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Abstract: Playas are ecologically and hydrologically important ephemeral wetlands found in arid
and semi-arid regions of the world. Urbanization, changes in agricultural land use and irrigation
practices, and climate change all threaten playas. While variations in playa inundation on the Great
Plains of North America have been previously analyzed by satellite using annual and decadal time
scales, no study to our knowledge has monitored the Great Plains playa inundation area using
sub-monthly time scales. Thousands of playas smaller than ~50 m in diameter, which were not
previously identified by the Landsat satellite platform, can now be captured by higher resolution
satellite data. In this preliminary study, we demonstrate monitoring spatial and temporal changes in
the playa water inundation area on sub-monthly times scales between September 2018 and February
2019 over a region in West Texas, USA, using 10 m spatial resolution imagery from the Sentinel-2A/B
satellites. We also demonstrate the feasibility and potential benefits of using the Sentinel-2A/B
satellite retrievals, in combination with precipitation and evaporation data, to monitor playas for
environmental, ecological, groundwater recharge, and hydrological applications.

Keywords: playa lakes; wetland; terminal basins; Sentinel-2A/B satellites; remote sensing; evaporation

1. Introduction

Playas, which are generally defined as shallow, ephemeral wetlands located within
closed basins, are found in many arid or semi-arid climates. Playas are generally more
sensitive to changes in climate, land use, and irrigation practices than permanent bodies of
water [1,2]. Thousands of small playas (both Great Plains playas and prairie potholes) are
observed across the Great Plains of North America. Playa surfaces and their underlying
soils are typically characterized by variable amounts of soluble salts, sand, clay, and silt
that are deposited within these closed basins [3]. The frequency and duration of water
inundation in playas also varies greatly.

Water is a critical resource on the Great Plains of North America, and the shallow, cir-
cular playa basins scattered across these environs are often hotspots of ecological diversity.
These playa wetlands provide crucial habitats for many species of mammals, migratory
birds, amphibians, and invertebrates [4]. Playas are also important in some regions for
aquifer recharge. The Southern High Plains depend heavily on groundwater from the Ogal-
lala Aquifer, which stretches from southern South Dakota to the Texas Panhandle. However,
the magnitude of spatial variability of groundwater recharge from playas into the Ogallala
Aquifer recharge remains somewhat uncertain and is an active area of research [5,6].

Many hundreds of thousands of playas dot the landscape across the Great Plains of
North America [7]. Despite their ecological and hydrological importance to the region, to
our knowledge, the use of frequent, high-resolution satellite data that has become available
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in the last several years has thus far been underutilized in monitoring these threatened and
important ecosystems. While a number of satellite-derived analyses of playas have been
conducted over the past 20 years, these have mainly used the Landsat satellite platform
(e.g., Spain [8], California, USA [9], Texas, USA [10]) which provides a resolution that is too
coarse to capture smaller playas, and the platform is infrequently available. On the Great
Plains of North America, Starr and McIntyre [2] found a 77% decrease in the percentage
of playa inundation (on playas resolved by Landsat) between 1980 and 2008 regarding a
study region in West Texas, USA, as irrigation practices changed and warmer and drier
conditions occurred.

In the last 10 years, the advent of new higher-resolution, frequent satellite imagery
has revolutionized remote sensing for wetlands, lakes, and rivers. A number of studies
have utilized the increased spatial and temporal resolution of the European Space Agency
Sentinel-2 twin satellites: Sentinel-2A (launched in 2015) and Sentinel-2B (launched in
2017)) (e.g., [11–14]). Many previous playa studies were limited by lower spatial resolution
and less frequent satellite imagery (Landsat spatial resolution is ~30 m, with a return period
for satellite observations of ~16 days. For the Sentinel-2 satellites, the spatial resolution
is ~10 m, and the return interval for observations is ~10 days (~5 days by utilizing both
Sentinel-2A and 2B satellites). Thus, the Sentinel-2 satellite data effectively triples the
spatial resolution and doubles the temporal resolution capabilities (compared to Landsat)
to monitor changes in small, ephemeral lakes such as playas.

More recently, optical and radar satellite imagery have been combined to obtain
a sophisticated analysis of vegetation, soils, and playa water inundation on seasonal
scales from 1984–2019 over the Lordsburg Playa in New Mexico [15], while another recent
study in Spain demonstrated using genetic programming to improve the reliability of
algorithms to discern water versus non-water surfaces in complex shallow lakes and
wetlands [16]. Improving satellite retrievals over the variable underlying soil surfaces
and spectral characteristics of shallow, turbid waters with variable amounts of aquatic
vegetation continues to be an active area of research.

Many different remote sensing techniques exist to identify water bodies by satellite,
including image classification and derived water indices. It is beyond the scope of this
short communication to review them all here. Because water has a distinct reflectance
signature in the visible light wavelengths of the electromagnetic spectrum, the spectral
contrast between land and water surfaces are generally pronounced. The normalized
difference water index (NDWI) [17], and subsequent variations on this index are the most
widely used water detection techniques, using visible and near-infrared (NIR) satellite
spectral bands [18]. The goal of this short communication is not to test or recommend
the most accurate techniques for retrieving water properties from satellite images taken
over playas (which is certainly needed, and future work in this area is encouraged), but
to demonstrate the general feasibility of monitoring the Great Plains playa inundation for
hydrological and ecological applications using the freely available Sentinel 2A/B satellite
data. Using an open-source remote sensing land surface classification tool, we demonstrate
how playa inundation can be monitored on a sub-monthly basis, and then discuss the
potential of utilizing the satellite-derived playa inundation area data, along with concurrent
precipitation and water level imagery, to support ecological and hydrological applications,
such as estimating groundwater recharge.

2. Materials and Methods
2.1. Study Area and 25 September 2018–17 February 2019 Case Study

The 900 km2 (30 km × 30 km) study area analyzed in this paper was selected to repre-
sent a classic clay-lined playa environment in the Ogallala Aquifer region of the Southern
High Plains (Figure 1). The time period between 25 September 2018 and 17 February 2019
was selected as a case study example of monitoring changes in playa inundation and water
surface area for ecological and hydrological applications with Sentinel-2A/B satellite data.
This time period was chosen to demonstrate how a sequence of Sentinel-2 satellite images
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is able to capture a rapid filling of the playas with water in late September through October
2018, followed by a slow decrease in the playa inundation between November 2018 and
February 2019.
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Figure 1. (a). Map of 30 km by 30 km study area (shown in brown square) in West Texas, USA
(upper right inset). True color imagery of the study area for (b) 25 September 2018 and (c) 28 October
2018. The corresponding classified water surface area (water represented by blue colored areas,
while all non-water surfaces are represented by green colored areas) for (d) 25 September 2018 and
(e) 28 October 2018. The yellow dot in (a) represents the area shown in Figure 2.
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Figure 2. (a). Sentinel-2A imagery of the Normalized Difference Water Index (NDWI) for the location
denoted with a yellow dot in Figure 1 on 22 September 2021, and (b) Landsat 7 ETM+ NDWI imagery
from the same location on 19 September 2021. Blue areas represent water, while green areas indicate
non-water areas. The 3 playas referenced in the text are indicated by the numbers 1–3. NDWI is
processed by Sentinel Hub. The imagery contains modified European Space Agency Copernicus
Sentinel data processed by Sentinel Hub, and Landsat 7 images are courtesy of the U.S. Geological
Survey, processed by Sentinel Hub.

2.2. Sentinel-2A/B Satellite Imagery and Rainfall and Evaporation Data

The Sentinel-2 satellite mission is comprised of two sun-synchronous polar-orbiting
satellites, phased at 180◦ to each other. The goal of the mission is to monitor land and ocean
surface variability [19]. Sentinel-2A (Sentinel-2B) was launched by the European Space
Agency (ESA) on 23 June 2015 (7 March 2017), each with a return frequency of ~10 days,
such that data over any given area of the earth is obtained approximately every 5 days.
The multispectral imager (MSI) on the Sentinel-2 satellite contains 13 spectral bands. These
bands vary in wavelength from 442.7 nm to 2202.4 nm. The visible reflectance band images
from these satellites (channels 2, 3, 4, 8) have a resolution of approximately 10 m, which is
3 times the resolution of previously widely utilized Landsat satellites [20].

For this study, the Sentinel-2A/B satellite data were downloaded through the Coperni-
cus Open Access Hub maintained by the European Space Agency. A free account allowed
easy downloading and retrieval of the satellite images. For this paper, 13 Sentinel-2A and
Sentinel-2B satellite images from different days were analyzed between 25 September 2018
and 17 February 2019. A 2TB external hard drive provided adequate storage for storing
the Sentinel-2 satellite images, which were 14.3 GB total in size (~1.1 GB per file). Each
downloaded Sentinel-2A/B satellite data ZIP file (which contains 13 files for each of the
13 bands described below) was 10,980 pixels by 10,980 pixels, at 10 m resolution. A smaller
3000 by 3000 pixel subsection was selected for analysis in the selected 900 km2 study area.
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Several precipitation and evaporation estimate datasets were also used in this study,
including daily precipitation data from the National Climate Data Center (NCDC) for
Plainview, Texas (for Region 1), as well as radar precipitation estimates from the Ad-
vanced Hydrologic Prediction Service (AHPS) website: https://water.weather.gov/precip/
(accessed on 1 June 2022). Monthly evaporation estimates from the Texas Water De-
velopment Board (TWDB) were obtained from the online download portal at: https:
//waterdatafortexas.org/lake-evaporation-rainfall (accessed on 15 July 2022). The TWDB
provides evaporation estimates on gridded one-degree latitude by one-degree longitude
quadrangles for the entire state of Texas. The ‘gross lake evaporation’ rate, which is defined
as the ‘water loss caused by evaporation’ was derived from Class A pan evaporation data.

2.3. Processing Methodoloy for Water Classification and Surface Area Calculations

Only images without clouds were used in this study. The images were loaded into
QGIS software and subsected into 30 km by 30 km tiles over the region of interest, as
previously discussed. Then, pixels in the image indicating water were identified through
image classification by the free, open source QGIS Semi-Automatic Classification Plugin
(SACP) [21]. Obtaining accurate retrieval of images showing shallow, turbid, and muddy
waters, such as playas, remains an active area of research [22–26], and no efforts were made
in this pilot study to evaluate the accuracy of the SACP for playa water retrieval. For this
study, visual analysis of the water bodies after widespread heavy rains confirmed that
the SACP did capture playa water inundation for hundreds of playas, but more rigorous
evaluation is needed for future work.

The SACP, which is a Python tool in the QGIS environment, has been shown to be an
effective application tool for land and water cover classification [27]. The SACP allows the
user to download the images and perform both unsupervised and supervised classification,
either manually or automatically. The SACP computes the spectral signatures of selected
training features in the images and then compares these against the spectral signatures
of other pixels in the image. In our study, we used supervised classification, in which we
manually selected multiple lake surfaces that were known to have filled with water after
heavy rains to define or ‘train’ the SACP regarding what the spectral characteristics of the
water surfaces should be, and these characteristics were then used to define inundated
playa surfaces throughout the remainder of the image.

The spectral signatures of data from the various bands, 2, 3, 4, 5, 6, 7, 8, 8A, 11, and 12,
from the multispectral imager (MSI) on the Sentinel-2A and 2B satellites were evaluated by
the Semi-Automatic Classification Plugin [21]. Briefly, the exact processing steps were as
follows: (1) the satellite raw band data were loaded into QGIS, (2) the raw band images
were converted to reflectance values appropriate for Sentinel-2, (3) simple atmospheric
correction using the DOS1 method (dark object subtraction) was applied [21], (3) the spectral
signatures of each of the satellite bands were manually selected by clicking on multiple
known water surfaces (to train for classification according to the range of the spectral
signatures of shallow water surfaces), as well as known non-water surfaces, in multiple
regions of interest (ROIs). Then, (4) using the default minimum distance classification
algorithm in the QGIS classification plug-in, the spectral signatures of the manually selected
water and non-water surface ROIs were used to classify the entire image as either water
or non-water. A total of 41 images obtained during this period were not classified, either
because they were cloudy, or because they were within a week or two of another available
non-cloudy image. The classification output accuracy and ability to identify water surfaces
was manually checked through visual analysis of the satellite imagery and classification
of several know water surface areas. Raster math calculations in QGIS were then used to
compute the water surface area in each of the Sentinel-2 satellite images.

3. Results

The Sentinel-2A/B satellite data was collected and processed over the 900 km2 study
area to evaluate variations in water inundation of the several hundred observed playas

https://water.weather.gov/precip/
https://waterdatafortexas.org/lake-evaporation-rainfall
https://waterdatafortexas.org/lake-evaporation-rainfall
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during the 25 September 2018 to 17 February 2019 time period. Many of these playas
would not be identified by the lower resolution Landsat Imagery used in many previous
playa studies. Figure 2 provides a visual comparison of Sentinel-2A and Landsat 7 imagery,
using the Normalized Water Difference Index (NDWI) [17], over a small region defined
in Figure 1 with 3 different-sized playas. As can be clearly seen, a very small playa (playa
1 in Figure 2), with a diameter of less than 50 m, is clearly resolved by the 10 m resolution
Sentinel-2A imagery (Figure 2a), but is not identified by the Landsat 7 imagery (Figure 2b).
Similarly, the outline of a larger, elongated playa is well-characterized by Sentinel-2A, but
poorly resolved by Landsat 7 (playa 3 in Figure 2). Finally, a large playa (diameter > 250 m,
playa 2 in Figure 2) is resolved by both Sentinel-2A and Landsat 7; however, the full
shape and edge regions are much better defined by Sentinel-2A. For determining the total
surface area of playas, edge land contamination on the lower-resolution Landsat would
also negatively bias the water inundation area estimates compared to the more defined
playa edges resolved by the Sentinal-2 imagery.

The variations in playa inundation of the several hundred observed playas within
the study region (Figure 1) during the 25 September 2018 to 17 February 2019 time period
followed a realistic pattern based on the rainfall observed at a nearby weather station
(Figure 3). Between 25 September and 20 October 2018, several weather systems each
delivered 2.5–6.0 cm of rainfall (Figure 3). Prior to this rainfall, dry conditions resulted
in only a few of the larger playas retaining water (Figure 1d). A rapid increase in the
water area associated with playa inundation was observed across the region between late
September and late October 2018 (Figures 1d,e and 3). Between 25 September and 3 October,
the total surface water area in the 900 km2 study area in West Texas, USA, increased from
1.1 to 8.2 square kilometers, with additional increases up to 14.5 km2 by 10 October. These
increases in water surface area are attributed to two main rainfall events—one in late
September and another ~9 October (Figure 3).
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Figure 3. Observed surface water area (blue bar graph, in square kilometers) calculated for the
30 × 30 km square region shown in the brown square in Figure 1a for the period between 25 Septem-
ber 2018 and 17 February 2019. Missing dates are due to either cloud cover or data not being analyzed,
as indicated on the plots. The corresponding cumulative precipitation at Plainview, Texas (in inches),
is indicated by a green solid line (data courtesy of the National Weather Service through Mesowest
https://mesowest.utah.edu (accessed on 15 March 2022).

These two wet periods were then followed by a generally dry weather pattern through
February 2019. The absence of significant precipitation from November 2018 through Febru-
ary 2019 implies that the steady observed rates of change (decreases) in playa lake surface
area would be primarily driven by evaporation or groundwater infiltration (Figure 3). The
available retrievals indicate temporal variations in the rate of decrease in water surface
area, e.g., between 28 October and 19 November, the water surface areas average rate of

https://mesowest.utah.edu
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decrease was ~0.33 km2 per day, whereas between 19 November and 17 February, the
rate of decrease was ~0.08 square km2 per day (Figure 3). The rates of change in playa
inundation were also observed to vary between playas of different sizes (not shown).

The time-varying estimates of playa inundation can be combined with precipitation,
evaporation, and playa depth estimates to provide potential added value for ecological and
hydrological applications, such as the total playa water volume for ecological habitat or
aquifer recharge estimates (Table 1).

Table 1. Approximation of total surface evaporation and playa volume in the study region between
November 2018–January 2019. See text for description of assumptions used.

Month
Net Surface Evaporation

(Rainfall Minus
Evaporation (cm))

Estimated Playa Volume
in Study Region 1

Estimated Changes
from Previous Month
in Playa Volume Due
to Evaporative Loss 1

Estimated Changes
from Previous Month in

Playa Volume Due to
Ground Infiltration 1

November 2018 −7.9 2.25 × 106 m3 – –
December 2018 −5.5 1.35 × 106 m3 7.9 × 105 m3 1.1 × 105 m3

January 2019 −6.4 0.8 × 106 m3 4.3 × 105 m3 1.2 × 105 m3

1 Note that this table is shown for illustrative purposes only, and all calculations in this table are based merely on
approximations and assumptions.

For this study, estimates of lake surface net evaporation are obtained by the Texas
Water Development Board and may or may not be representative for playa surfaces with
varying salinity. Moreover, we do not have enough detailed measurements of (1) playa
lake depth, and (2) playa basin size and runoff efficiency (the playa basin area controls
how quickly a playa fills up for a given amount of rain [28]) across the many hundreds
of playas to create accurate water budgets for the playas without the use of additional
remote sensing and in situ datasets. However, if we analyze the period from November
2018–January 2019, the rainfall was negligible, so the playa basin rainfall catchment can be
ignored, as water would not be entering the playas and the only escape mechanisms would
be evaporation and ground infiltration. The average depth of the playas in the study region
is not well-known, but based on general observations of depth [29], we estimate them here
to be around 20 cm in our study region in early November 2018, and we assume that the
depth of the playa water then decreases at a constant rate proportional to the playa water
surface area (this may or may not be a good approximation). Based on these assumptions,
we calculate the playa volumes in Table 1 using a simple relationship:

Surface volume = surface area estimated from satellite data × estimated mean playa depth. (1)

The changes in volume in the study region, due to either evaporation or ground
infiltration, are then calculated using the following simple equation:

Change in volume due to evaporation = monthly change in water surface area estimated from satellite
data × net surface evaporation.

(2)

Finally, the difference between the total playa volume each month and the change
due to evaporation can be inferred to be ground infiltration. The results of these simple
illustrative calculations demonstrate that the changes in playa volume are mainly driven
by evaporation (about 70–85%), followed by percolation into the ground (15–30%). Better
known observations or estimates of the aforementioned variables (playa depth, basin size,
evaporation rates, etc.) are needed to confidently close the hydrological budget of the
playas and make more useful estimates of the groundwater infiltration rates using the
satellite inundation surface area measurements, but the previous discussion lays out a
realistic scenario, provided the assumptions we chose are reasonable.

Even within the relatively small 900 km2 study area, large variations in playa inun-
dation, driven by variations in rainfall, are observed. As an example, a period of heavy
rainfall occurred in the study region (shown in Figure 1a) in West Texas, USA, between
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15 June and 15 July 2021. The total rainfall in the region was highly variable, ranging
between 5 and 18 cm over just 10 km (Figure 4). All playas in this region were observed to
be dry in spring 2021 (not shown) with no surface water previous to the heavy rainfall in
summer 2021. However, heavy thunderstorms in late June and early July 2021 resulted in
significant increases in total playa inundation, and an increase in observed water surface
area (15.23 km2 of playa lake surface area) was noted in the study (Figure 4)). However,
those areas in the southeastern third of the region of interest, where less rainfall was ob-
served, saw only minimal increases in water surface area, compared to large increases in
the regions where the heaviest rainfall occurred (Figure 4).
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Figure 4. Playa lake surface area and radar-estimated precipitation for the 30 × 30 km square region
shown in Figure 1a (and delineated here by the blue square). Playa water surface area for 9 July
2021 within the blue square is denoted in blue and calculated using the QGIS Semi-Automatic
Classification Plugin [16,21]. The underlying map of radar-estimated rainfall between 15 June and
14 July 2021 is courtesy of the National Weather Service Advanced Hydrological Prediction Service
https://water.weather.gov/precip/ (accessed on 15 March 2022).

4. Discussion

In this paper, we provide a preliminary framework for others to build upon. This
short study leaves many questions unanswered for future research to consider. Future
work will need to more carefully evaluate any limitations of using Sentinel-2 or other
satellite imagery to monitor playas. In our study, many small playas had diameters around
50 m, with larger playa diameters of 300 m or more. Assuming a circular playa shape and
edge detection errors of 10 m (one pixel) due to subpixel (half of pixel ground, half water,
which will sometimes be detected as water, and sometimes as land) or other effects, this
would result in possible area calculation errors in excess of 40% for small playas, with
smaller estimated uncertainty (less than 10%) for larger diameter playas. To carefully
evaluate the limitations of potential remote sensing errors, we recommend using in situ
datasets to rigorously evaluate which water detection algorithms work best over the
range of water depths, water colors, and water turbidity observed in shallow playas, to
avoid biases or missed detections from the satellites of these complex surface features. A
number of recent studies in the literature illustrate a wide range of potential errors and
corrections that should be addressed, such as classification uncertainty [30], threshold
detection errors [31], using frequency analyses of pixels rather than a single detection
threshold (e.g., [32]), and combining the Sentinel-2 data with altimetric satellite missions
to derive shoreline locations [33]. There are many possible avenues for future work, as
there currently is no single universally approved detection algorithm for shallow lakes or

https://water.weather.gov/precip/
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wetlands, although the NDWI has been found to be problematic when used in shallow
waters (e.g., [34]). The recent study by Jiang et al. [35] demonstrates a more sophisticated
water detection methodology for use with water bodies of different clarity that could
potentially be applied to playa lakes. Future work could also investigate blending the
Sentinel-2 water surface area calculations with Sentinel-3 water level measurements, as
demonstrated by recent studies [36], or using newly developed automated and hierarchical
surface water fraction mapping developed by Wang et al. [37] for the thousands of playa
lakes across the world. This limited demonstration study used a very simple manual
classification detection algorithm, and made no attempt at evaluating uncertainties in either
under- or over-detection, or at assessing the impacts of not resolving sub-pixel shoreline
features, which would increase the potential errors in playa lake surface area calculations
for small lakes nearing the detection limits (±10 m). Some analysis of the impacts of
aquatic plants and vegetation beneath the shallow water should also be considered [38–40].
Moreover, additional satellite platforms could also be considered in future work, including
the proprietary Planet Scope and Worldview satellites (which have even higher temporal
and spatial resolution than Sentinel-2). Recent studies have demonstrated using these
platforms for the temporal classification of lake surfaces [41–43].

Evaluating spatial analyses of precipitation, in combination with the spatial analyses,
may also help reveal which regions have adequate water in their playa lakes and which
do not. The semi-arid climates that contain most of the world’s playas are also regions
with high variability in precipitation intensity and frequency. One single large localized
rainstorm might mean the difference between a playa filling up with much-needed water
for several months, or occasionally, even a year or more, or remaining dry for months or
even years. The high-resolution spatial and temporal data from the Sentinel-2 satellites can
also be used with precipitation data to determine playa inundation on sub-monthly time
scales for hydrological and ecological applications.

In addition to the monitoring of playa lake surface area from the Sentinel-2 satellites,
the satellite reflectance signatures could potentially be utilized to evaluate changes in playa
lake water quality, as changes in water turbidity are sometimes correlated with water quality.
Recent work has already developed regression algorithms for using Sentinel-2 satellites
as proxies for the water quality monitoring of agricultural reservoirs in Oklahoma [43], as
well as for utilizing remote sensing reflectance signatures for developing a water quality
index [44]. Coupling the satellite reflectance data with in situ water quality sensors for a
‘training set’ of playa lakes could potentially be used to obtain water quality information
for many thousands of playas where installing in situ measurements for playa lake water
quality is not feasible. Because the satellite reflectance signatures differ between waters
of differing turbidity and quality, properties of the water quality or wetland vegetation
types could potentially be estimated; this is also recommended for future applications of
Sentinel-2 or similar resolution satellite imagery for investigating playa lakes.

5. Conclusions

Over the last 5 years, the improved spatial (and temporal) resolution of Sentinel-2
satellite imagery has allowed many small, variable inland water bodies, such as rivers,
glacial lakes, and rice paddies, to be studied globally for the first time. This study is the
first to the authors’ knowledge to demonstrate using Sentinel-2 satellite mission imagery
to improve the monitoring of American Great Plains playa water inundation on sub-
monthly time scales for ecological and hydrological applications. While many studies
have documented the importance of the playa wetland ecosystems for wildlife in the
American Great Plains, along with the variable infiltration and aquifer recharge rates
occurring for different playas on the Great Plains, in situ monitoring of potential water
inflow, evaporation, and infiltration rates for the many tens of thousands of North American
Great Plains playas is simply not feasible due to the large number of small playas observed.
The high-resolution Sentinel-2 mission satellite data, in combination with survey data on
playa depth and nearby meteorological data (to determine evaporation rates), could be a
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major step forward in extensively and inexpensively quantifying the importance of playa
lake groundwater recharge.

Evaluating the changes in specific playas across broad regions using satellite imaging
on sub-monthly time scales may be useful for identifying playas with higher groundwater
recharge potential (those that lose water more rapidly than others), and for analyzing
periods when evaporation potential is low (such as during winter). Monitoring playas,
as demonstrated in this short paper, would also be useful for ecological applications for
determining the lakes that contain sufficient water to support wildlife, without requiring
an airplane flyover or time-intensive field visits.
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