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Abstract: The over-exploitation of coastal aquifers has led to seawater intrusion issues in many
parts of the globe; this problem, which is associated with water recharge deficit and anthropogenic
pollution, represents the main source of groundwater degradation in Santiago Island in the Republic
of Cape Verde’s archipelago. Brackish groundwater for agriculture and human consumption is
being provided to several areas on Santiago Island as the only type of available water. Chemical
and isotopic data obtained in three main groundwater systems were used in the characterization
of the groundwater resources and in the identification of the main source responsible for their
degradation. The obtained results indicate water–rock interaction as the major process responsible
for the groundwater quality reflecting its lithological composition. Carbonatite dissolution can
be partially responsible for the calcium increase along the groundwater flow path. Isotopic data
(δ2H, δ18O; 3H and 14C) combined with the water chemistry provided a wide characterization of
the groundwater recharge and identification of salinization processes (like seawater intrusion and
marine aerosols dissolution in different sectors of the island). In the eastern part of Santiago Island,
a different isotopic pattern (2H-18O) was observed in the groundwater samples, which was likely
ascribed to different climate conditions. Carbon-14 determinations indicate apparent groundwater
ages between 3.5 and 5.1 ka BP.

Keywords: stable isotopes; groundwater salinization; radiocarbon dating; semi-arid climate; Santiago
Island; Republic of Cape Verde

1. Introduction

Environmental isotope tracer methodologies have proved to be powerful tools in
different hydrogeological investigations, thus allowing for a better characterization of
groundwater systems as shown in different hydrogeological studies, namely in terms of
the:

(i) Identification of the origin of dissolved constituents in groundwaters related to sea-
water intrusion problems vs. salt dissolution—evaporitic minerals [1–7];

(ii) Quantification of mixing between different water types characterized by distinct
isotope signatures like groundwater age and age distribution [2,3,8];
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(iii) Identification of groundwater recharge under different climatic conditions (paleowa-
ters) [8,9];

(iv) Quantification of groundwater vulnerability to pollution [10,11], and
(v) Identification of the preferential elevation of recharge areas [12,13].

Additionally, the combined measurements of chemical parameters, jointly with sta-
ble (δ2H and δ18O) and radioactive (3H and 14C) isotopes, provided a powerful ap-
proach in numerous studies of the groundwater evolution along the flow path, as well as
recharge/discharge relationships [2,3,6,14–17].

Water resource systems have an essential place in the economic and social devel-
opment of any region in the globe, particularly in arid and semi-arid regions. The high
socioeconomic and ecological importance of groundwater systems and their significance as
a strategic resource is recognized as vitally important in many African countries, like in
the case of the Republic of Cape Verde. However, the available data and interpretation on
groundwater systems in African countries are sparse, and the current state of knowledge is
low, with serious limitations to the sustainable development of groundwater resources [18].
In addition, in coastal regions, groundwater exploitation is often vulnerable to seawater
intrusion issues, leading to processes of salinization that threaten the exploitation of addi-
tional water resources [5,19]. Salinization can be the result of connected processes related to
both seawater intrusion and water–rock interaction processes. Among them, the adsorption
of sodium by the aquifer matrix, with the release of calcium, is a process that is activated
when seawater intrusion occurs [12,20–22]. The incursion of seawater towards coastal
terrains is a widespread water resources problem all over the world, especially under the
threat of surface temperature increase and decrease in precipitation in the Mediterranean
regions, Middle East and North African countries.

The water quality issues have been described by different authors in different geo-
graphic and hydrogeological environments, reported from the European continent dealing
with brackish water such as in Portugal, Italy, Spain, France, Greece and Cyprus [2,16,23–29],
but also identified from Australia to Asia, South America and Africa [1,3,6,7,19,30–32]. Ad-
ditional issues can arise in karstic regions, as mentioned by Alexakis and Tasakisis [26,27]
in their investigations at Almyros karstic spring (Crete). According to these authors, karstic
springs in coastal areas present a different hydrological behavior, i.e., in karstic aquifers, the
populations are dealing with brackish water all year, with only a few days of good quality
water. Contributing to the increase in the water demand, the expansion of agricultural areas
and the excessive use of fertilizers represent an additional source of groundwater resources
salinization, where freshwater for the human supply becomes a scarce resource [6,31,33,34].
The relation between human activities and the increase of salinization of groundwater
resources is well noticed in the reuse of fresh water in agricultural activities [35–37].

The Republic of Cape Verde is composed of 10 volcanic islands (Figure 1a) and is
located about 500 km west of Senegal, Africa. Due to its proximity to the equator (15–17◦ N),
the air temperature varies seasonally by 5 ◦C throughout the year [38,39]. At Santiago
Island (Republic of Cape Verde), like in most African countries, the population is dependent
on groundwater for domestic and agricultural uses; this water is pumped from boreholes
or collected directly from springs and, in some areas, represents the only available water
source. Surface water resources on Santiago Island are almost nonexistent, and only offer
a few small dams and perennial streams [39]. According to data obtained in 2021 (last
survey) performed by the Cape Verde National Institute of Statistics (CENSO 2021, Instituto
Nacional de Estatística), the country has 505,044 inhabitants, of which about 266,161 live
on Santiago Island [40].
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(b) Location of the sampling points at Santiago Island.

At Santiago Island, the population lives in rural areas and derives its livelihood
from rain-fed agriculture. However, over the last two decades, farming activities have
been changing in the valley areas near the coastal line, places where banana and papaya
fields can be found. As a result of the intensification in agriculture, the monitoring of the
fresh–saltwater interface and the rate of exploration is being carried out by the Republic
of Cape Verde National Water Authority to avoid saltwater pumping. One of the actions
implemented by the local water authority is that no new boreholes are allowed to be drilled
near the coast, and the public boreholes are only allowed to work 2 to 3 h per day (for
agriculture and to supply the population). The increasing salinity and vulnerability to
pollution at Santiago Island aquifers encouraged the local government to seek external
assistance in the framework of bilateral cooperation between the Republic of Cape Verde
and Portugal. The groundwater salinity, its origin, and prevention are important compo-
nents for groundwater resource protection and management, especially in the context of
deterioration from pollution or overexploitation.

In this research, the two major challenges were: (i) to distinguish the main source
of mineralization of the groundwater systems (seawater intrusion vs. marine aerosols
dissolution); (ii) to estimate the mean groundwater residence time based on the radiocarbon
content and the tritium data. From this research, groundwater dating information allowed
Santiago Island groundwater to recharge in a different climatic scenario. With these goals,
sampling campaigns were carried out at Santiago Island, and groundwater was collected
to determine the chemical (major ions) and isotopic composition (δ2H, δ18O, 3H, and 14C)
of the selected water samples.

2. Climatology, Geological and Hydrogeological Setting
2.1. Climatology

Santiago Island is located in the southeastern part of the Republic of Cape Verde
archipelago and presents climatic features similar to the Sahel regions, with seasonal
changes related to the Inter-Tropical Front (ITF). The rain distribution is irregular and
mainly observed from July to October [38,39,41–43]. The precipitation distribution is
heterogeneous, varying from 50 mm/year along the coastal areas to 400–1000 mm/year at
the highest mountains, respectively (Serra da Malagueta and Pico da Antónia, Figure 1b).



Water 2022, 14, 2339 4 of 25

An important part of the precipitation is lost by evapotranspiration and runoff to the sea,
mainly linked to the topographical gradient and to the thin soil thickness. During the year,
the air temperature shows small fluctuations, around 5 ◦C between the mean winter season
(minimum value around 22 ◦C in February) and the mean summer season (maximum value
about 27 ◦C in September). The wind is rather constant all year, with north–northeast being
the predominant direction. The regular winds that cross the island play an important role
in the diffusion and transport of marine aerosols observed, particularly in the coastline
areas. Marine aerosols represent one possible source of salts for the increase of groundwater
systems mineralization. The wind regime throughout the year plays a more important role
in Cape Verde climate, more important than the Intertropical Convergence Zone (ITCZ).
As previously mentioned, the rainfall over Cape Verde, Santiago Island is concentrated
over three to four months and is responsible for more than 75% of the total precipitation on
the island, although the Intercontinental Convergence Zone plays an important role in the
atmospheric dynamics of the tropics and in the rainfall over West Africa [43]. According
to these authors, the rainfall is mostly related to the transient convective disturbances
associated with the frontal systems that cross the Atlantic and not with the Intercontinental
Convergence Zone or from squall lines from North Africa.

2.2. Geology and Hydrogeology

Santiago Island has a volcanic origin, being mainly composed of a volcano-stratigraphic
sequence first reported by Serralheiro in 1974 [44] and later improved by Matos Alves and
coauthors [45]. Three main geological units with hydrogeological interest were identified
on the island, namely:

(i) Pico da Antónia (PA) and (A) eruptive complex;
(ii) Monte das Vacas formation (MV), and
(iii) Sedimentary quaternary formations (a).

From the hydrogeological point of view, the most important reservoir of fresh water is
the eruptive complex of Pico da Antónia with terrestrial and submarine facies (pillow-lavas)
(Figure 2).
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Hydrogeological studies carried out on Santiago Island show that the storage coeffi-
cient of the Pico da Antónia and Eruptive Complex is relatively high when compared to the
other hydrogeological formations on the island [30,31,36]. The mean transmissivity values
presented by these authors range between 10−1 to 2 × 10−2 m2/s; the permeability of these
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layers avoids a rapid discharge of groundwater from these high-transmissivity aquifers,
which is compensated for by rapid recharge. The Pico da Antónia eruptive complex covers
an impermeable formation known as the Base Unit (CA/λρ/CB), which is composed of
the Ancient Internal Eruptive Complex (AIEC). The Ancient Complex Formation (CA) is
the oldest geological formation identified at Santiago Island (Upper Jurassic) and is mainly
represented by aphanitic rocks, mostly by basic dykes and phono-trachyte, sometimes with
intrusions of silicate granular rocks. This formation is visible in different parts of the island,
particularly in the great plateau depression between Pico da Antónia and Serra Malagueta.
This formation is made up of vertical or subvertical veins, representing a dense network
of basaltic veins, gabbroic granular rocks, syenites and sometimes carbonatites rocks [39].
The Flamengo and the Conglomerate-Breccia formation represent the two components
of the AIEC, which is characterized by a generalized degree of weathering and a high
rate of compactness and low permeability (Figure 2). According to Lobo de Pina [39], this
formation is in unconformity over the CA, consisting of the mantle, breccias, and basic
pyroclastics of great uniformity and is an extension of submarine nature. Locally pillow
lavas were identified. The outcrops of Flamengo formation occur mainly in valleys and
along streams.

The Pico da Antónia unit (PA) is responsible for the higher altitude reliefs found on the
island, but also for their main structural platforms. The PA unit is composed of products
of explosive and effusive subaerial and submarine activities that occurred at different
time periods [44]. According to this author, it is possible to identify sedimentary events
interspersed with magmatic episodes, but these are difficult to reconstruct. According to
Serralheiro [44], the terrestrial volcanic events are composed of pyroclastic and intercalated
flows, tuff breach, phonolites and trachytes. It should be mentioned that the Pico da
Antónia formation is well marked by lava and tuffs of high porosity representing the best
aquifers systems on the island [39]. The eruptive Complex Unit, also called “Formação da
Assomada” (A), has exclusively subaerial volcanic activity, such as lava flows with basaltic
facies and the scarce presence of pyroclasts [45]. The Monte das Vacas Unit (MV) is the most
recent volcanic record that can be found at Santiago Island. This unit is characterized by a
reduced-thickness MV formation and is made of very porous materials, such as basaltic py-
roclastic (tuffs, bombs, and slag) and small lava flows scattered throughout the island [39].
At Santiago Island, terrestrial and marine Quaternary formations abound, including allu-
vium deposits, terraces, slope deposits, dune sands and marine beaches. These formations
were identified at different altitudes [44,46], playing an important hydrogeological role,
particularly in large valleys, such as Ribeira Seca and Picos, due to their thicknesses greater
than 40 m [39].

The Santiago Island stratigraphy was established by Serralheiro and Matos Alves [44,45]
and comprised six units, including the old Eruptive Complex date > 20 Ma, Flamengos For-
mation (45 to 5.5 Ma), Pico da Antónia formations with ages of 2.3–3.3 Ma; the Assomada
formations and Monte das Vacas dated from 2.3–2.6 Ma and 1.1 to 0.7 Ma, respectively [47],
and the Quaternary alluvial deposits.

The National Institute of Water Resources and Management (INGRH) of the Republic
of Cape Verde performed pumping tests and some drilling throughout Santiago Island.
The results indicate that the pillow lava layers with their fissures and holes constitute the
hydrogeological formation, with the highest productivity (approximately 40 m3/h) being
the stabilization reached in the first minutes [48]. Additionally, the study performed at
Monte das Vacas formation (MV), composed mainly of pyroclastic material cones, suggests
a good vertical flow component and a high degree of permeability and porosity. In the
Tarrafal area (Figure 2), a mean value of 10% of porosity was obtained [48–50]. The
Monte das Vacas formation outcrops mainly at Santiago Island peaks (Pico da Antónia and
Serra Malagueta), which are the areas with the highest recorded precipitation. Due to its
permeability, infiltration is favored. The infiltrated water is rapidly drained to lower levels
of Monte das Vacas formation, reaching the AIEC, with low permeability and a high rate of
compactness.
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Water balance studies performed at Santiago Island indicate that 18% of precipitation
is converted into runoff and directly discharged to the sea—only 13% infiltrates the soil,
and the remaining water is lost to evapotranspiration [46].

Geophysical investigations using electromagnetic surveys were carried out on Santiago
Island [48–50] to characterize the quality of water resources in the coastal areas. Geophysical
surveys identified two main zones, according to the water depth and mineralization: an
intermediate and a deep zone. As stated by Gonçalves and co-authors [49], the intermediate
zone represents the groundwater mostly used for irrigation purposes, while the deep zone
(groundwater more mineralized) is related to seawater intrusion and/or to leaching of
ancient salt deposits associated with the depositions of marine aerosols. In this work, the
authors mentioned the delicate balance between the freshwater with “marine aero-salt
deposits” in the Tarrafal region (N part of the island) and in Ribeira Grande valley (SW part
of Santiago), where overexploitation conditions were observed. Based on resistivity data, a
cross-section along Ribeira Grande valley suggests that the fresh–saltwater interface rises
from −60 m a.s.l. to −20 m a.s.l. [39,46]. A similar situation was also reported by those
authors at São Domingos Valley, pointing to the occurrence of seawater intrusion.

3. Sampling and Analytical Approach

Groundwater sampling campaigns were performed at Santiago Island in November
2005, February 2006 and November 2006. In total, 115 selected points were sampled,
and groundwater was collected from boreholes and springs for chemical (major ions and
cations) analysis and isotopic (δ2H, δ18O and 3H) determinations. Radiocarbon and 13C
determinations were performed in six selected points located in the eastern part of the
island. Before the sampling, electrical conductivity (µS/cm), pH and temperature (◦C)
were measured in situ.

Water chemical analyses were performed in the INIDA Laboratory at São Jorge dos
Orgãos-Santiago Island, the Republic of Cape Verde, for major ion content (Na+, K+, Mg2+,
Ca2+, HCO3

−, Cl−, SO4
2) and silica content [39]. The analytical methods used were

flame photometry (Na and K), titration with EDTA (Ca and Mg), potentiometric titration
to predefined pH (HCO3), atomic and molecular adsorption spectrophotometry (NO3

−,
SO4

2−, and SiO2), and precipitation volumetry according to the Mohr method for the Cl [39].
In the Supplementary Materials, the analytical values and the estimated mass balance error
are presented. All the chemical determinations had charge balance errors < ±10% and 32%
of the analyses an error < ±5%.

Tritium content and stable isotopic determinations were performed at Centro de
Ciências e Tecnologias Nucleares (C2TN) of IST (Instituto Superior Técnico—University of
Lisbon, Portugal), formerly designated by Instituto Tecnológico e Nuclear, ITN—Chemistry
Department, Sacavém, Portugal. The 2H and 18O results are reported in δ notation and were
measured with the accuracy (1σ) of 1‰ for δ2H and 0.1‰ for δ18O. δ2H and δ18O were
determined three times for each sample to increase the precision analysis. These determina-
tions were conducted by mass spectrometer SIRA 10 VG-ISOGAS using the methodology
proposed by Friedman in 1953 [51] and modified by Tanweer and coauthors [52,53] for
deuterium. For the oxygen-18 measurements, the methodology proposed by Epstein and
Mayeda in 1953 was applied [54]. The tritium content was determined using the electrolytic
enrichment and liquid scintillation counting method (PACKARD TRI-CARB 2000 CA/LL).
The error associated with the 3H measurements (around 0.6 TU, 1σ) varies with the 3H
concentration in the water sample [55]. The tritium data is expressed in Tritium Units (TU),
where 1 TU represents a ratio of 3H/1H = 10−18.

The isotopic determinations (in the Total Dissolved Inorganic Carbon—TDIC) were
performed at Geochron Laboratories, USA. The δ13C was measured by mass spectrometry
and the values are reported in ‰ vs. V-PDB, with an accuracy (1σ) of ±0.1 ‰. The 14C
content (measured by AMS) is given in pMC (percentage of Modern Carbon).
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4. Results and Discussion
4.1. Hydrogeochemical Characterization

In order to characterize the different aquifer units, the groundwater samples were
grouped into three different units according to the geological formations: the Base Unit
composed of the eruptive complex of Pico da Antonia (PA) and (A); the Middle Unit
represented by Monte das Vacas’ formation (MV), and the Recent Unit constituted by
sedimentary Quaternary formations (a).

No trend was identified between the temperature of the groundwater and the dif-
ferent units. The electrical conductivity values of the sampled waters at Santiago Island
ranged from 128 µS/cm (FT-81), with a borehole situated in the southeastern region of the
island and around 15 km from the coastline, to 9400 µS/cm in FT-23, located at Pico da
Antónia mountain, approximately 25 km from the coastline. Both of the extreme values
were obtained in the Middle Unit formation, and from one instance of fieldwork to another,
a fluctuation of the groundwater mineralization was observed. Such a wide spread of
mineralization values can be derived from different mechanisms from water–rock interac-
tion processes and salt dissolution to fresh water–seawater mixing mechanisms. However,
due to the constant windy conditions, one should also consider the deposition of marine
aerosols as NaCl salts on land, which during the precipitation events can be dissolved,
leading to an increase in water salinization even before infiltration. All over the island, a
wider range of groundwater mineralization content is observed.

The pH ranged between 6.6 and 8.0 for most samples. To evaluate and discriminate
the different groundwater facies in the three-aquifer units, the chemical composition of
the water samples was represented in a Piper diagram to assess some of the chemical
evolution along the flow paths (Figure 3). In analyzing the Piper diagram, no clear dis-
tinction between the base and middle groups was observed; no correlation between the
geochemical evolutions with a specific geological formation or type of sampling point
(spring or borehole) was recognized. However, a trend line evolution towards seawater
intrusion processes seems to be present, decoded by the relation between the Cl− and
Na+. Based on the sample distribution in the Piper diagram, it seems that the main process
controlling the groundwater unit distribution can be seawater intrusion of salt dissolution.
As previously mentioned, the hypothesis of marine aerosols dissolution cannot be excluded
in different parts of the island, not only in coastal areas, as these salts can present similar
chemical composition as seawater composition (halite dissolution, for example).

Geographic and climatic conditions are responsible for the constant wind regime
crossing Cape Verde islands, inducing the deposition of marine aerosols inland, in which
presence/dissolution cannot be excluded as a potential source of groundwater mineral-
ization. The dissolution of the marine salts inland can be responsible for an increase in
the water mineralization, which supports the dispersion of the EC values found all over
the island [39,49]. From the chemical point of view, this dissolution of marine aerosols
will be similar to the chemical evolution content during freshwater–seawater mixing pro-
cesses, highlighted by the strong correlation between sodium and chloride, or even by the
Ca2+-SO4

2+ relation, which trends previously reported by other authors [2,6,10,11,56–59].
Such assumptions seem to be feasible for Na+-Cl−. The strong correlation observed between
these two “parameters” is well noticed in the Middle Unit formation (r = 0.91 consider-
ing FT-109 or r = 0.81 without FT-109), which can be ascribed to water–rock interaction
processes (dissolution of salts) or to seawater mixing process. However, in the case of
Ca2+-SO4

2+, the correlation will change largely if the FT-109 water sample is considered
(r = 0.67) or not (r = 0.23).
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Plotting the chemical composition of the water samples, orthogonal diagrams (Figure 4),
in all plots, the outlier FT-109 stands out. In Figure 4a, this borehole (located in Praia Baixa
coastal region, about 19 m a.s.l.) stands far from the halite dissolution line and from the
seawater- fresh water mixing line, indicating an additional source of Cl− and Na+, such as
the dissolution of marine aerosols. The additional Cl− and Na+ origins are also visible in
most of the samples when FT-109 is not considered (Figure 4b), thus enhancing an additional
source of sodium that can be ascribed to cation exchange processes. This hypothesis is
supported by the sample’s distribution above the two lines (seawater–freshwater mixing
line or halite dissolution line).

Geological studies (including mineralogical and petrological approaches) carried
out at Santiago Island identified the presence of carbonatites layers in different places
on the island [47,60]. Carbonatites are magmatic rocks containing more than 50% of
carbonate minerals, like calcite, dolomite and/or ankerite. The carbonatites are generally
characterized by the presence of accessory minerals such as pyroxenes and amphiboles. To
identify the calcium origin ascribed to carbonatites dissolution, the groundwater samples
were plotted in a Ca2+ vs. HCO3

− diagram (Figure 4c). Almost all water samples are
plotted below the carbonates dissolution line. Like in the previous diagrams, the water
sample FT-109 is an outlier (Figure 4c). The groundwater from borehole FT-109 presents a
Ca2+ content high above the mean concentrations (Figure 4c). Not considering this sample
(FT-109), it is possible to identify two-trend lines away from the carbonate dissolution line,
which are likely ascribed to different calcium sources (Figure 4d).
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Studies carried out in carbonatite formations in a semi-arid region of India (Western
Gujara) mention the variability of the calcium content in the groundwater during the post
and pre-monsoon periods [61], which were not detected in the Santiago Island samples.
These authors [62] also call attention to the importance of fluoride in the water system
in the health risk assessment, mentioning that the F− in water is defined by lithology
and by the water–rock interaction mechanisms, where acidic and alkaline igneous rocks
can release high concentrations of fluoride into groundwater. At Santiago Island, F−

determination was performed in 27 groundwater samples (see Supplementary Material).
The F− concentrations varied from below the detection limit (n = 21) to 2.96 mg/L (sample
49–16), while in the remaining samples, it ranged between 0.07 to 0.08 mg/L. According
to [62], fluoride content in water between 0.6 and 1.2 mg/L is considered safe; however,
lower values can also lead to health problems.

Within the scope of seawater intrusion processes, the high Na+/Cl− ratio (surplus of
sodium) points to the seawater intrusion mechanism. Nevertheless, in coastal areas, the
dissolution of carbonate minerals is often noticed, leading to an increase in the calcium and
bicarbonate content in the groundwater [56]. The increase of Ca2+ in the groundwater is a
function not only of the geological formations but also of the presence of atmospheric CO2
involved in the carbonate dissolution reaction, i.e., closed (1) or open (2) system to CO2:

CaCO3 + H2O↔ Ca2+ + HCO3
− + OH− (1)

CaCO3 + H2O + CO2 ↔ Ca2+ + 2HCO3
− (2)

In Figure 4c,d, two dissolution carbonate lines are plotted. The equivalence ratio (1:1)
stands for an open CO2 system (Equation (2)); the equilibrium concentration adds Ca2+

to the solution [56]. In terms of equivalence ratio, the relation between Ca2+ and HCO3
−

should be represented by a straight line with a slope equal to 1. In a close system to the
CO2, the equivalent ratio of 2:1 (Equation (1)) indicates that the Ca2+ content is lower than
the dissolution of carbonate minerals.

To assess if the addition of marine salts by dissolution occurred, the ratios of Na+/Cl−

and Cl−/SO4
2− ratios versus Cl− were plotted, together with the seawater ratio line

(Figure 5). As mentioned, the line plotted in the diagram Na+/Cl− versus Cl− (Figure 5a,b)
represents the seawater ratio (0.56 [63]); most of the groundwater samples are projected
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above the ratio line, pointing to an additional source of sodium to the groundwater systems.
One possible hypothesis to explain the sodium increase is the ion exchange mechanisms.
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sodium) points to the seawater intrusion mechanism. Nevertheless, in coastal areas, the 
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) recent unit formation.

Slightly different behavior is noticed when the Cl−/SO4
2− ratio is plotted versus Cl−

content (Figure 5c,d); in these two diagrams, the plotted line (7.16 [64]) stands for the
Cl−/SO4

2− seawater ratio. Most of the groundwater samples are projected below the ratio
line; only 32 samples (about 22% of the samples) have a Cl−/SO4

2− ratio higher than the
sea, which is likely related to the dissolution of marine aerosols dispersed along the island.

With the aim of identifying seawater intrusion processes from salts dissolution (ma-
rine aerosols), the chemical composition (Na+/Cl− and Cl−/SO4

2− ratios) of the springs
sampled from different places on Santiago Island were projected versus the Cl− content
(Figure 6). In the plot titled Na+/Cl− versus Cl−, most of the springs are projected above
the value of the seawater ratio (0.56 [63]), suggesting that the salt origin should be ascribed
to marine aerosols dissolution. However, a different pattern is noticed when the spring
samples are projected in the Cl−/SO4

2− versus Cl− diagram (Figure 6b). In this case,
the majority are plotted below the seawater ratio line (7.16 [64]), supporting the previous
hypothesis of marine salts dissolution.

Cation exchange processes between the clay matrix and the groundwater can play
an important role in the chemical evolution of the water systems, particularly in sed-
imentary basins [2,6,11,65]. This process can be present in different proportions and
is able to modify the ion concentration in the aqueous systems. The enrichment in
sodium (Figures 4b and 5b) observed in most of the groundwater samples could indi-
cate water–rock interaction, mixing with seawater, or even dissolution of marine aerosols.
However, the hypothesis of cation exchange becomes stronger when the (Ca2+ + Mg2+) and
(Na+ + K+) are plotted in the diagram (Figure 7).
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sodium) points to the seawater intrusion mechanism. Nevertheless, in coastal areas, the 

dissolution of carbonate minerals is often noticed, leading to an increase in the calcium 

) recent unit formation.

Two ion exchange processes can be identified in the studied water samples:

(i) Sodium fixation and release of calcium: cation exchange process strongly observed in
FT-109 water sample; this process is frequently observed in sedimentary basins [2,3,11]
and often reported when seawater intrusion processes occur;
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(ii) Cation exchange is represented by the fixation of calcium and release of sodium
trapped in the clay minerals [56,65].

In summary, the physicochemical data of groundwater samples from Santiago Island
allow us to enhance:

(i) The existence no correlation between the aquifer formation and the high water salinity;
(ii) The increases in salinity should be ascribed to the dissolution of marine aerosols or to

the seawater intrusion mechanism;
(iii) Ion exchange processes play an important role in the chemical evolution of the studied

groundwaters.

4.2. Isotope Hydrology

4.2.1. Stable Isotopes (δ2H and δ18O)

At Santiago Island, groundwater recharge results from direct infiltration of precipita-
tion or by wasted water used in agriculture activities (recycled waters). The groundwater
samples can reflect, in this situation, the mean isotopic composition of the regional precip-
itation and also an isotopic enrichment due to evaporation during agriculture irrigation
(Figure 8).
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Figure 8. Example of wastewater used in banana field agricultural activities at Santiago Island. The
arrow indicates the wastewater in this banana plantation.

Occasionally, isotopic shifts are noticed among the mean groundwater isotopic com-
position and the mean isotopic composition of the regional precipitation. In these cases,
different hypotheses to explain the deviations must be formulated: (i) evaporation before
infiltration occurred, for example, infiltration of wastewater during agriculture procedures
or by the use of recycled waters; (ii) recharge can be derived from different sources, either
from direct infiltration of the regional precipitation, like mixing with surface water like
rivers, lakes and/or dams; (iii) mixing with seawater and (iv) precipitation recharge under
the different climatic regime (paleowaters).

As mentioned, 115 groundwater samples were collected from boreholes and springs
for stable isotopic determinations (δ2H and δ18O). The isotopic content in the water samples
was plotted in an orthogonal diagram δ18O vs. δ2H (Figure 9), ranging between −4.98‰ to
−2.61‰ in oxygen-18 and from −44.6‰ to −14.9‰ in deuterium. From the observation of
Figure 9, no clear “aquifer trend” is visible in the isotopic composition of the water samples,
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i.e., no strong relationship was found between the groundwater isotopic values and the type
of aquifer, geological formation. The distribution of isotopic values seems to be controlled
by the recharge altitude, according to the island topography, i.e., more depleted delta values
at high altitudes. The mean isotopic content of the groundwater samples (δ2H mean value
= −25.9 ± 5.4‰, and δ18O −3.88 ± 0.53‰ vs. V-SMOW (n = 115)) is rather similar to the
values found in the database of the I.A.E.A. [42]. Based on the deuterium excess data, the
isotopic composition of the water samples suggests that no evaporation processes before in-
filtration are present, and no strong isotopic fractionation due to evaporation occurred (use
of wastewater recycling in agriculture practices). Considering the groundwater distribution
in the δ2H vs. δ18O plot of Figure 9, two trends can be identified, namely:

- A first group, composed of the water samples collected in the eastern part of the island,
with a correlation coefficient of 0.92 and a trend line equation rather parallel to the
G-MWL equation [66–69] and slightly parallel to the Local-MWL;

- A second group is composed of the other water samples located all over the island
(east and west of the island) being, their isotopic composition mainly controlled by
the geomorphology (recharge altitude). The local trend of the groundwater isotopic
composition was calculated using the groundwater samples with minor mineralization
(EC below 500 µS/cm) to minimize the possible contribution of seawater to their
composition. Although, the EC value chosen does not exclude a possibility of a
slight contribution of seawater in the groundwater samples able to modify their initial
isotopic composition. The obtained trend line equation is: δ2H = 7.27 δ18O + 2.82
(r = 0.64; n = 27). The designation of local trend instead of Local Meteoric Water Line is
adopted since the water samples, even with low mineralization, can be subject to small
mixing processes with seawater or even with recycling water subject to evaporation.
All these processes can induce a deviation of the initial isotopic composition. In
Figure 9, the mean seawater isotopic composition is also plotted, and it seemed that
no relevant mixing occurred between the Eastern Group and seawater.
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Both δ18O and δ2H values encoded in groundwater systems, if different from the
isotopic composition of modern regional precipitation, can be used as a “tool” in climatic
studies (groundwaters as archives of ancient climates), knowing that one of the main factors
guiding the regional precipitation isotopic composition is temperature [67–69]. Besides
the influence of temperature, the regional isotopic values of precipitation may also vary
due to changes in the vapor source/sources, degree of rainout of water vapor air masses
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and reflect the variation in the isotopic composition of the global ocean—global climatic
variations [14,69].

At Santiago Island, one hypothesis that can be formulated to explain the isotopic
deviation in the “eastern group” is that these samples can represent ancient precipitation,
i.e., recharge under a different climatic regime. Studies performed in groundwater systems
from the European continent show that during the Last Glacial Maximum (LGM), the
continent remained under prevailing westerly circulation, a colder regime leading to an
isotopic depletion in precipitation waters when compared to modern precipitation [67–69].

As mentioned previously, the major challenge of this work was to distinguish the
main source of mineralization in the groundwater systems, i.e., be able to distinguish
between seawater and marine aerosols dissolution, using chemical and isotopic data. With
this aim, the 18O content was plotted versus the electrical conductivity (EC) values. Like
in the previous diagrams, no clear correlation between the geological formations with
the water mineralization was identified. Although mixing with seawater intrusion seems
to be present in some areas, the hypothesis of dissolution of marine aerosols cannot be
excluded. The Cl− content was applied in the identification of the main source of salinity;
Cl− enrichment is noticed by the groundwater samples, above the seawater—freshwater
mixing line. Although, the number of water samples revealing a significant enrichment
in18O is high, but not only explained by seawater intrusion mechanism. It is important
to mention that when seawater intrusion is occurring or had occurred, the groundwater
will be noticed an increase in both parameters (isotopic enrichment and mineralization
increase). This single feature enables the identification of the main processes based on
isotopic and geochemical data [2,70,71].

Simultaneously, based on the Mg2+/Ca2+ ratios of the water samples, the hypothesis
of extended water–rock interaction and cation exchange mechanisms can be partially
responsible for a change in seawater chemical composition, such as a decrease in the
Mg2+/Ca2+ ratios [2,6,57,59].

Although is difficult to establish for Santiago Island the initial groundwater composi-
tion, due to the scarce information available concerning the precipitation isotopic content
and, the precise knowledge of groundwater composition, i.e., free of evaporation or mixture
processes, the percentage of seawater mixture was estimated using two parameters, namely
the electrical conductivity and the 18O content (Table 1). The values 52,000 µS/cm and
δ18O = 0‰, and 415.8 µS/cm and −3.88 ‰ were selected for seawater and groundwater
end-members composition, respectively. The groundwater composition stands for the
average value using the data of the samples with mineralization lower than 500 µS/cm.

In Table 1, the percentage of seawater in the groundwater is represented for the
samples with a mineralization (EC values) higher than 2000 µS/cm. Equation (3) was used
to estimate the percentage of seawater in the mixture:

X = [[Cm − Co]/(Csea − Co)] × 100 (3)

where X stands for the percentage of seawater in the mixture, Cm represents the composi-
tion in the mixture (groundwater sample), Co is the same parameter in the groundwater
mean value, and Csea stands for the concentration in the sea.

In some cases, the absence of similarity between the value of percentage of mixing
using EC or δ18O content is well noticed. The different percentage values can be ascribed to:

1— The origin of the groundwater mineralization is mainly linked to the dissolution of
marine aerosols, particularly observed in the samples FT-23, FT-59, FT-202 (2007), 58-1,
58-56, SST-55;

2— The high percentage of seawater just when using the 18O content, i.e., in the samples
SP-12; 49/18 and FT-202 (2006), is probably related to evaporation processes that
induced an enrichment in the water isotopic composition;

3— The similar percentage of mixing is attributed to seawater mixing processes, well
noticed in samples FT-153, 51-201, FT-81; and,
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4— The dissimilarities due to the lack of precise information concerning the “correct
value”, i.e., the initial end-member composition of the groundwater, either isotopic or
electrical conductivity.

Table 1. Percentage of seawater in the groundwater samples. The data represent the amount of
seawater estimated in percentage using the different tracers A—Electrical Conductivity and B—18O
content (data from 2005 and 2006 sampling campaigns).

Reference Electrical
Conductivity (µS/cm)

A
Seawater Percentage (%) δ18O (‰)

B
Seawater Percentage (%)

PT-29 2130 3.3 −3.85 0.8
SP-12 2510 4.1 −2.61 32.7

FBE-194 2320 3.7 −3.5 9.8
49/18 2650 4.3 −2.96 23.7
FT-47 2160 3.4 −3.61 6.9
FT-84 3560 6.1 −3.43 11.6

FT-153 8800 16.3 −3.28 15.4
SST-55 3340 5.7 −4.27 -
51-201 3005 5.0 −3.55 8.5
FT-81 2460 3.9 −3.64 6.2
FT-23 9400 17.4 −3.94 -
FT-59 3870 6.7 −4.48 -
58-1 3800 6.6 −4.07 -

58-56 2160 3.4 −3.99 -
FT-202 (2006) 2610 4.3 −3.22 17
FT-202 (2007) 8840 16.3 −4.05 -

Seawater 52,000 0
Groundwater 415.8 −3.88

4.2.2. Radioactive Isotopes (3H and 14C)

Tritium determinations were carried out only in 70 water samples distributed all over
Santiago Island. The 3H content varies between <0.6 TU and 2.9 ± 0.6 TU (Figure 10).
The tritium content indicates the presence of young water—and thus an active recharge
of the systems. The 3H half-life of about 12.32 years [72] makes tritium an ideal tracer
in the identification of active recharge of the aquifers systems. Being part of the water
molecule, the geochemical reactions with soil gases and biogeochemical reactions will not
affect its abundance, making 3H ideal for tracing recent recharge events [73]. According
to Heilweil and coauthors [38], between 1975–1979, the tritium content in the atmosphere
(precipitation samples) extended from 15.6 to 67.0 TU at Bamako, Mali (IAEA nearest
station to the Republic of Cape Verde archipelago); decreasing this content during the
1980ss to values around 5 TU. From the five precipitation samples collected at Santiago
Island during 1984, the 3H concentrations range from 2.3 ± 0.1 to 4.4 ± 0.2 TU [74]. For
the mean residence time calculation, it was assumed that the initial tritium content in the
atmosphere in this region was 3 TU. Most of the samples analyzed, show no tritium in their
composition, indicating a mean residence time higher than 30 to 40 years (assuming 3TU as
initial atmospheric content). The mean residence time higher than 30–40 years agrees with
the values presented by Akiti [74]. According to this author, in Achada Baleia (the eastern
part of the island), the shallow boreholes show active recharge, while the deep boreholes
are being recharged slowly through joints and fractures. No correlation was found either
with the altitude of the sampling sites, with the electrical conductivity, or even with the
geology (Figure 11).
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Carbon-14 measurements were performed only in six groundwater samples from
the Middle Unit. The 14C content in groundwater allows dating “old” water systems.
The 14C content present in the Total Dissolved Inorganic Carbon (TDIC) may be used to
estimate the mean residence time in the range of 2000 to 30,000 years [68,73]. However,
groundwater dating with 14C is complex due to different carbon origins and processes that
could be present, being this contribution rather random. Some of the different C sources,
for example, dissolution of carbonate minerals, oxidation of old organic matter, dissolution
of volcanic gases, etc., are carbon-14 free, inducing an aging signal to the water. Different
mathematical models try to minimize the contribution of old carbon; nevertheless, it is
not straightforward to determine the contribution of old carbon that might be present.
According to Cartwright and coauthors [73], groundwater dating with 14C is very useful in
semi-arid and arid climates where low recharge rates will lead to finding old groundwater
at shallow depths, which are also suitable in the identification of mixing of different aquifer
systems where old waters can be mixed with modern recharge.
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The easiest approach for carbon-14 groundwater dating is to assume that the 14C
“travel” with the water along the flow path, where the main process able to modify the
14C content in the TDIC is by “pure” radioactive decay. With this assumption, knowing
the 14C half-life (5730 years) and the initial carbon content, the age of the inorganic carbon
(TDIC) can be calculated. The main constraint is the initial 14C content that may have
been modified [73,75] by different carbon sources. Nonetheless, Han and coauthors [76]
proposed a graphical method to help in the identification of the main geochemical reactions
able to modify the radiocarbon content in the groundwater system.

The graphical 14C method was applied to the 6 samples from Santiago Island to
assess the predominant geochemical processes occurring during the groundwater flow.
This graphical approach provides links to distinguishing the major geochemical reactions
needed for the interpretation of 14C groundwater apparent ages (Figure 12). This approach
is useful for a simultaneous comparison of the isotopic composition of different water
samples (14C content and δ13C values and Dissolved Inorganic Carbon—DIC). The graphic
method considers the most important and most common geochemical processes and
isotopic effects, which can occur from infiltration and along the flow, and, for example,
accounts for the dissolution of soil CO2, dissolution of carbonate minerals, incorporation of
organic matter (young and old) and carbonates precipitation.
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Although all water samples are plotted near to each other, they fall in different areas
of the diagrams indicating that different geochemical processes are present, being able to
modify the initial carbon of the water samples. Sample FT-78 position (Figure 12a) indicates
an open system to CO2, while the samples FT-39, FT-40, and FT-44, their isotopic content,
indicate mixing with additional carbon more depleted in 13C. This carbon can be ascribed
to mixing with old organic matter or even weathering silicates. According to Han and
coauthors [77], the location of the FBE-201 and 59-24 samples represents an evolution from
line Z, which stands for the mixing of two carbon reservoirs in a closed system. On the
other hand, the “new” additional carbon (FT-78) is more depleted at 13C than the current
soil CO2. The authors call attention to the samples plotted in this graph region, which
may also indicate weathering of silicates by additional carbonic acid (an increase of DIC
and decrease of δ13C and 14C). This hypothesis should be considered since most of the
geological formations of the island have a volcanic origin (Figure 12a).

In Figure 12b,c FT-78 sample continuous to “fall” in a different region of the diagram,
suggesting a different evolution/story of the geochemical processes involved. Its location
points to an open system to CO2, inducing younger radiocarbon ages. Nonetheless, the
other samples fall in the field of additional carbon, which can be from an organic origin or
the water samples reflect methanogenesis processes involving organic matter containing
14C (e.g., landfill). Although the hypothesis of fermentation of organic matter (FBE-201
and 59-24 samples) cannot be excluded (Figure 12c), the hypothesis of methanogenesis
processes involving organic matter is reliable.

Different geochemical processes (methanogenesis, open system to CO2—soil contribu-
tion by plants respiration, weathering of silicates) seems to be present and able to modify
the initial carbon-14 content in the groundwater samples; the apparent carbon-14 age was
calculated using Equations (1) and (2) [57,78]:

t = 8267 ln (Co/C) (4)

Co = [100 (δTDIC − δR) (1+ (2.3ε13)/1000)]/[(δS − δR + ε13)] (5)
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where:
δTDIC stands for the measured 13C in the samples;
δR is the 13C concentration of carbonates fraction in the reservoir rock matrix;
δS represents the 13C concentration of soil CO2 (varying with the type of vegetation), and
ε is the 13C enrichment factor associated with the dissolution of soil CO2 by the infiltrating
water [78].

One of the problematic issues when dating groundwater with 14C is to define which
are the predominant plants in the region since nowadays, changes in agriculture “practices”
are reported. C4 plants (δ13C = −15 ‰) probably represented the initial vegetation of the
island, but part of these C4 plants was replaced by other types of vegetation (C3 plants,
δ13C = −23 ‰) associated with changes in agriculture practices.

From the two above equations (Equations (4) and (5)), the unique initial parameter
that will be changed during the calculations of the apparent carbon-14 groundwater age
(as the initial condition) will be the isotopic composition of the soil CO2, since this isotopic
content is directly linked to the soil occupation.

According to the literature, most δ13C variation observed in the biosphere is a conse-
quence of the isotopic fractionation of carbon during the photosynthesis cycle. The terres-
trial plants can be divided into three photosynthesis pathways (C3, C4, and CAM plant
types) due to CO2 fixing enzymes and the limitation of CO2 diffusion into the leaves [68].
Each photosynthesis pathway presents a different δ13C range, namely from −33 to −24‰,
−16 to −10‰, and −20 to −10‰, respectively [68]. Furthermore, the isotopic composition
of soil organic matter reflects the photosynthetic pathway type of the dominant species in
the plant community.

Although no isotopic data concerning this subject is available for Santiago Island,
isotopic determinations were carried out in terrestrial samples (goat bones) from São
Vicente Island, Cape Verde Archipelago, in the oldest remains of human origin found on
this island from Cape Verde Archipelago, indicate carbon-13 values characteristic of C4
plants [79].

For 14C, the enrichment factor (ε13) during CO2 dissolution was assumed to be equal
to 7.5 and the value of δR = 0 ± 1 ‰ was adopted for soil and rock carbonates present in
the system. Also, Co stands for the initial carbon-14 content in the atmosphere in the case
of Cape Verde was assumed to be 100 pMC, and C is the carbon-14 content measured in the
TDIC of the sample. As above-mentioned, for the C4 plants, the δs value will be equal to
−15 ‰, and for the C3 plants, δs will be −23 ‰, (isotopic content used in Equation (4)).
Applying these δ13C values of the soil, the apparent 14C groundwater ages were calculated
(Table 2) using as age correction both δ13C values for C3 and C4 plants. The apparent
ages obtained are far different, varying from modern to 5000 years BP. When the δ13C
of C3 plants is applied, all water samples are “modern”; yet when the probably original
vegetation of the island (C4 plants) is used in the equation the apparent radiocarbon ages
increase, varying from 3.51 to 5.07 ka BP.

Table 2. Apparent radiocarbon groundwater ages, using C4 and C3 plants (n.d. stands for not
detected).

Ref
3H

(TU)
δ13CTDIC

(‰)

14 C ± σ

(pMC)

14C
Uncorrected

Age (ka)

C3 Plants
14C Apparent Age

(ka)

C4 Plants
14C Apparent Age

(ka)

FT-39 n.d. -13.1 95.24 ± 0.38 FT-39
FT-39 n.d. −13.1 95.24 ± 0.38 0.40 Modern 4.36 ± 1.42
FT-40 n.d. −11.9 83.43 ± 0.37 1.50 Modern 4.77 ± 1.44
FT-78 n.d. −12.7 95.72 ± 0.38 0.36 Modern 4.10 ± 1.42

FBE-201 −9.0 76.91 ± 0.36 2.17 Modern 3.51 ± 1.51
FT-44 n.d. −12.7 85.12 ± 0.39 1.33 Modern 5.07 ± 1.42
59-24 n.d. −9.9 73.20 ± 0.35 2.58 Modern 4.56 ± 1.48
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The isotopic composition δ13C, 14C and δ18O was plotted as a function of the bicarbon-
ate content and 14C groundwater apparent age (using C4 plants). No robust correlation
is observed between the alkalinity content and the δ13C values measured in the TDIC,
possibly due to the different sources of carbon that can be present in the water system,
as suggested by the graphical method (see Figures 12 and 13). On the other hand, from
the observation of Figure 13d, a trend between the oxygen-18 content and the apparent
carbon-14 groundwater age can be recognized, i.e., an isotopic 18O enrichment with the
age of water probably ascribed to changes in the climate during this period. Another
hypothesis to be formulated is that this oxygen-18 enrichment could be due to a mixture
with seawater, which would induce an enrichment in groundwater composition. However,
if this last hypothesis can be used in the sample FT-78 (EC > 2900 µS/cm), although for the
other points like FT-40 the mean value of the EC is 1397 µS/cm.

Water 2022, 14, x FOR PEER REVIEW 21 of 27 
 

 

Table 2. Apparent radiocarbon groundwater ages, using C4 and C3 plants (n.d. stands for 

not detected). 

Ref 
3H 

(TU) 

δ13CTDIC 

(‰) 

14 C ± σ 

(pMC) 

14C 

Uncorrected 

Age (ka) 

C3 Plants 
14C Apparent Age 

(ka)
 

C4 Plants 
14C Apparent 

Age 

(ka) 

FT-39 n.d. -13.1 95.24 ± 0.38 FT-39   

FT-39 n.d. −13.1 95.24 ± 0.38 0.40 Modern 4.36 ± 1.42 

FT-40 n.d. −11.9 83.43 ± 0.37 1.50 Modern 4.77 ± 1.44 

FT-78 n.d. −12.7 95.72 ± 0.38 0.36 Modern 4.10 ± 1.42 

FBE-201  −9.0 76.91 ± 0.36 2.17 Modern 3.51 ± 1.51 

FT-44 n.d. −12.7 85.12 ± 0.39 1.33 Modern 5.07 ± 1.42 

59-24 n.d. −9.9 73.20 ± 0.35 2.58 Modern 4.56 ± 1.48 

The isotopic composition δ13C, 14C and δ18O was plotted as a function of the bicar-

bonate content and 14C groundwater apparent age (using C4 plants). No robust correlation 

is observed between the alkalinity content and the δ13C values measured in the TDIC, 

possibly due to the different sources of carbon that can be present in the water system, as 

suggested by the graphical method (see Figures 12 and 13). On the other hand, from the 

observation of Figure 13d, a trend between the oxygen-18 content and the apparent car-

bon-14 groundwater age can be recognized, i.e., an isotopic 18O enrichment with the age 

of water probably ascribed to changes in the climate during this period. Another hypoth-

esis to be formulated is that this oxygen-18 enrichment could be due to a mixture with 

seawater, which would induce an enrichment in groundwater composition. However, if 

this last hypothesis can be used in the sample FT-78 (EC > 2900 µS/cm), although for the 

other points like FT-40 the mean value of the EC is 1397 µS/cm. 

 

Figure 13. (a) HCO3− vs. δ13C; (b) HCO3− vs. Apparent 14C age; (c) δ18O vs. Carbon-14; (d) δ18O vs. 

Apparent 14C age. 

Projecting carbon-14 and carbon-13 values on the Santiago Island map, the previous 

hypothesis of seawater-freshwater mixing does not seem feasible, not only due to the salt 

content already mentioned but also due to the location of the boreholes, which are quite 

Figure 13. (a) HCO3
− vs. δ13C; (b) HCO3

− vs. Apparent 14C age; (c) δ18O vs. Carbon-14; (d) δ18O vs.
Apparent 14C age.

Projecting carbon-14 and carbon-13 values on the Santiago Island map, the previous
hypothesis of seawater-freshwater mixing does not seem feasible, not only due to the
salt content already mentioned but also due to the location of the boreholes, which are
quite distant from the coastline. From the six carbon-14 determinations, three boreholes
belonging to the “Easter Group” (Figure 9), namely FT-40, FT-44, and FT-78, corroborate
the hypothesis that the isotopic shift (2H-18O) can be derived from the precipitation under
a different climatic regime. Studies performed by [80] on climate change in Macaronesia
(biogeographical region composed of the volcanic archipelagos of Azores, Madeira, the
Canaries and Cape Verde (northeast Atlantic Ocean), mentioned an important climate
change in the mid-Holocene, at the end of the African Humid Period, ca. 5.5 ka BP.
These authors reported on the scarce palaeoecological and palaeoclimatic studies available
for Cape Verde to support this information. The isotopic values (O-18 enrichment and
apparent radiocarbon ages) support the assumption that the stable isotopic composition
of the “eastern group samples” could be linked to a climatic pattern, e.g., groundwater
recharge in a different climatic environment that differs from today’s conditions (Figure 14).
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5. Concluding Remarks

One of the major challenges in this research was to distinguish between the major
processes responsible for groundwater salinization using different approaches, such as
hydrogeochemical data, environmental isotopes and geophysical research. Although three
major aquifer units have been identified at Santiago Island, no clear distinction within the
groundwater samples issued from each hydrogeological unit was observed. No strong
correlation between the geochemical evolution with a specific geological formation or type
of sampling point (spring or borehole) was observed. From the geochemical representation
in the Piper diagram, an evolution trend line towards seawater composition seems to be
present. However, it was impossible to clarify the importance of marine aerosols dissolution
in the water’s chemical evolution. Even so, the results point out that the land’s extent of
seawater intrusion and the influence of marine aerosol appears to be moving inland, which
is accelerated in the case of seawater mixing due to the intense exploitation of water for
human consumption and agriculture uses.

The cation exchange processes between the aquifers clay matrix and groundwater play
an important role in the water chemical evolution. The “exchange processes” are present
in different proportions at Santiago Island and can modify the ion concentration in the
aqueous system: (i) sodium fixation and release of calcium strongly presented at FT-109
water sample (often observed in seawater intrusion processes); (ii) fixation of calcium and
release of sodium trapped in the clay minerals. Nonetheless, the presence of carbonatite
formations on the island, can also contribute to the addition of calcium in the groundwater
composition by dissolution along the flow path.

As before, with the chemical data, no clear “aquifer trend” between the geological unit
and the delta values is recognized.

Two isotopic trends can be identified in the classical δ18O vs. δ2H diagram: (i) one
group is composed of groundwater samples collected in the eastern part of the island,
and (ii) a second group is composed of the other water samples located all over the island
(east and west of the island). The isotopic composition of groundwaters from this second
group is mainly controlled by the altitude of recharge. Concerning the “eastern group”, the
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hypothesis that these samples represent ancient precipitation, i.e., recharge under a different
climatic regime, should be formulated. In this situation, the groundwaters are acting as
a climate archive, which is reflected in their isotopic composition as a palaeoclimatic
fingerprint.

Tritium content measured in the groundwater samples indicates an active recharge
of the aquifers systems, although in some boreholes, no tritium was found. The apparent
radiocarbon ages obtained corroborate the hypothesis formulated that the stable isotopic
composition of the “eastern group samples” represents a climatic pattern. The apparent
ages obtained, used as a correction of the isotopic composition of C4 plants, place these
samples between 3500 to 5000 years BP (Figure 14). Regarding the increase of groundwater
salinization, the stable isotopic composition suggests two main sources of mineralization:
seawater intrusion and the dissolution of marine aerosols. In the coastal regions, seawater
intrusion is a serious problem, and the adequate assessment and knowledge of the risks
involved in the groundwater resources degradation make it of huge importance for proper
water management. Santiago Island requires a future detailed assessment of available
groundwater resources that focuses on the definition of potential areas where seawater
intrusion is already occurring or where it will have a higher probability of occurring
to avoid/control this situation while also considering that the Republic of Cape Verde
archipelago is located in a semi-arid climate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14152339/s1, Table S1—Representative physical and chemical
data of groundwater samples from Santiago Island [39] collected in two field work campaigns in
2003. The aquifer units stands for Buf—Base Unit formation; MUF—Middle Unit Formation and
RUf—Recent Unit formation. Sp stands for spring and B for borehole. The chemical parameters
are in mg/L; b.d. stands for below the detection limits. EC stands for electrical conductivity and
∑cat stands for cations sum and ∑ani.stands for anions sum. The charge balance (Error in %) was
estimated using Appleo & Postma equation [56].
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