1 (with pretreatment) 0.861 5.266 0.373
Model 2 (without pretreatment) 0.467 10.308 0.730

The model predictions of R in the two models were compared for two disturbance
events (Events 6 and 7). The improvement of the XGB model using the pretreatment process
is shown in Figure 6. Model 1 predicted the start and end periods of the disturbance for
both events. The scale of recovery was also well predicted for Event 6, whereas the model
underestimated the observations for Event 7.
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Figure 6. Model prediction of the two disturbance events between 3 March 2021 and 5 March 2021.

3.3. Explainable Artificial Intelligence for Model Interpretation
3.3.1. SHAP

The prediction of a machine learning model is determined by the internal computation
of the input variables. Thus, the result is affected by the complicated relationships between
the input variables. SHAP analysis provided an understandable explanation of how
the model simulation results were determined. The SHAP values represent the relative
importance of the input variables in the XGB model. The colored dots in Figure 7 represent
the distribution of SHAP for each observation. Considering Figure 7, the variables in the
y-axis are sorted by the SHAP values for each variable in descending order. The color
hue in Figure 7 represents the actual value of the observation. The red and blue colors
indicate high and low observation values, respectively. The SHAP analysis suggests that
the TB_R3 (the turbidity at the filtration process) is a factor that has the largest effect on the
model simulation result. A larger negative SHAP value is observed when the observed
TB_R3 is larger, as represented in red. Moreover, the SHAP value becomes close to zero
and is slightly higher than zero when the observation becomes smaller, as represented in
blue. This distribution of SHAP values indicates that the model prediction of R becomes
larger when the observed turbidity in the filtration tank, TB_R3, becomes smaller. This
corresponds to the actual relationship between TB_R3 and R, which indicates that the
recovery rate increases to 100% as turbidity reduces until less than 0.1 NTU. The SHAP
values for PH_R2 show that PH_R2 does not significantly affect R, whereas R tends to
increase slightly when PH_R?2 increases.

High
‘T‘B R3 L L] -mE & s eh = - i
PH_R2 *I"'- E]
M
>
L R1 " 2 " g
- 2
m
Q R1 l.' @
TB_R2 -* I
T . 1 ' Low
-80 —60 -40 -20 0

SHAP value (impact on model output)

Figure 7. SHAP summary plot.
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3.3.2. Exploratory Data Analysis with SHAP

The SHAP analysis also provides an explanation for the individual observations.
Recent studies have used SHAP analysis to improve the interpretability of machine learning
model results [31,41]. The SHAP force plot shows how model prediction is affected by
individual observations. Figure 8a shows a SHAP force plot of an observation at 23:00
on 4 March 2021. Regarding this datum, the observed R was 24.29%, whereas the model
prediction of R was 61.89%. This is an example of the considerable over-prediction of R, as
indicated by the red dotted box in Figure 5.

= lower

.:__51.89’:'__3' 77.81 37.81 97.81 _ _ __ _ '—'__i

higher &= lower

TB_R3 = 1.394 L_R1=1891 TB_R2 = 3 544
(a)
: : =
TB_R3 =0.9556 TB_R2=3.054
(b)

Figure 8. SHAP force plot. (a) Datum observed at 23:00 on 4 March 2021. (b) Datum observed at
00:00 on 5 March 2021.

The SHAP force plot in Figure 8a shows that the model’s predicted R was 61.89%,
when the observed TB_R3 was 1.394 NTU, and this observation of TB_R3 had the greatest
effect in reducing the value of the predicted R. The effect of the other input variables on
the model prediction was larger in the order of L_R1 and TB_R2. Although the observed
input variables reduced the predicted R, the prediction was larger than the observed R.
A possible interpretation for this over-prediction can be provided using SHAP analysis
and exploratory data analysis (EDA). EDA is a method that analyzes data from various
perspectives. The SHAP analysis showed that the model performance was affected by
the input variables in the order TB_R3 > L_R1 > TB_R2. The relationship between the
distribution of these input variables and R was explored using a target plot. Figure 9 is
a target plot often used for EDA, where pdpbox, an open-source library, was used for
plotting. Figure 9a shows the distribution of the observed R in the training data within a
given range of the two input variables TB_R3 and TB_R2. For example, for the data in the
TB_R2 range between 1.94 NTU and 4.58 NTU and in the TB_R3 range between 0.092 NTU
and 1.908 NTU, the number of observed Rs within this range is 11, and the average of
these 11 observed Rs is 59.92%, as marked in the red dotted box in Figure 9a. Thus, it
can be inferred that the model is trained to predict a relatively higher R when the input
variable is within this range. As a result of this training process, the model predicted an R
of 61.89%. The observed R of 24.3% at 23:00 on 4 March 2021 is quite an exceptional case
based on the distribution of other input variables and causes noticeable over-prediction by
the XGB model. Another target plot for the input variables L_R1 and TB_R3 provides a
similar interpretation. The observed L_R1 and TB_R3 were 1.891 m and 1.394 NTU at 23:00
on 4 March 2021, respectively. This observation falls in the range of L_R1 between 1.891
and 1.892 m and of TB_R3 between 0.092 to 1.908 NTU, as shown by the red dotted box in
Figure 9b. There are ten observations with an average R of 85.97%. Since the model was
trained from this relationship, the model over-predicted this case with an exceptionally low
value for the observed R.
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Figure 9. Target plot of R in the training data. (a) TB_R2 and TB_R3. (b) L_R1 and TB_R3.

Considering the observation of the subsequent time step, at 00:00 on 5 March 2021,
the observed and model predicted Rs were 49.93% and 50.44%, respectively. The observed
TB_R3 and TB_R2 values still belong to the range marked by the red dotted box in Figure 9a.
The force plot of data observed at 00:00 on 5 March 2021 in Figure 8b shows that the
observed values of TB_R3 = 0.9556 NTU and TB_R2 = 3.054 NTU had the highest effect on
model performance. It was estimated that the model exhibited good performance at this
observation because the observation at 00:00 on 5 March 2021 was within the range of the
distribution for the previous observation used for the training.

The influence of an input variable on the model’s performance is also explained
using the SHAP dependence analysis (Figure 10). Regarding the SHAP dependency plot,
the x-axis and the first y-axis represent the observed value of an input variable and the
corresponding SHAP value of the input variable, respectively. The second y-axis represents
the observed value of the interaction variable. Figure 10 shows that the SHAP value of
TB_R3 decreased as TB_R3 increased. This relationship demonstrates that an increase in
the observed TB_R3 value had a negative effect on the model prediction value, where the
corresponding observed value of TB_R2 also increased.
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Figure 10. SHAP dependence plot of the input variables.

4. Conclusions

In this study, the recovery rate of water quality in a water treatment plant after
disturbance to the water treatment process was defined and an XGB model was developed
to predict the recovery rate. Based on the definition of the recovery rate, a pretreatment
process for the input data was used to improve the model’s performance. Considering the
pretreatment process, the rising limb of turbidity was selectively removed from the training
data used for the model’s development. Nevertheless, no pretreatment was applied to the
data used to test the model’s performance. A considerable improvement in the model’s
performance was observed with pretreatment of the input variables compared to the
model’s performance without pretreatment. NSE, RMSE, and RSR improved from 0.467 to
0.860, 10.310 to 5.280, and 0.730 to 0.374, respectively, in the model with pretreatment.

Moreover, a novel XAl method was used to interpret the model’s performance. The
analysis of model performance using the SHAP values for and the target plots of the training
input variables provided a reasonable interpretation of the model’s prediction results.

The results obtained in this study demonstrate the applicability of a machine learn-
ing model for recovery prediction in water treatment processes after malfunctions. The
importance of pretreatment of the data used in the model’s development, considering
the characteristics of the input variables, has also been emphasized. The methodological
approach presented in this study provides a useful approach for more stable and efficient
management of water treatment systems.

Author Contributions: Conceptualization, ].P. (Jungsu Park), Y.Y. and J.P. (Jaehyeoung Park); method-
ology, J.P. (Jungsu Park), Y.Y. and J.P. (Jachyeoung Park); software, J.P. (Jungsu Park); investigation,
J.P. Jungsu Park), J.A., ] K., Y.Y. and J.P. (Jaehyeoung Park); data curation, J.P. (Jungsu Park), J.A. and
J.K.; writing—original draft preparation, J.P. (Jungsu Park); writing—review and editing, J.P. (Jungsu
Park), Y.Y. and ].P. (Jaehyeoung Park); supervision, ].P. (Jachyeoung Park); project administration, J.P.
(Jaehyeoung Park); funding acquisition, J.P. (Jaehyeoung Park). All authors have read and agreed to
the published version of the manuscript.

Funding: (1). This work was supported by Korea Environment Industry & Technology Institute(KEITI)
through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Pro-
gram(or Project), funded by Korea Ministry of Environment(MOE)(2022002870001)(60%); (2). This
work was supported by Korea Environment Industry & Technology Institute(KEITT) through En-
vironmental R&D Project on the Disaster Prevention of Environmental Facilities Project, funded
by Korea Ministry of Environment(MOE)(2019002870001) (30%); (3). This work was supported by
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2020R1G1A1008377) (10%).

Conflicts of Interest: The authors declare no conflict of interest.



Water 2022, 14, 2423 13 of 14

References

1.  Davis, C.A. Water system service categories, post-earthquake interaction, and restoration strategies. Earthq. Spectra 2014,
30, 1487-1509. [CrossRef]

2. Matthews, J.C. Disaster resilience of critical water infrastructure systems. J. Struct. Eng. 2016, 142, C6015001. [CrossRef]

3. WHO. Emergencies and Disasters in Drinking Water Supply and Sewage Systems: Guidelines for Effective Response; Pan American
Health Organization: Washington, DC, USA, 2002; pp. 5-12.

4. Park,]; Park, J.-H.; Choi, ].-S; Joo, ].C.; Park, K; Yoon, H.C.; Park, C.Y.; Lee, W.H.; Heo, T.-Y. Ensemble model development for
the prediction of a disaster index in water treatment systems. Water 2020, 12, 3195. [CrossRef]

5. Shamsuzzoha, M.; Kormoker, T.; Ghosh, R.C. Implementation of water safety plan considering climatic disaster risk reduction in
Bangladesh: A study on Patuakhali Pourashava water supply system. Procedia Eng. 2018, 212, 583-590. [CrossRef]

6. Gaya, M.S,; Zango, M.U,; Yusuf, L.A_; Mustapha, M.; Muhammad, B.; Sani, A.; Tijjani, A.; Wahab, N.A.; Khairi, M.T.M. Estimation
of turbidity in water treatment plant using Hammerstein-Wiener and neural network technique. Indones. |. Electr. Eng. Comput.
Sci. 2017, 5, 666—672. [CrossRef]

7.  Iglesias, C.; Martinez Torres, J.; Garcia Nieto, PJ.; Alonso Fernandez, J.R.; Diaz Muiiiz, C.; Pifieiro, J.I.; Taboada, J. Turbidity
prediction in a river basin by using artificial neural networks: A case study in northern Spain. Water Resour. Manag. 2014,
28,319-331. [CrossRef]

8.  Chen,],; Liu, L.; Pei, J.; Deng, M. An ensemb]e risk assessment model for urban rainstorm disasters based on random forest and
deep belief nets: A case study of Nanjing, China. Nat. Hazards 2021, 107, 2671-2692. [CrossRef]

9.  Santos, L.B.L.; Londe, L.R.; de Carvalho, T.].; Menasché, D.S.; Vega-Oliveros, D.A. Towards Mathematics, Computers and Environment:
A Disasters Perspective; Springer: Berlin/Heidelberg, Germany, 2019; pp. 185-215.

10. Inoue, J.; Yamagata, Y.; Chen, Y.; Poskitt, C.M.; Sun, J. Anomaly detection for a water treatment system using unsupervised
machine learning. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans,
LA, USA, 18-21 November 2017; pp. 1058-1065.

11.  Abba, S.I; Pham, Q.B.; Usman, A.G.; Linh, N.T.T,; Aliyu, D.S.; Nguyen, Q.; Bach, Q.-V. Emerging evolutionary algorithm
integrated with kernel principal component analysis for modeling the performance of a water treatment plant. J. Water Process
Eng. 2020, 33, 101081. [CrossRef]

12.  Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13-17 August 2016; pp. 785-794.

13. Gitis, V.; Hankins, N. Water treatment chemicals: Trends and challenges. J. Water Process Eng. 2018, 25, 34-38. [CrossRef]

14. Ghaffarian, S.; Emtehani, S. Monitoring urban deprived areas with remote sensing and machine learning in case of disaster
recovery. Climate 2021, 9, 58. [CrossRef]

15.  Sheykhmousa, M.; Kerle, N.; Kuffer, M.; Ghaffarian, S. Post-disaster recovery assessment with machine learning-derived land
cover and land use information. Remote Sens. 2019, 11, 1174. [CrossRef]

16. Ghandehari, S.; Montazer-Rahmati, M.M.; Asghari, M. A comparison between semi-theoretical and empirical modeling of
cross-flow microfiltration using ANN. Desalination 2011, 277, 348-355. [CrossRef]

17. Li, L; Rong, S.; Wang, R.; Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis
and process control in drinking water treatment: A review. Chem. Eng. J. 2021, 405, 126673. [CrossRef]

18. O'Reilly, G.; Bezuidenhout, C.C.; Bezuidenhout, J.J. Artificial neural networks: Applications in the drinking water sector. Water
Supply 2018, 18, 1869-1887. [CrossRef]

19. Zhang, K.; Achari, G.; Li, H.; Zargar, A.; Sadiqg, R. Machine learning approaches to predict coagulant dosage in water treatment
plants. Int. . Syst. Assur. Eng. Manag. 2013, 4, 205-214. [CrossRef]

20. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527-1554. [CrossRef]
[PubMed]

21. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115-133.
[CrossRef]

22.  Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel, 21-24 June 2010.

23. Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020,
249, 126169. [CrossRef]

24. Wang, L.; Zhu, Z.; Sassoubre, L.; Yu, G.; Liao, C.; Hu, Q.; Wang, Y. Improving the robustness of beach water quality modeling
using an ensemble machine learning approach. Sci. Total Environ. 2021, 765, 142760. [CrossRef]

25. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189-1232. [CrossRef]

26. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146-3154.

27.  Sutton, C.D. Classification and regression trees, bagging, and boosting. Handb. Stat. 2005, 24, 303-329.

28. Dunnington, D.W.,; Trueman, B.F,; Raseman, W.J.; Anderson, L.E.; Gagnon, G.A. Comparing the Predictive performance,

interpretability, and accessibility of machine learning and physically based models for water treatment. ACS ES&T Eng. 2020,
1, 348-356.


http://doi.org/10.1193/022912EQS058M
http://doi.org/10.1061/(ASCE)ST.1943-541X.0001341
http://doi.org/10.3390/w12113195
http://doi.org/10.1016/j.proeng.2018.01.075
http://doi.org/10.11591/ijeecs.v5.i3.pp666-672
http://doi.org/10.1007/s11269-013-0487-9
http://doi.org/10.1007/s11069-021-04630-y
http://doi.org/10.1016/j.jwpe.2019.101081
http://doi.org/10.1016/j.jwpe.2018.06.003
http://doi.org/10.3390/cli9040058
http://doi.org/10.3390/rs11101174
http://doi.org/10.1016/j.desal.2011.04.057
http://doi.org/10.1016/j.cej.2020.126673
http://doi.org/10.2166/ws.2018.016
http://doi.org/10.1007/s13198-013-0166-5
http://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://doi.org/10.1007/BF02478259
http://doi.org/10.1016/j.chemosphere.2020.126169
http://doi.org/10.1016/j.scitotenv.2020.142760
http://doi.org/10.1214/aos/1013203451

Water 2022, 14, 2423 14 of 14

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018,
6, 52138-52160. [CrossRef]

Arrieta, A.B.; Diaz-Rodriguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lépez, S.; Molina, D.; Benjamins,
R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AL
Inf. Fusion 2020, 58, 82-115. [CrossRef]

Park, J.; Lee, WH.; Kim, K.T; Park, C.Y,; Lee, S.; Heo, T.-Y. Interpretation of ensemble learning to predict water quality using
explainable artificial intelligence. Sci. Total Environ. 2022, 832, 15507. [CrossRef]

Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Conference on Neural
Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017; pp. 4768—-4777.

Shin, Y,; Kim, T.; Hong, S.; Lee, S.; Lee, E.; Hong, S.; Lee, C.; Kim, T.; Park, M.S.; Park, J.; et al. Prediction of chlorophyll-a
concentrations in the Nakdong River using machine learning methods. Water 2020, 12, 1822. [CrossRef]

Uddameri, V; Silva, A.L.B.; Singaraju, S.; Mohammadi, G.; Hernandez, E.A. Tree-based modeling methods to predict nitrate
exceedances in the Ogallala aquifer in Texas. Water 2020, 12, 1023. [CrossRef]

Wang, F.; Wang, Y.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H. Spatial heterogeneity modeling of water quality based on random
forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [CrossRef]

Zhang, D.; Qian, L.; Mao, B.; Huang, C.; Huang, B.; Si, Y. A data-driven design for fault detection of wind turbines using random
forests and XGboost. IEEE Access 2018, 6, 21020-21031. [CrossRef]

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

XGBoost. Available online: https:/ /pypi.org/project/xgboost/ (accessed on 1 July 2021).

Bennett, N.D.; Croke, B.EW.; Guariso, G.; Guillaume, ].H.A.; Hamilton, S.H.; Jakeman, A.].; Marsili-Libelli, S.; Newham, L.T.H.;
Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1-20.
[CrossRef]

Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885-900. [CrossRef]

Hellen, N.; Marvin, G. Explainable Al for safe water evaluation for public health in urban settings. In Proceedings of
the International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh,
26-27 February 2022; pp. 1-6.


http://doi.org/10.1109/ACCESS.2018.2870052
http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.1016/j.scitotenv.2022.155070
http://doi.org/10.3390/w12061822
http://doi.org/10.3390/w12041023
http://doi.org/10.1016/j.envres.2021.111660
http://doi.org/10.1109/ACCESS.2018.2818678
https://pypi.org/project/xgboost/
http://doi.org/10.1016/j.envsoft.2012.09.011
http://doi.org/10.13031/2013.23153

	Introduction 
	Materials and Methods 
	Pilot Plant Operation 
	Model Development 
	Definition of the Recovery Rate 
	Operation Scenario 
	Data Split for the Training and Testing of the Model 
	Input Variables 
	Pretreatment of the Input Variable 
	Post-Treatment of Machine Learning Results 

	Machine Learning Model Selection 
	Model Evaluation 
	XAI for Model Interpretation 

	Results and Discussion 
	Water Quality of the Pilot Plant 
	Model Prediction of Recovery Rate 
	Explainable Artificial Intelligence for Model Interpretation 
	SHAP 
	Exploratory Data Analysis with SHAP 


	Conclusions 
	References

