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Abstract: For the investigation of landslide mass movement scenarios through numerical simulation,
a well-defined released mass and a precise initial source area are required as prerequisites. In
the present study, we present a genetic algorithm-based approach for preliminarily assessing the
landslide scarp when the local field data are limited, using an ellipse-referenced idealized curved
surface (ER-ICS)—a smooth surface constructed with respect to an ellipse. According to a specified
depth at the center, there are two distinct curvatures along the major and minor axes, respectively. To
search for the most appropriate ICS, the reference ellipse is translated, rotated, and/or side-tilted
to achieve the optimal orientation for meeting the best fitness to the assigned condition (delineated
area or failure depths). The GA approach may significantly enhance the efficiency, by reducing the
number of candidate ICSs and notably relaxing the searching ranges. The proposed GA-ER-ICS
method is examined and shown to be feasible, by mimicking the source area of a historical landslide
event and through application to a landslide-prone site. In addition to evaluating the fitness of the
ICS-covered area with respect to the source scarp, the impacts of various ICSs on the flow paths are
investigated as well.

Keywords: genetic algorithm (GA); landslide-prone area; landslide scarp assessment; ellipse-referenced
idealized curved surface (ER-ICS); flow paths; scenario investigation

1. Introduction

From the viewpoint of hazard assessment or disaster mitigation, the core concerns
are the plausible threats to residents and potential damage to infrastructure. Over the
years, researchers have proposed various empirical laws (e.g., [1–3]) and physics-based
numerical simulation tools (e.g., [4–7]) in order to delineate landslide-susceptible hazard
zones. With either of these approaches, the volume of the released mass and the location of
the possible failure surface are prerequisites for the evaluation process. However, predicting
the released landslide volume and estimating the failure surface are highly challenging,
due to high uncertainty caused by the complexity of spatial geological and hydrological
variations. At the same time, weathering effects and the material composition at sites are
also generally inhomogeneous (e.g., [8,9]).

With the rapid development of UAVs and modern remote sensing techniques (e.g.,
LiDAR, UAV-LiDAR, SAR, InSAR, and UAV-SAR), high-resolution digital elevation mod-
els (DEMs) have become popular, in which detailed topographic features can be well-
recognized. Furthermore, with expensive and time-consuming geological field surveys,
the scar boundaries of landslide-prone areas can be estimated and delineated, with re-
spect to some specific features (e.g., crowns, bulges, trenches, or fissures). Based on the
DEM, a geometric interpretation method—namely, the Sloping Local Base Level (SLBL)
method—has been suggested by Jaboyedoff et al. [10,11] for the approximation of a 3D
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failure surface, which possesses a constant second derivative in the down-slope direction
(i.e., a parabolic curve in section view). Besides the SLBL approach, Reid et al. [12,13]
have proposed a spherical surface for analyzing the slope stability of a 3D stratovolcano
edifice. Considering the spatial geological structure and groundwater patterns, the concept
of spherical failure surfaces has been adopted and extended in the open-source software
Scoops3D (see, e.g., [14,15]). Tun et al. [16] have further applied Scoops3D for calculating
the probability of multiple failures, where a genetic algorithm (GA) with the first-order
reliability method (FORM) was utilized.

For a well-defined landslide scarp area, Kuo et al. [17] have proposed a smooth
minimal surface (SMS) method to approximate the failure surface by a smooth surface,
where the constructed fracture surface is determined according to the minimal surface
area, with the prerequisites of a given landslide volume and a convex polygon-outlined
region. Instead of fitting the scarp boundary, Tai et al. [18] suggested the concept of using
an idealized curved surface (ICS) to mimic the fracture surface for numerical simulation,
where the ICS is defined by two distinct curvatures in the down-slope and cross-slope
directions, respectively (cf. Figure 1b). As the ICS approach does not request an exact fitness
to the assigned area (source area or delineated area), a search process is needed to find the
most appropriate ICS. Motivated by the ellipticity of landslide shapes [19], and for ease of
proceeding with the search process, Ko et al. [20] have utilized an ellipse with a specified
depth to represent the corresponding ICS (ellipse-reference ICS; ER-ICS), where the depth
is used to determine the landslide volume. In the search process, the optimal reference
ellipse is selected, with respect to the best fitness to the assigned area, through translation,
rotation, and/or side-tilting (cf. Figure 2). The ER-ICS search process is an exhaustive
method considering all the candidate ICSs, where the associated depth is determined by
the assigned volume. Due to the non-trivial topography, the reference ellipse-covered area
varies for different orientations, such that the determination of depth should be repeated
for each candidate ICS. Therefore, the search process is rather time-consuming, limiting
the search range. Taking the ICS-D in Ko et al. [20] as an example, the search range
covers 7× 7 grids for the top and bottom vertices, yielding 10,633 candidate ellipses with
corresponding ICSs to be evaluated. Hence, an efficient method, which either reduces
the number of candidate ellipses or enhances the computational performance, is highly
desirable. Accordingly, a genetic algorithm (GA) [21–24] can provide an optimal solution
for reducing the number of candidate ellipses.

Figure 1. Ellipse-referenced idealized curved surface (ER-ICS): (a) The reference ellipse with major
axis L1 and minor axis L2; (b) The constructed ICS with respect to a depth dE below the middle point;
(c) Section view of the ICS along the major axis, where dm cos θ = dE with inclination angle θ.
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Figure 2. To search for the optimal ellipse, the reference ellipse is (a) translated, (b) rotated, and/or
(c) side-tilted.

From the viewpoint of engineering applications, a genetic algorithm (GA) is an opti-
mization tool utilizing an iterative process. It delivers solutions through the use of evolution
operators such as mutation, crossover, and selection [24]. In the present study, the “canoni-
cal genetic algorithm” (cf. [21,23,24]) is adopted for the search process; that is, the initial
population is generated with the first reference ellipse mapping within the assigned search
ranges of parameters randomly. The parameters determining the orientation of the refer-
ence ellipse comprise the genes. Each constructed ICS is evaluated based on the fitness
function, and then assigned a fitness value. The selection process follows the method of
roulette wheel selection [24], where the possibility of being selected is proportional to fitness
(also known as fitness proportionate selection). After the selection process, recombination
(crossover) of the genes (parameters determining the orientation of the reference ellipse) is
conducted for breeding the populations of the next generation, where mutation is allowed
with a slight possibility (generally ≤1%).

In addition to the GA approach, a manipulation treatment is introduced to isolate
some redundant portion(s) of the ICS-covered area, as the complex topography may induce
the inclusion of unexpected regions in the neighborhood of the target area. The redundant
part can be automatically isolated without additional manual operation, through utilization
of Erosion and dilation operations in morphological image processing (e.g., [25]). This
manipulation treatment may retain an ICS whose main portion has good fitness, while
removing the redundant part(s).

The feasibility and applicability of the GA-ER-ICS approach are investigated through
the validation of a historical landslide event and application to a plausible failure surface,
based on the measured failure depths in a landslide-prone area. In terms of the fitness of
the target area, the convergence of the employed GA approach is examined, considering
the number of generations. The application to landslide-prone areas demonstrates another
advantage of the GA-ER-ICS approach, in that the failure surface can be mimicked in a
flexible manner for various scenarios. All of the selected ICSs with the corresponding
released volumes of landslide mass are integrated into a GPU-accelerated simulation tool
(MoSES_2PDF [26]), in order to investigate the impacts of various ICSs on their consequent
flow paths.

The remainder of this manuscript is structured as follows. In Section 2, the construction
of ellipse-referenced ICS is reviewed, where the manipulation approach for isolating the
redundant portion of the ICS-covered area is detailed. In Section 3, the employment of
the GA procedure is elaborated. The procedure of the GA-ER-ICS searching process is
given in Section 4. Numerical investigations and the application to a landslide-prone
area are discussed in Section 5. The key features of the proposed GS-ER-ICS approach
and its potential for engineering applications are summarized and highlighted in the
concluding remarks.
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2. Ellipse-Referenced Idealized Curved Surface (ER-ICS)
2.1. Construction of the ER-ICS

The ICS concept was first suggested to replicate the failure surface of a sliding-type
landslide in Tai et al. [18]. As the ICS is characterized by two constant curvatures in the
down- and cross-slope directions, respectively, Ko et al. [20] used an ellipse with a specified
depth to construct the ICS; that is, the Ellipse-Referenced Idealized Curved Surface (ER-
ICS). As shown in Figure 1a, AB (with length L1) denotes the major axis of the ellipse
along the down-slope direction, while CD (with length L2) represents the minor axis. Once
L1 and L2 are fixed, the ICS can then be constructed with respect to a specified depth,
dE, where the corresponding curvature radii (R1 and R2) are determined accordingly (cf.
panels b and c). In general, point A sits at the upper part of the scarp area, point B is at
the lower part, and the length L2 of CD determines the width of the site. Once the ICS is
constructed, the landslide volume can be calculated based on the DEM; that is, the reference
ellipse defines the orientation and location of the ICS, while the depth determines the two
curvatures and the associated landslide volume.

For each reference ellipse, the corresponding depth is determined in accordance with
an assigned prerequisite, such as the released volume of mass or a specific failure depth at
some location. Hence, it takes time to find the covariant depth for each reference ellipse.
There may be thousands of reference ellipses for one site, where each ellipse yields an
ICS and serves as a candidate. To construct the most appropriate ICS, Ko et al. [20] have
suggested trying various locations/orientations of the ellipse (i.e., translating, rotating,
or side-tilting the reference ellipse; cf. Figure 2), where four methods (methods A–D) were
considered and evaluated. In the present study, method D in Ko et al. [20] is employed,
in which, in addition to translation, rotation, and/or side-tilting, the RE is allowed to
stretch or shrink slightly, while keeping the area of the RE invariant. Even though the
area of the ellipse is fixed, thousands of candidate ICSs still have to be constructed. If not
additionally specified, the most appropriate ICS is the one with the minimal deviation
index, calculated as:

ΛS =
|AICS − AICS∩sa|+ |Asa − AICS∩sa|

Asa
, (1)

which indicates the deviation of the ICS-covered area from the source (target) area (cf. [20]).
In (1), AICS denotes the ICS-covered area, Asa is the source (target) area, and AICS∩sa
represents their intersection.

2.2. Manipulation of the ER-ICS-Covered Area

Due to the complex topography, the constructed ICS might intersect the neighboring
hill and include some additional unexpected area. An example can be seen in Figure 3a,
in which the blue area indicates the source (target) area and the red dot line depicts the
outline of the ICS-covered area. A sizable unexpected area, indexed by “II”, can be seen on
the right-hand side. Figure 3b shows the section view of the dashed line in panel a, where
the portion in tawny color indicates the ICS-determined landslide body of interest, while
the intersected part of the unexpected portion (II) is marked in yellow. This unexpected
portion can be seen as redundant and is usually isolated manually (e.g., as in [20]), which
is highly time-consuming and could differ between individuals. Here, a manipulation
process (morphological process), on the basis of the OpenCV software [27], is introduced in
order to segment and isolate the redundant section(s) automatically.

The manipulation process consists of two operations: Erosion and Dilation. The Ero-
sion process shrinks the area through a local minimum over the area of a given kernel K
(e.g., an n× n matrix or a circle). It replaces the image pixels (grid) in the anchor point
(center of K) with the local minimum. The Dilation process extends the area shrunk in
the Erosion process by determining the local maximum for the anchor point over the
kernel-covered area. In the present study, the kernel K is set using a 3× 3 matrix, which is
scanned over the whole DEM in the erosion and dilation operations (cf. Figure 3). Letting
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the grids within the ICS-covered area be indexed by 1 and 0 set for those in the rest of the
area (i.e., as a mask), one can divide the connected areas into several blocks by carrying
out the Erosion operation several times, in order to isolate the redundant one(s). After that,
the resultant mask for the major scarp area is retained and recovered through several runs
of the Dilation operation. Figure 3c depicts the eroded area(s) after five operations, where
the redundant portion (II) is separated from the primary area (I). The recovered major
scarp area is illustrated in Figure 3d, where six Dilation operations have been conducted.
It should be noted that the resultant scarp area is valid only when the ICS sits below the
topographic surface locally. The additional Dilation operation (versus the five Erosion op-
erations) is conducted to alleviate the cliffs possibly sitting at the boundary of the resultant
mask, if they exist.

Figure 3. Manipulation of the ICS-covered area. The blue area represents the source (target) area, and
the preliminary ICS-covered area is shown in aqua-blue. (a) The initial ICS-covered area is marked by
the red dotted line and divided into two portions (I and II); (b) Section view along the white dashed
line in panel (a); (c) Outlines of the two portions after Erosion operations; (d) The resultant mask of
the target portion after Dilation operations.

3. Genetic Algorithm Approach

For high efficiency in the search process, a genetic algorithm (GA) is employed (see,
for example, [22–24,28]). Together with the GA approach, determination of the failure
depth (i.e., dE, as indicated in Figure 1b) is implemented based on the CUDA structure
(cf. [29]) for high-performance GPU computation. A GA is a search process, which is
generally used to generate an optimal solution under a given context. The approach used
here is composed of two parts: the first consists of decoding the genes which determine the
candidate solutions (i.e., the orientation of the reference ellipse; RE), while the second part
involves the fitness function, which is used to evaluate the corresponding performance.
In this study, the genes used for constructing the RE are (δx, δy, δθ, δL1), where δx and δy
denote translations, δθ denotes rotation, and δL1 represents stretching/shrinking of the
reference ellipse. Each reference ellipse is associated with a depth, in order to construct the
ICS and meet the assigned landslide volume. If not additionally specified, the deviation
index, ΛS—defined in (1)—represents the fitness (i.e., serves as a fitting function) between
the ICS-covered area and the target area.
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In the GA search process, thirty ICSs (population size) are constructed in each gen-
eration. During each successive generation, the better-fitted ICSs (i.e., those with smaller
deviation index) are selected to breed the next generation through genetic crossover and
mutation. The DNA size is 12, and the rates for crossover and mutation are 0.8 and 0.01,
respectively. Figure 4 illustrates the framework of the GA-ER-ICS search process. Each ICS
is constructed in the GPU section, where the depth is determined based on the assigned
volume and the given genes for the orientation of the RE. The GA procedure in the CPU
section evaluates the fitness and provides the genes through crossover and mutation op-
erations. We experimentally determined that a plateau of fitness was reached after circa
10 generations. As this result might depend on the size of the search range of genes, we
set 10 and 15 generations as the termination criteria for GA-ER-ICS construction in the
following numerical investigation and site application, respectively.

Figure 4. The framework of the GA-ER-ICS search process, in which the ICSs are constructed in the
GPU section and the GA is operated in the CPU section.

4. Procedure of the GA-ER-ICS Search Process

The search process consists of four main stages: (1) Preparation; (2) Input and parame-
ter setting; (3) ER-ICS construction; and (4) GA process, termination, and results output.

Stage 1: Preparation and determination of the initial reference ellipse

Based on the source area (post event) or the delineated area of the landslide-susceptible
zone, four starting reference points are assigned to determine the initial reference ellipse
(RE) on the DEM (cf. Figure 5a). In general, these four reference points indicate the length
and width of the target area. The highest and lowest points (in elevation) compose the
major axis of the initial RE, while the length of the minor axis is determined by regression
for a minimal root mean square (RMS), with respect to the other two reference points.

Stage 2: Input and parameter setting

In this stage, the ranges of the genes (δx, δy, δθ, δL1) are given, and the size of the
population in each generation, as well as the termination criterion (the number of genera-
tions), must be assigned. With the initial RE determined in Stage 1, the initial population is
randomly generated within the range of the genes.

Stage 3: ER-ICS construction

For each RE in the initial population (or the replaced population of the evolution), the
individual depth is determined according to the assigned released volume, which can be
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given by assignment or through the use of a volume–area empirical relation, as suggested
in, for example, [17,18,30]. As each RE is associated with one most appropriate ICS, this
process (including the manipulation process introduced in Section 2.2) is highly time-
consuming. It is, therefore, conducted in the GPU section (cf. Figure 4). Once all the ICSs
are constructed, the GPU section returns the corresponding sets of genes and DEMs to the
CPU section.

Stage 4: GA process, termination, and results output

The fitness of all determined ICS (DEMs) is evaluated based on the deviation index
ΛS given in (1), in the case where the source/target area is available. On the other hand,
when the evaluation is based on the specified failure depth(s), the fitness is computed
based on the root mean square (RMS) between the ICS and the specified depth(s). In
both cases, a smaller value of the fitness index (i.e., ΛS or RMS) indicates better fitness.
As illustrated in Figure 4, the next generation is bred as the new population, until the
termination criterion (i.e., the maximum number of generations) is fulfilled. The best-fitted
ICS in the last generation is considered the most appropriate ICS in the GA search process.

Figure 5. The shape and depth distribution of the initial landslide mass: (a) The measured data in
the main source area, where the four red points stand for the starting reference points and the red
line represents the initial reference ellipse; (b) The ICS constructed by the method-D in [20]; (c) The
best-fitted ICS in condition GA-I (i.e., GA-Ib); (d) The best-fitted ICS in condition GA-II (i.e., GA-IIb);
(e) The best-fitted ICS in condition GA-III (i.e., GA-IIIb); (f) The best-fitted ICS in condition GA-IV
(i.e., GA-IVa).

5. Numerical Investigation and Application in a Landslide-Prone Area

The performance of the proposed GA-based ER-ICS (GA-ER-ICS) method, in terms
of constructing a plausible failure surface, was investigated against a historical large-
scale landslide event, and a trial application was arranged in a landslide-prone area. The
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historical event was the Hsiaolin landslide, triggered during typhoon Moratok in 2009 in
southern Taiwan. Due to its huge scale, severe damage (more than 450 victims), and unique
characteristics, the 2009 Hsiaolin landslide has become one of the most representative
deep-seated landslides worldwide, for which ample well-documented data are available.
For further details, the readers are referred to [31–37]. The DEM and initial conditions used
in [32,38] were employed in the numerical investigation. Note that only the main source
area listed in Kuo et al. [32] was taken into account when mimicking the failure surface,
as it provides more than 94% of the total landslide mass.

For application of the GA-ER-ICS method to a landslide-prone area, we assigned a
potential large-scale landslide area named Kuanghua-T002, located in Taoyuan county,
northern Taiwan. As creeping movements have been detected in this area for years, three
inclinometers (indexed by K18-1BW, K18-2BW, and K19-1BW) had been installed. Both
K18-1BW and K18-2BW were broken on 31 May 2018, while K19-1BW was broken on 3
December 2019, due to local mass movements (cf. Chen [39]). The plausible outline of the
potential deep-seated landslide has been suggested and delineated in Chen [39].

The ranges of genes used in the GA procedure to search for the most appropriate
ICSs are listed in Table 1. Due to the complex topography in the neighborhood of the
target area, redundant areas were found and, so, the manipulation process was employed
for site Kuanghua-T002. For reference landslide volumes, we took the measured amount
(21,180,535 m3) in the Hsiaolin case and 348,581 m3 (estimated by the volume–area empirical
relation suggested in [30]) for the Kuanghua-T002 case. The consequent flow paths of
the released landslide masses were computed using a GPU-accelerated simulation tool
(MoSES_2PDF in [26]). The values of the material parameters used for computation were
identical to those presented in [20], as collected in Table A1. The following index:

Λpath =
|Apath

α − Apath
α∩β |+ |A

path
β − Apath

α∩β |

Apath
α∩β

, (2)

was introduced for quantitative investigation of the discrepancy of flow paths between
two scenarios. In (2), Apath

α∩β denotes the intersection (overlapped area) of the flow paths
between Scenarios α and β. In the scenario campaigns, the index ΛS quantifies the fitness
of the constructed ICS, while Λpath evaluates the difference between two ICSs (scenarios).

Table 1. Range of genes used in the GA for plausible ICS searches in the 2009 Hsiaolin event and site
Kuanghua-T002 cases.

(δx, δy, δθ, δL1) Manipulation Volume (m3)

Hsiaolin event (±8∆x, ±8∆y, ±15◦, ±8∆x) no 21,180,535
Kuanghua-T002 (±5∆x, ±5∆y, ±10◦, ±5∆x) yes 348,581

5.1. Numerical Investigation (The 2009 Hsiaolin Landslide)

With respect to the main source area of the 2009 Hsiaolin landslide, the most appro-
priate ICS was selected through the GA-ER-ICS search process. Here, the feasibility and
applicability are investigated in terms of three aspects: (a) Convergence with respect to the
number of generations; (b) the effectiveness of the side-tilting operation; and (c) the impacts
of the different coverages between ICSs on the consequent flow paths. The resolution of
the used digital elevation map (DEM) was 10 m (∆x = ∆y = 10 m), and the computational
domain was 3700× 2210 m2, where the projection of the main scarp on the horizontal plane
covered an area of 624,900 m2.

Four conditions for the GA-ER-ICS search process were arranged, and three runs for
each situation were carried out (cf. Table 2). The impact of the number of generations (i.e.,
10 or 15 generations) on the GA process was also investigated. The search processes with
side-tilting are indexed by GA-I and GA-II, in which the tilting angle was determined by
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the inclination of the minor axis of the reference ellipse to the horizon (i.e., the inclination
angle of CD, shown in Figure 1b). GA-I and GA-III used ten generations, while GA-II and
GA-IV used 15 generations. The constructed ICSs were compared with the main source
area. In addition, the most appropriate ICS (ICS-D) in Ko et al. [20], as determined by
method D, was included in the campaigns for comparison. We first focused on the fitness
of the landslide source area and the sensitivity of the ICSs constructed by the proposed
GA-ER-ICS approach under various conditions. After that, the consequent flow paths were
computed, with respect to the best-fitted ICSs. The flow paths were determined using the
moving mass-covered areas of 61 sets of results from 0.0 s to 181.83 s with an interval of
3.0305 s, where only areas with flow thickness greater than 10 cm were considered.

Table 2. Fitness of the ICSs under various conditions for the main source area in the 2009
Hsiaolin event.

Condition Run Generation Side-Tilting ΛS

ICS-D - - 28.72%

a 10 yes 30.05%
GA-I b * 10 yes 25.01%

c 10 yes 25.83%

a 15 yes 24.08%
GA-II b * 15 yes 24.05%

c 15 yes 24.24%

a 10 no 25.76%
GA-III b * 10 no 24.23%

c 10 no 29.12%

a * 15 no 24.15%
GA-IV b 15 no 25.52%

c 15 no 24.82%
* The best-fitted among the three runs.

5.1.1. Fitness to the Main Source Area

With respect to the starting reference points (the four red points marked in Figure 5a),
three runs were performed for each condition (GA-I to GA-IV). The performance of the
selected ICS was evaluated with respect to the fit to the measured source area, as indexed
by the value of ΛS defined in (1); see Table 2. A smaller value of ΛS indicates a better fit. As
the GA process does not guarantee identical results, the ΛS value varied with each run. It
was found that ten generations (GA-I and GA-III) did not provide satisfactory convergence
of fitness; however, a plateau of fitness is reached when the evolution terminated at
15 generations. Despite the small difference, inclusion of the side-tilting operation slightly
improved the fitness (see GA-I vs. GA-III and GA-II vs. GA-IV). Furthermore, it was found
that 10 of the resultant ICSs, among the 12 runs of the GA search process, presented better
fitness than ICS-D. The better performance of the GA approaches is possibly due to the
more considerable translation distance (i.e., ±8 grids in the GA approach versus ±3 grids
in the method of exhaustion). Together with its high efficiency, the proposed GA approach
is apparently superior to the exhaustive method.

The best-fitted ICSs in the four conditions (GA-Ib, GA-IIb, GA-IIIb, and GA-IVa) are
exhibited in Figure 5. The measured depth distribution of the released landslide mass
from the primary source area is shown in panel a, and its outline is depicted in all the
other panels for comparison. Panel b displays the ICS-D result. All the ICSs, including
ICS-D, yielded higher thickness than the measured data (cf. Figure 5). This phenomenon is
suspected to have been induced by two causes. The first is the smaller ICS-covered area,
such that a higher thickness of the initial landslide body is required to retain the constant
reference volume. The second reason could be that the ICS is a smooth surface, differing
from the natural failure surface, for which the local geological conditions may play a crucial
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role. Another interesting finding is that the GA-selected ICSs were rather similar, for which
the value of ΛS ranged from 24.05% (GA-IIb) to 25.01% (GA-Ib). It was also found that
the side-tilting operation did not significantly improve the performance with either 10 or
15 generations, if there were three runs for selection in each condition. Hence, the operation
of side-tilting was not employed for the application in a landslide-prone area (Section 5.2).

5.1.2. Impacts on Flow Paths

Ko et al. [20] have investigated the consequent flow paths of the ICS by comparing the
results computed with ICS-D against the results calculated using the measured landslide
scarp. The area discrepancy between the measured failure surface (FS) and ICS-D was
26.82% at the initial stage of initiation, which reduced to circa 9.5% for the computed results
at the rest state. Here, we focus on the discrepancy of the flow paths computed with the
selected ICSs. The differences between the initial areas and the discrepancy of the flow
paths are quantitatively denoted by the indices Λinit

path and Λpath, respectively (see Table 3).
In agreement with the illustration in Figure 5, where all the GA process-selected ICSs can
be seen to be rather similar, the values of Λinit

path were in the range from 4.13% to 6.90%
(cf. Table 3). With 15 generations, no significant discrepancy between GA-IIb (with side-
tilting) and GA-IVa (without side-tilting) could be identified, with respect to the initial
ICS-covered area and the consequent flow paths, where Λinit

path = 4.13% and Λpath = 3.87%.

Table 3. Comparison of the flow paths under various conditions for the 2009 Hsiaolin event.

Impacts ICS Λinit
path Λpath

GA-Ib vs. GA-IIIb 6.90% 10.52%side-tilting
GA-IIb vs. GA-IVa 4.13% 3.87%

GA-Ib vs. GA-IIb 5.38% 6.06%generation
GA-IIIb vs. GA-IVa 5.70% 7.77%

ICS-D vs. GA-Ib 15.08% 14.24%

Exhaustion vs. GA ICS-D vs. GA-IIb 14.77% 12.63%
ICS-D vs. GA-IIIb 12.84% 13.97%
ICS-D vs. GA-IVa 14.53% 13.13%

Among the four selected best-fitting ICSs (GA-Ib, GA-IIb, GA-IIIb, and GA-IVa),
the results computed with GA-Ib had the most significant discrepancy from the results,
compared with ICS-D, where Λinit

path = 15.08% and Λpath = 14.24%. Figure 6 depicts the
associated distinctions at the initial stage (panel a) and the flow paths (panel b). The four
red markers in panel a are the initial reference points in the search process, and the red
line outlines Hsiaolin village. It was found that most of the differences took place around
the source area, due to the shape discrepancy in the initial stage. For a thorough overview,
the flow paths of ICS-D, GA-Ib, GA-IIb, GA-IIIb, and GA-IVa were all collected, and are
displayed in a comparable way in Figure 7, in which the blue zone represents the shared
paths. The individual routes yielded by ICS-D, GA-Ib, GA-IIb, GA-IIIb, and GA-IVa are
shown in red, magenta, cyan, green, and yellow, respectively. Due to the minor distinction
between the source areas, only one of the two outlines is given in each comparison scenario.
We refer the readers to Figure A1 in Appendix B for the details of the outlines between the
source areas, in accordance with the sequence of Figure 7. As has already been elaborated
and illustrated in Figure A1e, the flow paths of GA-IIb and GA-IVa were very close,
with Λpath = 3.87%. Both of them were constructed using 15 generations in the GA process,
revealing that, with a sufficient number of generations for evolution, the effectiveness of
the side-tilting operation becomes insignificant. The data listed in Table 3 indicate that
the GA-ER-ICS method may deliver the selected ICSs with good convergence, in terms
of the flow paths. This convergence might benefit from the repetition of operations and a
sufficient number of generations for evolution in the GA search process.
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Figure 6. Orthophoto and landslide mass-covered areas in the computation, where cyan indicates
the overlapped area, the pink area is covered only by the results computed with the ICS-D, and the
area in dark-yellow is occupied only in the condition of GA-Ib. The red line denotes Hsiaolin village,
and the four red markers in panel a represent the initial reference points in the GA-ER-ICS search
process. (a) Initial stage; (b) Flow paths (Orthophoto: Courtesy of Serial Survey Office, Forestry
Bureau, Taiwan).

Figure 7. Flow paths in various conditions, where the blue represents the overlapping area. The red,
magenta, cyan, green, and yellow areas are covered only by results computed with ICS-D, GA-HL-Ib,
GA-HL-IIb, GA-HL-IIIb, and GA-HL-IVa, respectively. The brown dash-dotted lines outline the
source areas: (a) ICS-D; (b) GA-IIIb; (c) GA-IVa; (d) GA-Ib; (e) GA-IIb; (f) GA-IVa.

5.2. Application to a Landslide-Prone Area (Kuanghua-T002)

Based on the records of the three installed inclinometers (K18-1BW, K18-2BW, and K19-
1BW), three scenarios (A, B, and C) were designed, as listed in Table 4. In Scenario A,
the fitness evaluation is based on the failure depths recorded by gaging wells K18-1BW
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and K18-2BW. Only K19-1BW is considered in Scenario B, while the failure depths of
all three gaging wells are taken into account in Scenario C. In this application, the DEM
has a resolution of 5 m and the horizontal projection of the delineated source area is
32,325 m2. This is much smaller than the main source area in the Hsiaolin case, so we set
δx = δy = δL1 = ±5∆x in the GA-ER-ICS search process.

Table 4. Scenarios for the Kuanghua-T002 landslide-prone area.

Scenario Referenced Gaging
Well

ICS-Determined Failure Depth (m)
ΛS VTarget/VGuzzetti

K18-1BW K18-2BW K19-1BW

A K18-1BW & K18-2BW 5.68 24.98 (38.71) 23.36% 1.5

B K19-1BW (none) (14.08) 27.35 29.47% 1.0

C K18-1BW, K18-2BW &
K19-1BW 4.63 19.27 30.71 36.58% 1.0

Inclinometer
records - 5 25 27 - -

Note: Values in brackets are not for the fitness evaluation in the GA search processes.

Although local movement and failures have been detected by the inclinometers, they
did not take place at the same time, and the landslide body has not yet been ultimately
released. Hence, the exact volume of the landslide mass is not available for determining
the depth, as well as constructing the ICS. The reference volume for constructing the ICS
can basically be approximated by empirical laws based on the delineated source area,
such as Guzzetti’s empirical volume–area relation [30] or other similar laws, as detailed
in [17,18]. As the ICS-determined failure surface is required to be close to the records
of the inclinometers, with as sound a fitness to the delineated area (e.g., ΛS ≤ 40%) as
possible in the GA-search process, one may not always obtain satisfactory results. In such
circumstances, we can relax the constraint of the reference (target) volume; for example,
the reference volume VTarget in Scenario A was suggested as 1.5 × VGuzzetti for a more
satisfactory result. The best-fitting ICSs in Scenarios A, B, and C are listed in Table 4, where
the values in brackets were not taken into account when evaluating the fitness in the GA
search processes.

The best-fitting ICSs in Scenarios A, B, and C are illustrated in the left panels of Figure 8.
The yellow line depicts the outline of the delineated area, while the ICS-covered regions
are marked in an emerald-green color. In Figure 8a, the four red markers represent the
reference points for determining the first RE in the GA-ER-ICS search process. As reported
in Table 4, the discrepancy between the ICS-determined source area and the delineated one
was indexed by ΛS, whose value ranged from 23.36% to 36.58%. It is interesting to find that
the best-fitting ICS in Scenario A was found with a reference volume VA

Target/VGuzzetti = 1.5.
At the same time, it delivered the best fitness (ΛS = 23.36%) among these three scenarios.

The flow paths under the three scenarios were computed in accordance with the ICS-
determined source area. The computational domain covered 1275× 740 m2 and the DEM
had a resolution of ∆x = ∆y = 5 m. The simulation period was 101.0153 s, and the flow
paths were determined using the moving mass-covered areas of 51 sets of results from 0.0 s
to 101.0153 s, with an interval of 2.0203 s. Similar to the illustration of the flow paths in the
Hsiaolin event, only the areas covered by flow thickness of more than 10 cm were taken
into account when determining the flow paths. Figure 8d–f present the flow paths under
the three scenarios. The turquoise color indicates the overlapping area, while the green,
orange, and pink areas are covered only by the results computed in Scenarios A, B, and C,
respectively. As reported in Table 5, although the discrepancy between the ICS-covered
areas Λinit

path was more significant (ranging from 22.16% to 40.12%), the discrepancy for the
whole flow paths Λpath was reduced to less than 10%. We suspect that the channelized
topography diminished the discrepancy at the early stage.
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Figure 8. The delineated area (outlined by a yellow line), the ICS-covered area, and the consequent
flow paths, where the four red points in panel (a) are the initial vertices of the GA-ER-ICS search
process. The emerald-green indicates the ICS-covered area, the turquoise represents the overlapping
area, and the green, orange, and pink regions are covered only by the results computed under Scenarios
A, B, and C, respectively: (a) ICS-covered area in Scenario A; (b) ICS-covered area in Scenario B;
(c) ICS-covered area in Scenario C; (d) Computed flow paths in Scenarios A and B; (e) Computed
flow paths in Scenarios A and C; and (f) Computed flow paths in Scenarios B and C. (Satellite image:
http://mt0.google.com/vt/lyrs=s&hl=en&x=x&y=y&z={z} (accessed on 4 May 2022)).

Table 5. Comparison of flow paths between various scenarios.

Kuanghua-T002 Λinit
path Λpath

Scenarios A vs. B 22.16% 6.80%
Scenarios A vs. C 30.42% 8.93%
Scenarios B vs. C 40.12% 9.72%

Among the scenarios, the released mass in Scenario A was 50% more than those in
the other two scenarios. Still, the corresponding values of Λpath were not as notable as
the volume difference. In this regard, the volume of released mass seems not to be the
critical factor for the flow paths. On the other hand, the released volumes in Scenarios
B and C were identical, but the values of the associated Λinit

path and Λpath were dominant.
Nevertheless, the discrepancy in the campaign between Scenarios B and C reduced from
40.12% at the initial stage to 9.72% for the whole flow-flushed region, indicating that the
channelized topography in the downstream area plays a significant role in the consequent

http://mt0.google.com/vt/lyrs=s&hl=en&x=x&y=y&z={z}
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flow paths (see also [18]); that is, a considerable discrepancy at the initial stage may be
attenuated during the movement in a channelized topography. These findings reveal that
the flow paths are not sensitive to various ICSs under a channelized topography. In the
three scenarios, the simulated flow paths did not touch the houses sitting in the lower
right corner of Figure 8d–f. Although a more detailed study concerning various parameter
sets is needed, these results indicate that the buildings do not lie in the center of the flow
paths and, so, are at low risk. Such flow path investigations, using constructed ICSs under
various scenarios, might provide an excellent representative hazard assessment model for
landslide-prone areas.

6. Discussion and Concluding Remarks

In the present work, we outlined an efficient methodology integrating a GA approach
with the reference ellipse-ICS method, in order to mimic the plausible failure surface, as well
as estimate the scarp, for a landslide-prone area. The proposed method does not aim to
extract a precise estimation but, instead, to provide a preliminary assessment; especially
when no detailed field data are available. The reference ellipse-ICS method [20] utilizes the
reference ellipse to construct the ICS. However, the goodness-of-fit to the assigned targets
(e.g., shape of the area, failure depths) highly depends on the location and orientation of
the reference ellipse. As a matter of course, there are thousands of orientations (candidate
ICSs) to be evaluated for a target site, in order to determine the most appropriate ICS. The
GA process reduces the number of candidate ICSs by preserving the critical characteristics
of the ICS through the concept of evolution, such that one can practically employ a broader
range of parameters (treated as genes) in the search process.

For each assigned condition/scenario, the search operation was repeated three times,
and the best-fitted one was selected for simulation of the associated flow path. The fitting
ability of the constructed ICSs to the main source area of the 2009 Hisiaolin landslide was
numerically studied, and the effectiveness of the side-tilting operation and the convergence
against the number of generations were examined. It is interesting to note that all of the
GA-selected ICSs exhibited similar shapes, with deviation index ΛS ∈ [0.2405, 0.3005]. The
results also revealed that the side-tilting operation did not have a remarkable impact on
the fitness performance. In addition, it was found that a satisfactory ICS could be found
after ten generations among the three runs, although a more stable plateau of fitness was
obtained with 15 generations. In the investigation of flow paths, most of the discrepancy
took place in the early stage, and the presence of a channelized topography may attenuate
the impact of the difference between ICSs on the flow path.

Application of the proposed method to a landslide-prone area (Kuanghua-T002) ex-
hibited a representative example, concerning the utilization of the GA-ER-ICS method for a
preliminary hazard assessment, through the delineation of a potential zone without requir-
ing detailed geological structure or hydrological conditions as prerequisites. Based on the
records of installed inclinometers, three scenarios (Scenarios A, B, and C) were considered.
The GA-ER-ICSs were constructed and selected in accordance with the recorded failure
depths in the scenarios. It was found that simultaneously meeting the fitness of the target
area, failure depth(s), and the assigned volume of released mass is highly challenging.
Hence, some compromises (e.g., the fitness to the delineated area or the landslide volume)
may be needed. In the three scenarios, all of the ICS-covered areas deviated from the
delineated region, and were distinct from each other. Despite the clear distinction among
the ICS-covered zones, simulation of the landslide routes revealed that the consequent flow
paths were not sensitive under a channelized topography.

It is worth noting that the ICS is a preliminary approximation to the landslide scarp
and should be used for the purpose of scenario investigation by numerical simulation
when only limited field data are available. It is intended to make up for a deficiency,
instead of replacing conventional slope stability analyses. We should admit that there
is inevitably a notable discrepancy between the smooth ICS and the non-trivial natural
failure surface. Nevertheless, our investigations support the fact that this discrepancy does
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not significantly influence the consequent flow paths (see also [18,20]). The integration of
the GA approach with the ER-ICS method has significantly enhanced the efficiency of the
searching process. In comparison with the method of exhaustion (ER-ICS), the proposed
GA-ER-ICS may reduce the computational time from more than 20 hrs (for ICS-D) to circa
13.5 mins (e.g., for GA-IIb with 15 generations) with a PC (i7-9700 CPU@3.00 GHz×8, 64 GB
memory, Linux OS Ubuntu 18.04), when a GPU (NVIDIA GeForce TRX 2080Ti) is utilized.
It should be noted that, in the GA-ER-ICS process, a significantly more extensive translation
range (17× 17 grids) is taken into account in the search process, compared to that in the
exhaustive method (7× 7 grids for the ICS-D in [20]). The proposed GA-ER-ICS method
and the GPU-accelerated simulation tool [26] facilitate a highly efficient hazard assessment
system, which is currently under development. We intend to report updates on the system
in due time.
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Appendix A

In the GPU-accelerated simulation tool (MoSES_2PDF [26]), there are five material
parameters (αρ, δb, Cd, NR, ϑb) and one initial concentration, φs

0, for the flow body to be
set (cf. Tai et al. [38]). Here, αρ = ρ f /ρs is the density of the interstitial fluid to the solid
constituent, δb denotes the angle of basal friction of the solid constituent, Cd represents the
drag coefficient between the interstitial fluid and the solid constituent, NR is proportional
to the inverse viscosity (similar to the Reynolds number), and ϑb denotes the fluid friction
coefficient at the basal surface. It should be noted that the values of the material parameters
depend on the composition of the moving mass. The determination of their values requires
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further study, and is beyond the current scope of this paper. To enable a comparison with
the results provided in previous studies [18,20,38], identical values were adopted in the
investigation of the consequent flow paths, which are listed in Table A1.

Table A1. Material parameters and initial volume fraction used for computing flow paths.

Parameter αρ δb cD NR ϑb φs
0

Used value 1.42/2.6 16◦ 6.0 268 5.0 0.5

Appendix B

Figure A1. Outlines of the ICS-determined failure (source) areas used for computing the flow paths
in the corresponding panels in Figure 7.
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