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Abstract: This paper presents a review of papers specifically focused on the use of both numerical
and machine learning methods for groundwater level modelling. In the reviewed papers, machine
learning models (also called data-driven models) are used to improve the prediction or speed process
of existing numerical modelling. When long runtimes inhibit the use of numerical models, machine
learning models can be a valid alternative, capable of reducing the time for model development
and calibration without sacrificing accuracy of detail in groundwater level forecasting. The results
of this review highlight that machine learning models do not offer a complete representation of
the physical system, such as flux estimates or total water balance and, thus, cannot be used to
substitute numerical models in large study areas; however, they are affordable tools to improve
predictions at specific observation wells. Numerical and machine learning models can be successfully
used as complementary to each other as a powerful groundwater management tool. The machine
learning techniques can be used to improve calibration of numerical models, whereas results of
numerical models allow us to understand the physical system and select proper input variables for
machine learning models. Machine learning models can be integrated in decision-making processes
when rapid and effective solutions for groundwater management need to be considered. Finally,
machine learning models are computationally efficient tools to correct head error prediction of
numerical models.

Keywords: groundwater; physically-based models; machine learning models; artificial neural
network; random forest; support vector machine

1. Introduction
1.1. Physically Based Models in Groundwater Management

Physically-based models are the most commonly used tools in quantitative groundwa-
ter flow and solute transport analysis and management. Traditionally, the conceptual or
numerical models are applied to hydrological modelling in order to understand the physi-
cal processes characterising a particular system, or to develop predictive tools for detecting
proper solutions to water distribution, landscape management, surface water–groundwater
interaction, or impact of new groundwater withdrawals. Along with the ever rising accessi-
bility of computational power, field measurements, and improved understanding of the
dynamics of hydrogeological systems, the accuracy required for these models is increasing.
This brings some practical limitations of physically-based based models, including the
need for large amount of data and input parameters [1,2]. In order to solve the equations
describing the dynamics of flow, the physical properties as well as the boundary conditions
of the system must be suitably defined within the time and space domains of the model in
order to achieve acceptable accuracy. Quantifying these properties and conditions can be
expensive and time-consuming; thus, very few field measurements are often available, and
the accurate estimate of model parameters across the study area can be challenging [3].
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1.2. Uncertainty and Error Types of Physically-Based Models

Many modellers recognised the inherent uncertainty of physically-based models
(e.g., refs. [4–6]. They are subject to three types of errors: (1) model structural error intro-
duced by misrepresentation of the real system, as well as from the numerical implemen-
tation, for example, spatial and temporal discretisation [4,7,8]; (2) parameter error due to
indirect estimation (e.g., prior knowledge or calibration) [9,10]; (3) errors in input data [11]
and measurements used to evaluate the model. Alternatively, when the target is to obtain
accurate predictions rather than understanding the underlying groundwater system, con-
ventional statistical techniques, such as autoregressive (AR), AR moving average (ARMA),
and AR integrated moving average (ARIMA) have been applied invariably to modelling
groundwater resources [12,13]. However, the abovementioned methods do not take into
account the nonstationary and non-linear characteristics of the data structure [14,15].

1.3. Machine Learning Models

The need to address groundwater problems through alternative, relatively simpler
modelling techniques pushed authors in different parts of the world to explore machine
learning models. Machine learning methods have been widely used in recent years in many
fields (i.e., bioinformatics, biomedicine [16,17], biochemical engineering [18], civil engineer-
ing problems, see refs. [19–21] and references therein), transportation networks [22–24], geo-
sciences and environmental applications [25–27], and environmental risk prediction [28,29].
Their largely diffused uses are due to the fact that they are simple and provide accept-
able results. Recently, the modelling of non-linear and non-stationary problems has been
provided with great ability by machine learning techniques compared with traditional
statistical approaches [30–34]. Dealing with machine learning techniques, modellers do not
need to introduce the mathematical relationships among variables because machine they
are capable of learning the relationships from the input data. Of course, these methods
have some limitations, such as overtraining leading to low generalisability [35], risk of
using unrelated data, incorrect modelling with inappropriate methods, their dependency
on data for training [36], and so on. However, their simplicity of use, high-speed run and
reasonable accuracy without the need to know the physics of the problem have led many
researchers to apply them.

1.4. Machine Learning for Groundwater Level Forecasting: Current State of the Research

Many recently published review papers have explored the use of machine learning
models in hydrology (e.g., refs. [37–41] and references therein, refs. [42,43], or in many
water resources fields (e.g., refs. [44–47] specifically for groundwater level (GWL) modelling
and forecasting, refs. [48,49] and references therein)). However, there is not yet a complete
review paper examining the application of machine learning methods in GWL modelling
in comparison to numerical models. The development of better approaches for GWL
modelling makes it necessary to look at what has been done in the field of the comparison
of numerical and machine learning models and current research.

1.5. Aim of This Work

This paper presents a review of those papers specifically focused on the use of both
numerical and machine learning methods for groundwater modelling to estimate the
groundwater levels. The aim of the paper was to furnish information to orient modellers
which want to explore machine learning approaches starting from an already developed
numerical model, highlighting the advantages and disadvantages of both modelling tech-
niques. Moreover, it attempts to clarify some common questions such as: which machine
learning techniques are appropriated to solve a specific problem; which is the optimal
input data range for machine learning modelling; and which software is suitable for a
specific machine learning model. In the following chapters, the types of physically based
models used in the reviewed papers are briefly described. Then, some commonly used
machine learning methods for modelling GWL are addressed. The methods include Arti-
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ficial Neural Networks, Radial Basis Function, Adaptive-Neuro Fuzzy Inference System,
Time Lagged Recurrent neural networks, Extreme Learning Machine, Bayesian Network,
Instance-Based Weighting, Inverse-Distance Weighting, Support Vector Machine, Decision
Tree, Random Forest, Gradient-Boosted Regression Tree, and some hybrid models such as
wavelet-machine learning models. Radial Basis Function, Adaptive-Neuro Fuzzy Inference
System, Time Lagged Recurrent neural networks and Extreme Learning Machine, Bayesian
Network, Instance-Based Weighting, Inverse-Distance Weighting, Support types of Artifi-
cial Neural Networks, Random Forest, and Gradient-Boosted Regression Tree are types
of Decision Trees; however, in this review, each technique was treated individually. The
most frequently used machine learning techniques used are Artificial Neural Networks,
Bayesian Network, Decision Tree, and Support Vector Machine. At first, each method
is briefly described and thereafter the related studies are reviewed. This is followed by
general and specific results, discussions, and conclusions, including recommendations for
future research.

2. Modelling Techniques Explored in This Review
2.1. Physically Based Numerical Groundwater Flow Models

Numerical groundwater flow models simulate the distribution of head by solving the
equations of conservation of mass and momentum. Because these equations represent the
physical flow system, in order to obtain accurate results accuracy, the physical properties of
the aquifer (e.g., hydraulic conductivity, specific storage) as well as the initial and boundary
conditions of the system must be properly assigned within the time and space domains
of the model [3]. The physically based models used in the reviewed papers are briefly
described as follows.

MODFLOW [50,51] is the modular finite difference flow model distributed by the
U.S. Geological Survey. It is one of the most popular groundwater modelling programs.
Thanks to its modular structure, MODFLOW integrates many modelling capabilities to
simulate most types of groundwater modelling problems. The corresponding packages
(e.g., solute transport, coupled groundwater/surface-water systems, variable-density
flow, aquifer-system compaction and land subsidence, parameter estimation) are well
structured and documented and can be activated and used to solve required modelling
problems. The source code is free and open source, and can be fixed and modified
by anyone with the necessary mathematical and programming skills to improve its
capabilities [52].

SUTRA (Saturated-Unsaturated Transport) [53] is a 3D groundwater model that sim-
ulates solute transport (i.e., salt water) or temperature. The model employs a grid that
is based on a finite element and integrated finite difference hybrid method framework.
The program then computes groundwater flow using Darcy’s law equation, and solute
or transport modelling use similar equations. It is very frequently used for calculation of
salinity of infinite homogeneous, isotropic unconfined aquifer.

The Princeton Transport Code (PTC, [54,55] is a 3D groundwater flow and contaminant
transport simulator. It uses a hybrid coupling of the finite-element and finite-difference
methods. The domain is discretised by the algorithm into parallel horizontal layers; the
elements within each layer are discretised by finite-element method. The vertical connection
between layers is allowed by a finite-difference discretisation. During any iteration, all
the horizontal finite-element discretisations are firstly solved independently of each other;
then, the algorithm solves the vertical equations connecting the layers using the solution of
the horizontal equation.

SHETRAN is a physically-based distributed modelling system for simulating water
flow, sediment, and contaminant transport in river basins [56]. It is often used to model
integrated groundwater–surface water systems. SHETRAN simulates surface flows
using a diffusive wave approximation to the Saint–Venant equations for 2D overland
flow and 1D flow through channel networks. Subsurface flows are modelled using
a 3D extended Richards equation formulation, where the saturated and unsaturated
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zones are represented as a continuum. Surface and subsurface flows exchange is
allowed in either direction. The partial differential equations for flow and transport
are solved on a rectangular grid by the finite difference methods; the soil zone and
aquifer are represented by cells which extend downwards from each of the surface grid
elements. Precise river–aquifer exchange flows can be represented by using the local
mesh refinement option near river channels.

2.2. Machine Learning Models
2.2.1. Artificial Neural Networks (ANNs)

An artificial neural network (ANN) model is a data-driven model that simulates the
actions of biological neural networks in the human brain. Typically, an ANN comprises a
variable number of elements, called neurons, which are linked by connections. Generally,
an ANN is composed of three separate layers: input, hidden, and output layers. Each
single layer contains neurons with similar properties. The input layer takes input variables
(e.g., past GWL, temperature, precipitation time series); a relative weight (i.e., an adaptive
coefficient) is given to each input, which modifies the impact of that input. In the hidden and
output layers, each neuron sums its input, and then applies a specific transfer (activation)
function to calculate its output. By processing historical time series, the ANN learns the
behaviour of the system. An ANN learns by relating a given number of input data with
a resulting set of outputs [57], which is the training process. Training means modifying
the network architecture to optimise the network performance, which involves tuning the
adjustable parameters: tuning the weights of the connections among nodes, pruning or
creating new connections, and/or modifying the firing rules of the single neurons [58].
The training process can be conducted with various training (learning) algorithms. ANN
learning is iterative, comparable to the human learning from experience [59]. ANNs are
very popular for hydrologic modelling and is used to solve many scientific and engineering
problems. These models may be ascribed to two categories: feed-forward, which is the
most common, and feed-back networks [60,61]. The most frequently used family of feed-
forward networks is the multilayer perceptron [62,63]; it contains a network of layers with
unidirectional connections between the layers.

2.2.2. Radial Basis Function Network (RBF)

RBF network is commonly a three-layer ANN which uses RBF as activation functions
in the hidden layer; the network architecture is the same as multilayer perceptron. The
number of neurons in the input layer is the same as the input vectors. The radial basis
functions in the hidden layer map the input vectors into a high-dimension space [64]. A
linear combination of the hidden layer outputs is used to calculate the neurons in the
output layer of the network. The distinctive characteristic of RBF is that the responses
increase (or decrease) monotonically with Euclidean distance between the centre and the
input vectors [65].

2.2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS, first described by Jang [36], combines the neural networks with the fuzzy
rule-based system. In the fuzzy systems, relationships are represented explicitly in the
form of if-then rules [66,67]. Different from a typical ANN, which uses sigmoid function to
convert the values of variables into normalises values, an ANFIS network converts numeric
values into fuzzy values. Firstly, a fuzzy model is developed, where input variables are
derived from the fuzzy rules. Then, the neural network tweaks these rules and generates
the final ANFIS model [68]. Usually, an ANFIS model is structured by five layers named
according to their operative function, such as ‘input nodes’, ‘rule nodes’, ‘average nodes’,
consequent nodes’, and ‘output nodes’, respectively [69].
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2.2.4. Time Lagged Recurrent Neural Networks (TLRNs)

TLRN are multilayer perceptrons extended with “short-term” memory structures
that have local recurrent connections. The approach in TLRNs differs from a regular
ANN approach in that the temporal nature of the data is taken into account [69], allowing
accurate processing of temporal (time-varying) information. The most common structure
of a TLRN comprises an added feedback loop which introduces the short-term memory
in the network [70] so that it can learn temporal variations from the dataset [71]. TLRN
uses a more advanced training algorithm (back propagation through time) than standard
multilayer perceptron [72]. The main advantage is that the network size of TLRNs is lower
than multilayer perceptrons that use extra inputs to represent the past state of the system.
Furthermore, TLRNs have a low sensitivity to noise.

2.2.5. Extreme Learning Machine (ELM)

ELM is a training algorithm for the single-layer feed-forward-neural network (SLFFNN).
Input weights and biases values of the nodes in the hidden layer are randomly determined
according to continuous probability distribution with probability of 1, so as to be able to
train N separate samples. Compared with conventional neural networks, in ELM, only
the number of hidden layer neurons needs to be tuned, and no adjustments are required
for parameters such as learning rate and learning epochs. Training of ELM is conducted
quickly and is considered a universal approximator [73–75].

2.2.6. Bayesian Network (BN)

The Bayesian networks (Figure 1) are statistical-based models which compute the
conditional probability associated with the occurrence of an event by using the Bayes’
rule. A typical Bayesian network is composed of a set of variables where their conditional
dependencies are represented by a directed acyclic graph.

Figure 1. Example of the structure of a Bayesian model applied to groundwater-level study.

Connections define the conditional dependencies among variables (i.e., nodes) [76].
The dependencies are quantified by conditional probabilities for each node through a
conditional table of probabilities. Usually, BNs are built by software that generates many
network structures with the input parameters.

2.2.7. Instance-Based Weighting (IBW)

Instance-based algorithms derive from the nearest-neighbour pattern classifier [77],
which is modified and extended by introducing a weighting function. IBW models are
also inspired by exemplar-based models of categorisation [78]. Different from other
machine learning algorithms, which return an explicit target function after learning
from the training dataset, instance-based algorithms simply save the training dataset
in memory [79]. For any new data, the algorithm first finds its n nearest neighbour
in the training set and delays the processing effort until a new instance needs to be
classified. IBW has many advantages such as the low training cost, the efficiency
gained through solution reuse [80], ability to model complex target functions, and the
capability to describe probabilistic concepts [81]. However, when irrelevant features
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are present, their performance decreases; an accurate distinction of relevant features
can be achieved through feature weighting to ensure acceptable performance. IBW
does not need to be trained and the results are less influenced by the training data
size. Inverse-distance weighting is a special case of instance-based weighting with the
weighting factor p = 2 [82].

2.2.8. Support Vector Machine (SVM)

SVM are kernel-based neural networks developed by Vapnik [83] to overcome the
several weaknesses which affect the ANNs’ overall generalisation capability [84], including
possibilities of getting trapped in local minima during training, overfitting the training data,
and subjectivity in the choice of model architecture [85]. The SVM is based on statistical
learning theory [86]; in particular, it is based on structural risk minimisation (SRM) instead
of empirical risk minimisation (ERM) of ANNs. The SVM minimises the empirical error
and model complexity simultaneously, which can improve the generalisation ability of
the SVM for classification or regression problems in many disciplines. This is achieved
by minimising an upper bound of the testing error rather than minimising the training
error [79]; the solution of SVM with a well-defined kernel is always globally optimal, while
many other machine learning tools (e.g., ANNs) are subjected to local optima; finally, the
solution is represented sparsely by Supporting Vectors, which are typically a small subset
of all training examples [87]. For further details, see refs. [63,86,88,89].

2.2.9. Decision Trees (DT)

Decision tree models [90] are based on the recursive division of the response data
into many parts along any of the predictor variables in order to minimise the residual
sum of squares (RSS) of the data within the resulting subgroups (i.e., “nodes” in the
terminology of tree models) [91]. The number of nodes increases during the process of
splitting along predictors. The tree-growing process stops when the within-node RSS
is below a specified threshold or when a minimum specified number of observations
within a node is reached [92]. However, the modeller places minimal limitations upon
tree-fitting process, and fitted trees may be more complex than is actually warranted by
the data available. The problem of overfitting results is then managed by the ‘pruning’
algorithms, which aid the modeller in the selection of a parsimonious description of
interactions between response and predictors, fitting trees for the optimum structure for
any level of complexity [91]. Because no prior assumptions are made about the nature of
the relationships among predictors, and between predictors and response, decision trees
are extremely flexible.

2.2.10. Random Forest (RF)

Random forests work by constructing groups of decision trees during the training
process, representing a distinct instance of the classification of data input. Each tree
is developed by independently sampling the values of a random vector with the same
distribution for all trees in the forest [93].

The random forest technique considers the instances individually so that the trees are
run in parallel; there is no interaction between these trees while building the trees. The
prediction with the majority of votes or an average of the prediction is taken as the selected
prediction (Figure 2). The RF algorithm was created to overcome the limitations of DT,
reducing the overfitting of datasets and increasing prediction accuracy. The decision tree
grows to the largest possible size without being pruned in accordance with the number of
trees and the number of predictor variables [94].
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Figure 2. Scheme of Random Forest.

2.2.11. Gradient-Boosted Regression Trees (GBRT)

Gradient-Boosted Regression trees are ensemble techniques in which weak predictors
are grouped together to enhance their performance [95]. Learning algorithms are combined
in series to achieve a strong learner (“boosting”) from different weak learners (i.e., the
decision trees) connected sequentially. Each tree attempts to minimise the errors of the
previous tree. After the initial tree is generated from the data, subsequent trees are gener-
ated using the residuals from the previous tree. At each step, trees are weighted, with the
lower-performing trees weighted the highest; this allows the improvement of performance
at each iteration. A variety of loss functions can be used to detect the residuals.

3. Bibliographic Review

The following section describes the reviewed papers. Throughout our research, few
papers were found in the literature that examine the use of both numerical models and
machine learning models in GWL forecasting. Here, 16 papers dealing with the use of
both models for the prediction of GW levels, which were published in 10 international
journals and 1 book from 2003 to 2020, were reviewed. Each paper was analysed in
detail; for each one, the author provided a description of the study area and the geological
context, the area of model use (e.g., groundwater planning and supply, management in
farming systems, coastal water management), the machine learning technique, and any
details of its application in the specific case study. Finally, the statistical indicators used
to compare the performance of numerical and machine learning models were reported.
In the reviewed papers, machine learning models are always used to improve the results
of physically-based models in GWL forecasting and to overcome the problem of long
computational time of regional models. This is accomplished by comparing results of a
physically-based model and a surrogate machine learning model (i), comparing results
of a physically-based model and different machine learning models (ii), testing hybrid
or ensemble models (iii), and reducing and correcting physically-based model errors by
means of machine learning approaches (iv). In the cases (i) and (ii), each model is run
independently. In the case (iii), machine learning techniques are applied at different stages
of the modelling procedure, such as data pre-processing; in some papers, numerical model
output is used to train machine learning models, obtaining statistical models capable of
speeding up the numerical model runs. In case (iv), numerical model errors are used as
training datasets for machine learning models. Details of the selected papers are given
in Table 1, which includes information such as the region of study, the key area of model
use, the used machine learning model, the hydrologic input variables of machine learning
models, the time step, the range of total data, the total simulation time, time step, and
the grid size of the physically-based model (Journal Citation Reports, Clarivate Analytics).
In some cases, lacking information was integrated with literature complementary to the
reviewed papers (i.e., same study areas).
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Table 1. List of the reviewed studies. P: precipitation. T: temperature. E: evapotranspiration. SWL: surface water level. EP: effective precipitation.

n Reference Region of Study
(Country)

Key Area of
Model Use

Used ML
Models

Input
Variables to
ML Model

ML Model
Time Step

Range of Total
Data (Number

of Data or
Observation

Wells)

PB
Simulation
Time (Time

Step)

Size of the PB
Model Domain

Field of
Application of

the ML
Technique

Journal
(202+C:L0

IF)

Aquifer or
Basin Hydros-

tratigraphy

1 Mohammadi,
2009 [59]

Chamchamal
plain (Iran)

Farming and
agricoltural

systems
ANN MODFLOW

output monthly 1986–1998 (144
sets)

1 year
(monthly) 145.7 Km2

using the
results of PB

models to train
a single ML

model

Pratical
hydroinfor-

matics
(book)

Alluvial (karst
bedrock)

2 Coppola et al.,
2003 [3]

Northwest
Hillsborough

Wellfield (USA)

Planning and
supply ANN

GWL,
pumping
rates, P, T,
dew point,

wind speed
conditions,

stress
period
lenghts

weekly
January

1995–August
2000, (212 sets)

20 years
(monthly) 10,359.9 Km2

using the
results of PB

models to train
a single ML

model

Journal of
hydrologic
engineering

(2.064)

Highly
permeable
limestone

overlain by low
permeability

clay and, above,
sand with

interbedded
clay

3 Banajeree et al.,
2011 [96]

Kavaratti, island
of the

Lakshadweep
archipelago

(India)

Coastal water
management ANN

not
mentioned

in the paper
monthly 2005–2007

(23 sets)
5 years

(monthly)

2D model, with
section lenght =

2650 m and
depth 1000 m

using the
results of PB

models to train
a single ML

model

Journal of
hydrology

(5.722)
Coastal

4 Mohanty et al.,
2013 [97]

Kathajodi-Surua
Inter-basin of

Odisha (India)

Coastal water
management

ANN,
TLRNs

GWL, P, E,
river stage,

SWL,
pumping

rates

weekly
February

2004–May 2007
(174 sets)

3 years,
(weekly) 114.5 m2

using the
results of PB

models to train
a single ML

model

Journal of
hydrology

(5.722)
Alluvial

5 Parkin et al.,
2007 [98]

Winterbourne
stream, Thames
Basin, Berkshire

(UK)

aquifer-river
interaction ANN

GWL, river
flow

depletion
daily Not specified

(1 well)
25 years
(daily)

Regional aquifer:
200 Km2. Valley
aquifer: 2 Km2

using the
results of PB

models to train
a single ML

model

Journal of
hydrology

(5.722)
Alluvial

6 Moghaddam
et al., 2019 [76]

BirjandAquifer,
South Khorasan

(Iran)

Drought-
prone

regions
ANN, BN

GWL, E, T,
EP,

Discharge
monthly 2002–2014

(1872 sets) 12 years 277.8 Km2 ([99])

using the
results of PB

models to train
and compare
different ML

models

Groundwater
for

sustainable
develop-
ment (no

IF)

Alluvial
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Table 1. Cont.

n Reference Region of Study
(Country)

Key Area of
Model Use

Used ML
Models

Input
Variables to
ML Model

ML Model
Time Step

Range of Total
Data (Number

of Data or
Observation

Wells)

PB
Simulation
Time (Time

Step)

Size of the PB
Model Domain

Field of
Application of

the ML
Technique

Journal
(202+C:L0

IF)

Aquifer or
Basin Hydros-

tratigraphy

7 Almuhaylan at
al., 2020 [68]

Saq Aquifer in
Quassim (Saudi

Arabia)

Drought-
prone

regions
ANN,

ANFIS
GWL,

pumping
rates

not
specified

1980–2018
(55 wells) not specified 600 Km2

using the
results of PB

models to train
and compare
different ML

models

Water
(3.103) Sandstone

8 Chen et al.,
2020 [63]

Heihe River
Basin (China)

Drought-
prone

regions
ANN, RBF,

SVM

pumping
rates,

recharge,
streamflow

rates

monthly 1986–2008
(11,088 sets)

22 years
(monthly) 21,120 Km2

using the
results of PB

models to train
and compare
different ML

models

Scientific
reports
(4.380

Alluvial

9 Fienen et al.,
2016 [95]

Lake Michigan
Basin (USA)

Planning and
supply

ANN,
GBRT, BN

parameters
expected to

have
predictive

power to the
source of
water to

wells

not
specified

1864–2005,
(4911 sets)

141 years
(variable, [100]) 204,764.4 Km2

using the
results of PB

models to train
and compare
different ML

models

Environmental
modelling

and
software
(5.288)

Glacial
deposits

10 Miro et al.,
2021 [101]

San Bernardino
and Rialto-Colton

basins, San
Bernardino

Valley Municipal
Water District -
Valley District

(USA)

Drought-
prone

regions
RF, SVM,

ANN
Recharge,
pumping

rates
not

specified
2015–2050 (not

specified)
35 years

(monthly) 3000 Km2

using the
results of PB

models to train
and compare
different ML

models

Climate risk
manage-

ment
(4.090)

Basin
comprising

ancient
metamorphic
bedrock, eolic
sands, ancient

fans, recent
alluvium

11
Malekzadeh

et al.,
2019 [102]

Kabodarahang
Plain, Hamadan

(Iran)

Farming and
agricoltural

systems

ELM,
WA-ELM

decomposed
sub-series of

observed
GWL

monthly
August 1990–

September 2015
(301 sets)

10 years
(monthly) not specified

using the
results of PB

models to train
a single ML

model

Groundwater
for

sustainable
develop-
ment (no

IF)

Alluvial
(limestone
bedrock)
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Table 1. Cont.

n Reference Region of Study
(Country)

Key Area of
Model Use

Used ML
Models

Input
Variables to
ML Model

ML Model
Time Step

Range of Total
Data (Number

of Data or
Observation

Wells)

PB
Simulation
Time (Time

Step)

Size of the PB
Model Domain

Field of
Application of

the ML
Technique

Journal
(202+C:L0

IF)

Aquifer or
Basin Hydros-

tratigraphy

12 Nikolos et al.,
2008 [103]

Northern Rhodes
Island (Greece)

Coastal water
management

ANN
combined
with DE

algorithm

GWL,
pumping

rates
daily 1997–1998

(3125 sets)

1 year
(2 seasonal

stress
periods)

217 Km2

using the
results of PB

models to test
hybrid or
ensamble
modelling

approaches

Hydrological
processes

(3.565)
Coastal

13 Sahoo et al.,
2017 [104]

High Plains
aquifer and

Mississippi River
Valley aquifer

(USA)

Farming and
agricoltural

systems

Automated
hybrid

artificial
neural

network
(HANN)

GWL, P, T,
streamflow,

climate
indexes,

irrigation
demand,

NAO index

monthly
1980–2012,

(HPA: 263,808
sets. MRVA:
115,368 sets)

33 years
(monthly)

MRVA:
405,720 Km2 ([105]).

HPA:
3.34 Km2 ([106])

using the
results of PB

models to test
hybrid or
ensamble
modelling

approaches

Water
resource
research
(5.240)

High Plain
Aquifer:

ancient alluvial
fans and

quaternary
deposits.

Mississippi
River Valley

Alluvial
Aquifer:

Tertiary and
Quaternary

clay, silt, sand
and gravel
deposits.

14 Michael et al.,
2005 [82]

Argonne
National

Laboratory,
Illinois (USA)

Contaminant/
phytoremed-

iation
DT, IDW,

ANN GWL, P quartely

November
1999–March

2001 (22 wells
with quarterly
data); May 2001

(7 wells with
hourly data)

6 years,
(monthly) 4.8 Km2 ([107])

using the
results of PB

models to test
hybrid or
ensamble
modelling

approaches

Water
resource
research
(5.240)

Glacial
deposits

15 Xu et al.,
2014 [79]

Republican River
Basin and
Spokane

Valley-Rathdrum
Prairie aquifer

(USA)

Planning and
supply

Cluster
analysis,

IBW, SVM

GWL, well
location,

observation
time

monthly

RRCA:
1918–2007

(300,000 sets).
SVRP:

1990–2005
(2191 sets)

RRCA: 89
years. SVRP:

15 years,
(monthly)

RRCA:
79,396 Km2.

SVRP: 844.3 Km2

using ML
techniques for

PB models
errors reduc-

tion/correction

Groundwater
(2.671) Alluvial

16 Demissie et al.,
2009 [85]

Argonne
National

Laboratory,
Illinois (USA)

Contaminant/
phytoremed-

iation
ANN, DT,
SVM, IBW

GWL, EVP,
stress

periods
monthly 2000–2005,

(3600 sets) [107]
6 year

(monthly) 0.75 Km2

using ML
techniques for

PB models
errors reduc-

tion/correction

Journal of
hydrology

(5.722)

Glacial
deposits
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3.1. Comparing Results of a Physically-Based Model and a Surrogate Machine Learning Model

Many authors compared results of physically-based models and machine learning
models run independently. The two approaches are then compared in terms of GWL
prediction performance.

Mohammadi et al. [59] investigated the applicability of ANN models in simulating
GWL for aquifers with limited data. The study area was the Chamchamal plain (Iran),
an alluvial plain surrounded by a karstic formation. Groundwater flow was simulated
by MODFLOW and hundreds of data sets were generated from the calibrated model to
train the ANN model. Another purpose was to detect ANN models capable of simulating
the complex dynamics of GWL, even with relatively short lengths of training data of
the ANN model. To achieve this objective, different ANN models were implemented,
with different combinations of input data. Furthermore, different network architectures,
with different number of hidden layers and activation functions, were evaluated. The
models’ performances were evaluated by means of MODFLOW outputs and measured
groundwater levels through the coefficient of determination (R2), mean squared error
(MSE), and normalised mean squared error (NMSE). The water table was estimated with
reasonable accuracy by all the models, but the ANN required lesser input data and took less
time to run. However, the authors remarked two disadvantages of these networks: (i) the
water table cannot be predicted in all observation wells by a single model with similar
input parameters; and (ii) models are static and inputs and outputs from previous time
steps are not considered (unless these are introduced explicitly). This results in a high
difference between the observed and calculated GWL at some points. In order to overcome
these difficulties, the authors tested TLRN to simulate the entire groundwater system with
one model. The aim of TLRN is to predict a multivariate time series using past values
and available covariates. Instead of using static feed-forward ANNs to model nonlinear
relationships in water table level forecasting, the TLRNs approach takes into account the
temporal nature of the data (i.e., the lagged inputs, see Section 2.2.4), and in this respect
compares favourably with ANN multilayer perceptron networks. The model used in the
TLRNs is the gamma model [71], which is characterised by a memory structure that is a
cascade of leaky integrators. The neural network can control the depth of the memory by
changing the value of the feedback parameter, instead of changing the number of inputs.
Since the feedback parameter is recursive, a backpropagation through time algorithm was
used to apply a more powerful learning rule. Considering the reduced computational
costs and the lower data requirements, the authors concluded that a TRLN model can be
effectively used in the field of GWL simulation.

In the work of Coppola et al. [3] ANNs are used to accurately forecast transient water
levels in a complex groundwater system under variable aquifer stresses. The model was
tested in the Northwest Hillsborough Wellfield near Tampa Bay, Florida, USA, the model
area being represented by the Upper Floridian aquifer (consisting of high permeability
karst limestone overlain by a low permeability semiconfining unit, with a surficial sandy
unconfined aquifer above). Results of numerical and machine learning models were
compared for representative monitoring wells by using root mean square error and absolute
mean error. The oscillation of the water levels was modelled with much more accuracy
by ANN than the numerical flow model. The Absolute Mean Error of numerical model
exceeded the maximum ANN prediction error at any single observation during each stress
period. The authors concluded that for certain problems, ANN represents a better option
to numerical modelling approaches because it does not require difficult-to-quantify aquifer
parameters and time- and space-variable conditions. Then, three types of sensitivity of
ANN were evaluated: (1) the sensitivity of ANN prediction performance to training set
size; (2) sensitivity analysis of selected ANN inputs on water level responses; (3) sensitivity
of ANN performance to data noise and measurement error.

(1) The sensitivity of ANN performance to data availability was assessed by using dif-
ferent sizes of training sets. The results showed that, during validation, acceptable
prediction accuracy was achieved with a relatively small number of training sets.
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(2) Input parameters groundwater withdrawals and rainfall were included in the sensi-
tivity analysis. Results showed that, in the unconfined aquifer, short-term oscillations
were correlated most strongly to rainfall, while in the underlying semiconfined aquifer
the water level was mostly influenced by withdrawals. Since these results are in ac-
cordance with the hydrological conditions, the authors concluded that the physical
dynamics of the system must be sufficiently understood by the modeller in order to
identify the important predictor input variables.

(3) The effect of measurement error and data noise (inherently present in most hydrologic
data set) on ANN performance was assessed by introducing normally distributed
random noise into the input variables of the training set. The results demonstrated
that the ANN can filter out noise in the training data and effectively learn groundwater
system behaviour.

Banerjee et al. [96] evaluated the use of ANN simulation over mathematical modelling
as a management tool for coastal aquifers. The aim of the models was to forecast the
increase in the salinity of groundwater due to pumping at different rates in the island of
Kvaratti, Lakshadweep archipelago (India) and to detect management strategies to avoid
the increase of salinity of groundwater. A physically-based 2D finite element model was
developed with SUTRA [53]. The study demonstrated the superiority of ANN with respect
to the physically-based model, evaluated by mean of root mean squared error (RMSE) and
mean absolute error (MAE). Its non-linear nature makes it a formidable tool for analysing
real-world data, allowing modelling of complex dependencies. With respect to traditional
models such as SUTRA, ANN requires a lesser number of input parameters and avoids the
model building and parameter estimation phases. While only a few seconds are needed for
the training in the ANN models, modelling in SUTRA is very time-consuming.

Mohanty et al. [97] compared the results of the finite difference-based numerical
MODFLOW model and the ANN model in simulating GWL in an alluvial aquifer system
(Kathajodi-Surua Inter-basin of Odisha, India) for improving the efficiency of planning
and management of groundwater resource at the basin scale. To evaluate the results,
6 statistical criteria were used: bias, coefficient of determination (R2, MAE, RMSE), Nash–
Sutcliffe efficiency (NSE), and mean percent deviation (Dv). Results revealed that the
ANN model performed better for short-time predictions that require high accuracy, while
numerical models were more appropriate for long-term predictions. Furthermore, the
authors highlighted that physically based models provide the total water balance of the
system, whereas the ANN models do not involve a description of the entire physics of
the system. In the case of ANNs, a new model must be developed from the beginning to
include any changes in the input or output parameters, differently from numerical models.
Thus, the type of model should be selected in accordance with the type of problem.

Parkin et al. [104] developed and tested an approach in which numerical and ANN
models were used to evaluate the impacts of groundwater withdrawals on river flows in
areas representing the hydrogeologic settings of most of England and Wales. Several ANN
hidden node structures were tested. The ANN model was trained using the input and
output data from about 2000 simulations of the SHETRAN numerical modelling system.
The outputs of ANN model were compared against analytical models, and tested using
a field data from a case study site: the Winterbourne stream within the Thames Basin
near Reading, Berkshire, flowing across a chalk fractured aquifer. The parameters used
for the ANN model come from many sources and comprise the distance of borehole from
river, the aquifer transmissivity and storage coefficient, the valley-fill transmissivity and
specific yield, the river width, the hydraulic conductivity and thickness of riverbed, and
the mean annual recharge and the date of peak recharge. The performance was evaluated
by comparing root mean square errors of normalised outputs. The results showed the
successful application of the approach for modelling river–aquifer interactions and its
potential for modelling complex hydrological systems. The good correspondence between
the simulated and observed flow depletion using independently-derived parameter values
demonstrates that this approach can be applied for modelling realistic field conditions.
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3.2. Comparing Results of a Physically-Based Model and Different Machine Learning Models

Even if ANNs are widely used among machine learning technique by groundwater
modellers, their limitations encouraged authors to explore alternative models to achieve
better performance in GWL prediction.

Moghaddam et al. [76] compared a MODFLOW, an ANN, and a BN model to deter-
mine the most accurate method for simulating GWL in the alluvial Birjand aquifer, located
in an arid region of the eastern Iran, and solve the problem of GWL overestimation of
the MODFLOW model. Both BN and ANN models provided a reliable prediction for
GWL. The BN model showed the best match between the measured and the predicted
groundwater level values, evaluated by comparing R2, RMSE, and NASH, and the best
performance evaluated by a 2-year period groundwater hydrograph. BN models showed
many advantages, such as the easier implementation, the higher forecasting accuracy, and
the ability to deal with missing or incomplete data. Moreover, in the BN models, the
variables were modelled by means of probability distributions; this allowed the authors to
estimate uncertainty more accurately compared with other models other models [108–110].

Almuhaylan et al. [68] compared a MODFLOW model, three ANNs, and one
adaptive neuro-fuzzy inference system (ANFIS) model developed in the Saq-Aquifer,
Al-Qassim region (Saudi Arabia), an aquifer mainly characterised by medium-to-coarse
sandstone. The modelling framework was implemented for assessing the impact of
different groundwater pumping scenarios on aquifer depletion. The performance
of ANN/ANFIS models for long-term future predictions of GWL and for finding a
simple solution to the problem of undefined boundary conditions was examined. Deep
learning models, e.g., recurrent neural network or convolutional neural network, are
usually required for long-term predictions. The authors instead adopted a simple
approach by changing the targets and predictions into GWL changes instead of GWL to
develop a standard ANN/ANFIS simulation problem. Additionally, the training of the
ANN/ANFIS model was handled with the prediction of changes in GWL instead of the
direct simulation of GWL. The authors optimised the use of ANN model by choosing
different combinations of architecture (number of hidden neurons and number of layers).
The authors obtained a lower mean-square-error and a higher NSE in the training stage
of ANN and ANFIS models compared with the calibration of the MODFLOW. Despite
the hydraulic model being comparatively more reliable, ANN and ANFIS showed
excellent performance, better than the MODFLOW model in terms of NSE. The authors
did not simply remark any performance improvement of ANFIS with respect to ANN;
they showed better performance in both with respect to the numerical model.

Chen et al. [63] applied a physically based model developed with MODFLOW and
three ANN machine learning methods (ANN, RBF, SVM) to simulate the groundwater
dynamics of the middle reaches of Heihe River, northwest China. The objectives were to
assess the efficacy of machine learning models on reproducing groundwater dynamics in
arid basins and to compare results of machine learning and numerical models to verify
their applicability. The performance was evaluated by Root mean square Error (RMSE)
and Coefficient of determination (R2). As for the multilayer perceptron, the hyperbolic
tangent sigmoid transfer function was applied in the neurons of the hidden layer and the
linear transfer function was applied in the output layer; the number of hidden neurons
was identified by trial-and-error procedure. Trial-and-error was used also to identify the
number of hidden neurons for the RBF network. In RBF, the Gaussian radial basis function
was applied in the neurons of the hidden layer and linear transfer function was applied in
the output layer, respectively. As for the SVM, Gaussian function (i.e., radial basis function)
was used as a kernel function to compute the Gram matrix. Furthermore, for each of the
machine learning models, the ratio between RMSE in the prediction stage times RMSE
the in training stage was calculated as a measure of the models’ generalisation ability
(GA). Machine learning models simulated historical data with higher performance with
respect to numerical model, with the RBF model performing the best. In particular, SVM
performed the best in the training stage, while RBF in the verification stage. Machine



Water 2022, 14, 2307 14 of 31

learning models showed much less computation cost in training and prediction stages than
those of numerical model in calibration and verification stages. However, because of the
physical based mechanism, the numerical model showed a better generalisation ability.
Therefore, authors concluded that machine learning models are applicable to problems
that require a high number of model runs without considering the physical mechanisms
(e.g., optimisations, real-time models, sensitivity/uncertainty analysis).

3.3. Testing Hybrid or Ensemble Models

Hybrid modelling approaches including data-preprocessing and/or combination
of different machine learning techniques in different stages of the modelling have also
been developed in the recent years to improve the efficiency of the machine learning
methods [49].

Malekzadeh et al. [100] modelled the GWL in a well located in the arid agricultural
area of Kabodarahang Plain (Hamadan, Iran) using MODFLOW and a hybrid artificial
intelligence model. They compared an extreme learning machine model (ELM) and a com-
bination of ELM with the wavelet transform (WA-ELM), intending to improve MODFLOW
model calibration and optimise the prediction of GWL. Wavelet analysis is commonly
executed for de-noising, compressing, and decomposing input data time series in the stage
of data pre-processing. Similar to the Fourier transform, the Wavelet transform considers
time series as a linear combination of multiple base functions, and has the ability to obtain
time, frequency, and situation data simultaneously [111]. Malekzadeh et al. [100] divided
time series into several sub-series using the discrete wavelet transform (DWT), and then
used the decomposed components as input for the ELM model, instead of the main time
series. Different families of the wavelet model were evaluated by comparing the values
of R, RMSE, and BIAS, finding the mother wavelet used for the further steps. For each
of the ELM and WA-ELM models, 10 different models were defined; the best-performing
activation function and topology were chosen. As a result, the best models among the
ELM and the WT-ELM models were selected. Then, the results of the hybrid method
were compared to ELM and MODFLOW based on the MAE and RMSRE. They found that
the WA-ELM model simulates GWL with higher accuracy with respect to both ELM and
MODFLOW models.

Nikolos et al. [101] utilised ANNs to approximate a finite element model and combined
it with a Differential Evolution algorithm (DE) to determine the best operational strategy
for the productive pumping wells located in the northern part of Rhodes Island in Greece.
A 3D finite-element simulation model of the study area was initially implemented using the
Princeton transport code (PTC). The DE optimisation algorithm was successfully used for
solving the optimisation problem, since it provides a solution close to the global optimum
in a fully automated way. In the work of Nikolos et al. [101], the calls of the PTC model were
replaced with an ANN in order to overcome the time-consuming integration of the PTC
model within an evolution-based optimisation procedure. The training/evaluation data
for an ANN model were produced by the PTC model. Several numbers of hidden nodes
and training epochs were tested to adopt an optimum ANN topology. Then, the ANN was
combined with the DE algorithm to solve two different water table elevation scenarios at
the observation wells. The classic DE algorithm evolves a fixed size population npop that is
randomly initialised [112]. After initialising the population, an iterative process was started
which produces a new population until a given condition is satisfied. At each iterative step,
a newly generated element can replace each element of the population. At the end of each
run, the optimum solution was used as an input to both the PTC and the ANN models to
test the accuracy of the ANN predictions and the effectiveness of the constraints.

The results of this procedure demonstrated that the ANN can be used as a quick
surrogate model, providing very close to optimal solutions and allowing us to run an
optimisation procedure with the DE algorithm in less than a minute instead of the several
hours required to run the same process with the PTC model.
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Sahoo et al. [102] proposed an ensemble modelling framework (Automated hy-
brid artificial Neural network, HANN) comprising spectral analysis (SSA), machine
learning, and uncertainty analysis to facilitate improved GWL prediction with respect
to computationally expensive physically-based MODFLOW models. The method was
applied in two aquifer systems exploited for agricultural production (the Mississippi
River Valley alluvial aquifer and the High Plains aquifer, USA), with the aim to clarify
the influence of each climate variable on the irrigation demand and streamflow and
predict groundwater level change. The best input for the ANN was selected by a hybrid
data pre-processing method which includes: (i) decomposing the time series using
SSA to extract significant reconstructed components (RCs); (ii) selecting the best RC
of inputs by mutual information and genetic algorithm; (iii) and determining time lag
components using cross-correlation analysis. Then, the simulations from the HANN
model during the model testing period were summed to estimate the cumulative GWL
change. The HANN results were compared to regional GWL simulations coming from
MODFLOW models previously developed by many authors. HANN showed better
performance in terms of MSE. The authors highlighted that the HANN shows a high
model structure strength since it integrated a robust data pre-processing and input
variable selection technique within the ANN model for capturing the impacts of the
potential predictor variables on GWL change at observation wells.

Because the model is implemented and optimised for each well, they benefit from
training values at each well. On the other hand, while showing a lower prediction error than
the physical models, HANN cannot furnish the outputs typical of a physically-based model,
such as water balance, residence time calculations, and flux estimates. Moreover, while a
numerical model can be modified to include additional input or processes (e.g., supplied
water), introducing new parameters would require the building of a new ANN model.
Therefore, the authors concluded that each model type excels for certain applications.

Michael et al. [82] compared three machine learning techniques (DT, IDW, and ANN),
which were used in a hierarchical approach, to improve GWL forecasting by combining
data from different sources, including the results of a MODFLOW numerical model. They
used a collection of prewritten modules (set up for each machine learning model) composed
in a “data flow” program. The MODFLOW model is incorporated into the itinerary by
creating a module that returns the head prediction by MODFLOW. A hierarchy of models
was then arranged, with one model used to reduce the dimensionality of the largest
data set (called “specialty model”) and a second model (“expert model”) trained with a
combination of the remaining data and the specialty model results to obtain the optimum
predictions. After linking together the modules into a machine learning itinerary, a model
was automatically built by the itinerary from appropriate data sets to make predictions.
At first, the hierarchical approach used machine learning models as both specialty and
expert models; the results demonstrated that, based on mean predicted head errors, DT
provided the best prediction among the machine learning models, while neural networks
provided the least accurate prediction. The best machine learning model performed better
than the MODFLOW model in terms of hydraulic head predictions computed across all
observations used for calibrating the MODFLOW model. Furthermore, a very short time is
required to train DT, and their simplicity allows quick planning of on-site adaptive field
sampling. Interestingly, IDW showed a performance nearly as good as DT and IBW when
using all of the data across time. The authors concluded that the accuracy of physics-based
models can be improved by using a machine learning hierarchical approach in areas with
substantial data. Using this method allows identifying (i) advantages and disadvantages of
different machine learning approaches and (ii) which data are most significant for long-term
monitoring objectives. Secondarily, the MODFLOW model was used as a specialty model to
test the potential for machine learning methods to automatically update existing numerical
models. In many cases, such as groundwater remediation fields, it is not cost-effective to
recalibrate numerical models whenever new data become available. Instead of updating
existing models by tuning the parameters based on new data, physically based models
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are considered as one source of knowledge about the site and are integrated to historical
data using data-driven models. Results showed that, compared with the MODFLOW
model predicted errors, the mean predicted head error and the standard deviation of
predicted head error were consistently reduced with the best-combined model. This means
that the model learns a compromise between numerical and machine learning models.
Such combined hierarchies could allow an automated update of physically-based models,
expanding and adapting the prediction as new data (but also analysis and modelling
techniques) become available.

Fienen et al. [95] evaluated three machine learning techniques (BN, ANNs, and GBRT)
to train models simulating the source of groundwater to several wells. The aim of the
work was to predict local surface water impact due to new pumping wells. The regional
215,000 km2 groundwater model of Lake Michigan Basin [113] impedes the evaluation
of local-scale impacts due to the long runtime and the too-coarse grid. The solution was
to emulate the groundwater flow model using a dataset of collocated numerical model
input and output to build a statistical learning model (“metamodel”, [114]), providing
fast decision support to water managers which need to evaluate the permission to water
abstraction. In practice, the numerical model was used to generate outputs reproducing
several condition of the groundwater system; then, those outputs were used to train a
statistical model, which could be subsequently used to make predictions without the
need to run the regional model. The ability of the three techniques to extend MODFLOW
predictions to areas with few samples was evaluated. K-fold cross validation (CV) was used
to assess the models performance, as well as by hold-out data. The performance of the BN
model (evaluated by means of R2 and RMSE) was lower than the other two, and this could
be due to the fact that the continuous input and output variables were both discretised
into a small number of bins. All the three techniques can be implemented with commonly
used commercial (in the case of BN) or open source (in the case of ANN or GBRT) software.
The computational time is nearly instantaneous for all the three techniques while it takes
longer to perform cross-validation. ANN or GBRT may be the best options for managers
who need to achieve better predictive performance when a single response is considered.
BN includes estimate of the uncertainty of predictions because all variables are treated as
probability distributions. The authors concluded that the metamodelling approach is valid
over a wide range of conditions and, as a screening approach, is helpful. A limitation of
their approach is that it assumes that the response of the system to pumping rates is linear;
thus, this assumption is violated at high pumping rates.

Miro et al. [99] presented a hybrid empirical–dynamical approach application of
machine learning models to a Robust Decision Making study to evaluate the effect of
groundwater managed recharge. They developed an empirical model representing a
high-resolution MODFLOW model previously set-up in two basins located in a drought-
prone region of the American West: the San Bernardino and the Rialto-Colton basins,
San Bernardino Valley Municipal Water District (Valley District, U.S.). Inputs (recharge,
pumping) and outputs (resulting head) of the MODFLOW model were used to train three
machine learning methods (Random Forest, Support Vector Machine regression, and Artifi-
cial Neural Network) to predict the annual change in GWL. Then, the ability of machine
learning methods to simulate the output of the MODFLOW model was assessed to investi-
gate which model is capable of reproducing the best average basin conditions. Based on R2,
the most accurate results were obtained with RF. The authors concluded that RF is able to
reproduce time series trends in GWL as well as capture the variability in MODFLOW model
predictions. In that way, the authors obtained a significant reduction of computational time:
each MODFLOW run without the RF model would have taken approximately 36 years in
a standard computing environment, instead of 24 h while simulating MODFLOW with
a RF representation of the groundwater system. The procedure is integrated in a Robust
Decision Making (RDM) process: the novel application of machine learning represents an
improvement to the field of decision-making under deep uncertainty that allows reducing
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computational times and permits a greater exploration of the uncertainty space, such as
future climate changes and drought conditions.

3.4. Reducing and Correcting Model Errors by Means of Machine Learning Approaches

Despite a correctly constructed and calibrated groundwater model being able to
furnish valuable information about the system behaviour, the unaccounted uncertainty,
which is typically associated with the phases of model development and parametrisation,
can result in large localised simulation errors.

Xu et al. [79] tested two machine learning techniques (Instance-based weighting
and support vector machine regression) to correct the prediction of two physically-based
models, successfully improving the head prediction accuracy. The authors applied the
error-correcting data-driven models to temporal, spatial, and spatiotemporal prediction.
The core of the study relies on the selection of historical residuals of the physically-based
models, which were used to train the data-driven models. Then, the physically-based
model was used to make predictions, and the trained data-driven models were used to
predict the error of the predictions. Finally, the updated head was obtained by adding the
predicted error to the head simulated by the physically-based model. The procedure was
applied to two real-world groundwater flow models having different data densities and
extents of temporal and spatial structures in the error. The first is the regional Republic
River Basin (RRCA), covering portions of eastern Colorado (USA), a 79,396 km2 model [115]
developed to resolve water conflicts as growing water demand led to dramatically increased
groundwater pumping. The second is the Spokane Valley–Rathdrum Prairie aquifer (SVRP)
(USA), an 844 km2 aquifer subjected to groundwater pumping stresses. The two models
differ in various aspects, including parametrisation, calibration, grid resolution, data
density, and calibration strategy, leading to different spatial patterns in model residuals.

In the case of RRCA, data were pre-processed by cluster analysis: for temporal pre-
diction, observation wells were clustered using the agglomerative hierarchical clustering
algorithm according to their spatial location. In spatial and spatiotemporal prediction
scenarios, input data were clustered by the k-means algorithm. Each cluster was subdi-
vided into a training and a validation dataset, and data-driven models were applied to
each subset.

In the case of the SVRP model, cluster analysis was not implemented because residuals
did not show local patterns; thus, the data-driven models were applied only to the temporal
prediction scenario. In the same way, to the RRCA case study, IBW and SVR models were
built to forecast the error of the simulated head taking as input features the well location
and MODFLOW computed head; then, the updated head was computed. For both case
studies, five-fold CV was used to adjust the parameters of IBW and SVR.

The magnitude and biasedness of the prediction error (evaluated by means of ME and
RMSE) were sufficiently reduced. The authors found that this complementary modelling
framework was computationally efficient. New data can be easily incorporated into the
training dataset. Therefore, data-driven models can be used to improve the prediction of
the physically-based model for long-term prediction and under conditions different from
the one used during calibration. A limitation of this methodology is that it applies only
to physically based groundwater models with epistemic errors in the simulation results,
while it is not suitable for models with calibration error following Gaussian distribution
with zero mean and variance comparable with the observation error.

Demissie et al. [85] developed a complementary approach that integrates the calibrated
groundwater MODFLOW model with data-driven models to detect and predict systematic
errors in groundwater model simulation in a hypothetical test case based on the Argonne
National Laboratory, Illinois (USA), a site affected by groundwater contamination by
radioactive substances and volatile organic and with phytoremediation installed to clean up
the soil. Using the groundwater model residual analysis results, the authors implemented
four data-driven models (ANN, DT, SVM, and IBW) for simulating and correcting the
groundwater head predictions both in time and in space. The data-driven models were then
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used to update the head predictions. The updated models showed improved performance
compared to the MODFLOW head predictions at all observation wells in terms of RMSE
reduction. ANN performed better in updating the future predictions but required a longer
time to train the model and the definition of many parameters. IBW updates showed a
better performance in the case of spatial prediction, probably because the number of spatial
data was too small for the other three models to learn the spatial patterns of the residuals.

4. General Results

The general outcomes derived from the 16 reviewed studies are discussed, such as
the results related to the key area of model use, input variables, simulation period of
physically-based models, time step, dataset size and division, and software used.

4.1. Key Area of Groundwater Model Use

In general, machine learning models are developed to achieve a better performance in
GWL forecasting in areas where groundwater management strategies are strictly required
to ensure proper resource availability while protecting the environment and groundwater
related ecosystems. This is especially needed in areas where the aquifers have been
overexploited; where the groundwater recharge is scarce (drought-prone regions); and in
coastal areas, where groundwater is threatened by saltwater wedge intrusion. Most of
the reviewed papers (four, Figure 3) concern water planning and supply, usually at the
catchment scale. A minor number of papers (three) focus on the groundwater management
in farming systems; in coastal waters; in drought-prone regions. In two cases, machine
learning models are developed in areas with contaminant pollution and phytoremediation
plants. Finally, one paper attempted to use machine learning models to represent the
impact of groundwater abstractions on river discharge across a wide range of conditions.
From the reviewed papers, it is not possible to recommend a machine learning technique
for a specific key area of model use. ANN is the most-used technique in the case of water
planning and supply (also in drought-prone areas), followed by BN and SVM (Table 1).

Figure 3. Key areas of groundwater models use in the reviewed papers.

4.2. Input Variables Employed for Machine Learning Modelling

Figure 4 shows the input variables that have been utilised in machine learning mod-
elling. The past GWL time series are the most frequently used input variables to predict
GWL; among 16 papers, 13 employed the GWL as an input variable. The precipitation or
the net precipitation (i.e., the recharge) has been frequently used (four times the rainfall
and five times the recharge, for a total of nine times) as an input variable. Moreover, other
hydrological time series (e.g., pumping rates, temperature, evapotranspiration) have been
also employed as the input variables in the reviewed papers. Since machine learning
models can work with any data, there are many other input variables which have been
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used once in the reviewed papers, even if with less frequency (i.e., aquifer discharge, dew
point, river stage, river flow depletion, irrigation demand). It is worth noting that the input
data are commonly selected based on the availability of data rather than a physical analysis
of the system. In particular, the degree of accuracy of the prediction will depend upon
the spatial and temporal resolution of the monitoring network from which the model is
developed for making predictions. Thus, the choice of input variables is often driven by
the availability of proper time series.

Figure 4. Input variables employed for the machine learning models.

4.3. Simulation Period of Physically-Based Models

The simulation period of the physically-based models varies from 141 to 1 year; nine
physically-based models adopted a simulation period between 1 and 15 years; five physically-
based models used a run simulation period between 16 and 35 years; two physically-based
models adopted a run period higher than 35 years. In the reviewed papers, no mention was
paid to a direct relation between the simulation period length of physically-based models
and prediction accuracy of machine learning models. The size and layering of original
numerical models ranges from 204,764 km2 and 20 layers [95] to 0.75 km2 and 1 layer [55].
Results suggest that there are no machine learning techniques nor groundwater manage-
ment problems specifically suitable for a given range of physically-based size.

4.4. Time Step

The majority of the reviewed papers (8 among 16) used monthly time step for the
machine learning simulations, followed by daily and weekly (both used in two papers) and
quarterly (one paper). The time step selection was not declared in three of the reviewed
papers. The frequent choice of monthly time steps is probably justified by the large
availability of monthly recorded GWL data compared with other time steps. However,
daily time steps are needed when modelling local-scale problems, such as river–aquifer
interaction, or in some coastal water problems, where GWL are influenced by the tidal
effects which induce daily variation to GWL.

4.5. Data Set Size

The number of total data used for groundwater modelling is highly variable. In
three papers, only the number of wells was specified, without reporting the number of
measure for each well. Among the papers which declared the size of data, the data set
ranges from 300,000 sets [79] to 23 sets [96]. There is not a range of data set size which was
more commonly used: five models used a number of dataset from 23 to 301; five models
used from 1872 and 4911 datasets; four models used from 11,088 to 300,000 datasets. There
is not a direct proportion between area of the physically-based model and data sets. Usually,
smaller data sets are associated with a smaller size of the physically-based model. However,
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in some cases, large extent models (which is, larger than 10,000 km2) are covered by a
relatively small number of data (e.g., ref. [3]). There is not any recommendation in the
reviewed papers about the density of samples which optimises the model performance.
However, denser distributed training data allow achieving the best performance in tem-
poral prediction scenarios. For example, the ANNs’ ability to learn or generalise system
behaviour is limited by the data with which it is trained. Machine learning models can fail
to accurately predict GWL in areas where a scarce number of data for training is available,
and results can be worse than those of numerical models.

4.6. Subset for Machine Learning Model Training, Validation and Testing

As explained in Section 2.2.1, the data available for modelling are subdivided into a
training dataset (used during the learning phase of the machine learning model to produce a
function representing the system behaviour) and into a testing dataset (used to evaluate the
model’s performance). Some authors subdivide data in three groups: training, testing, and
validation; validation aims to check the model’s prediction ability with a new input dataset.

There is not a specific rule for determining the optimum percent of data division for
training, validation, and testing tasks. However, it can be noted that in all cases (except
Sahoo et al., 2013 [102]) the dataset for training in the reviewed papers was always at least
60% (Figure 5), reaching 95%. In the majority of the papers (9 among 16), the percent of
training dataset exceeded 80%. With regard to the testing dataset, authors use a percentage
highly variable, between 4.5% and 40%. Only three of the reviewed papers used three
subsets for training, for testing, and for validation, respectively. In these cases, the main
subset was used for training (60%, 69%, and 52%), and the remaining data were equally
distributed between testing and validation subsets or subdivided into 30% and 18% for
testing and validation, respectively. In Banerjee et al. [96], the division into validation or
testing sets was not mentioned, and the performance criteria were only mentioned for the
training data, as already reported in ref. [19]. It can be concluded that a robust machine
learning model should always be based on at least 60% of the training data, and 40% of the
testing data.

1 
 

 

Figure 5. Percentage of the training and testing datasets used in machine learning modelling. Data
from: Mohammadi, 2009 [59], Coppola et al., [3], Banerjee et al., 2011 [96], Mohanty et al., 2013 [97],
Parkin et al., 2007 [98], Moghaddam et al., 2019 [76], Almuhaylan at al., 2020 [68], Chen et al., 2020 [63],
Fienen et al., 2016 [95], Miro et al., 2021 [99], Malekzadeh et al., 2019 [100], Nikolos et al., 2008 [101],
Sahoo et al., 2013 [102], Michael et al., 2005 [82], Xu et al., 2014 [79], Demissie et al., 2009 [85].
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4.7. Used Software

Table 2 shows the number of times that each software was used to develop the ML
models. It should be noted that in 11 cases, the software was not mentioned. Matlab is the
most used software (nine times): when mentioned, the specific toolbox which adapts to
the models’ purpose is reported. In the hybrid approach of Michael et al. [82], the data-to-
knowledge D2K software was used, a java-based data mining tool from the National Canter
of Supercomputing Applications which allows for graphic data flows [116]. The results of
this review indicated that Matlab can be easily used to implement the machine learning
models; the variability and flexibility of its toolboxes clearly represent an advantage.
However, the modellers can choose a range-free software with comparable skills.

Table 2. Software used for the machine learning models in the reviewed papers.

Machine Learning
Model Software Commercial/Free n of Times

ANN

Matlab c 3
R-neuralnet package f 1

LINGO c 1
not specified 7

RBF Matlab c 1

ANFIS Matlab c 1

TLRN NeuroSolution c 1

ELM, WA-ELM Matlab, Matlab wavelet toolbox c 1

BN
Hugin Lite 8.3; c 1

netica Software, CVNetica (for cv) c 1

IBW
Matlab Statistic Toolbox TM c 1

not specified 1

SVM
Matlab Statistic Toolbox TM c 2

not specified 2

DT not specified 1

RF
R (randomForest package) f 1

not specified 1

GBRT Phyton (scikit-learn library) f 1

5. Specific Results

This section aims to furnish specific information to orient modellers choosing the
appropriate machine learning approach based either on the properties of each of the
examined model (e.g., the most used algorithms, model structure, tuning parameters:
Section 5.1) or on advantages and disadvantages arising from the comparison between
different machine learning techniques (Sections 5.2–5.4).

5.1. Properties of the Machine Learning Techniques Used in the Reviewed Papers

This section describes the results of the assessment of the machine learning techniques
mostly used in the reviewed papers: ANNs, RBF, ELM, BN, SVM, DT.

Artificial Neural Networks
An assessment of the reviewed studies on ANNs revealed the following issues:

- Feed-forward multilayer perceptron with a backpropagation learning algorithm was
the most used ANN technique in the reviewed papers.

- The training algorithms used in the reviewed papers were Levenberg Marquardt,
Bayesian regularisation, scaled conjugate gradient, quick propagation algorithm, back-
propagation algorithm, and resilient backpropagation. The most used were Levenberg
Marquardt [60,117], which integrates the advantages of two training algorithms,
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namely the steepest descent, and Gaussian–Newton methods, and searches for the
global minima function to optimise the solution [68]; some authors point out that this
is the less time-consuming algorithm.

- The transfer functions used for the hidden layer are: sigmoid, sine, hardlim, triangle
basis, radial basis, hyperbolic tangent, linear, and logistic.

- The most common structure of ANN in the reviewed papers is a feed-forward ANN
with a single hidden layer, with sigmoid transfer function in the hidden layer and
linear transfer function in output layer. The best structure and number of hidden
neurons are chosen by trial-and-error or cross-validation.

- The final structure of multilayer perceptron is usually chosen as the one resulting in
minimum error and maximum efficiency during training.

- ANNs are capable of achieving substantially higher predictive accuracy at observa-
tion wells than the physically-based numerical model, with fewer inputs and lower
developmental effort and cost. The choice of the appropriate training data size is
a key issue; it should be evaluated considering many aspects, such as the required
model accuracy, the number of connection weights, the complexity, and the level of
noise in the system [3]. Moreover, it is important to find the optimal ANN topology
ensuring satisfactory generalisation capability for any given problem. This is generally
achieved by testing different topologies and transfer functions.

Radial Basis Function
Chen et al. [63] applied the Gaussian radial basis function to the neurons of the hidden

layer and the linear transfer function in the output layer. RBF showed a better predictive
performance and its computation cost in training and prediction stages were much less
than those of numerical model in calibration and verification stages.

Extreme Learning Machine
In the work of Malekzadeh et al. [100], the number of hidden neurons for the ELM

model was optimised by trial-and-error; results showed that model prediction was not
significantly improved by increasing the number of hidden layer neurons. The sigmoid
activation function provided higher simulation accuracy. The advantages of ELM with
respect to other models are its modelling simplicity, easy coding, and quick computation
for simulations in complex systems.

Bayesian Network
In the work of Moghaddam et al. [76], a BN structure was built, generating

108 possible states. The input parameters included rainfall, GWL in the previous month,
average temperature, aquifer recharge, and discharge. The performance of BN models
was evaluated by means of the R2 and RMSE derived for all the observation points. In
Fienen et al. [95], the BN was implemented with variables that were supposed to have
the greatest influence on the source of water to wells: the distance to surface water, the
surface water percent, the distance of 1st-order stream, and the percent of 1st-order stream.
The continuous values of variables were discretised into bins; this permits performing
predictions as discrete conditional probabilities without requiring a priori assumptions
about distributions. Both the number of nodes and the number and ranges of bins were
adjusted by 10-fold cross validation, and the set of parameters resulting in highest R2 was
selected as the optimal model.

Support Vector Machine
The most used kernel function with Support Vector Machine technique was the Gaus-

sian Radial Basis Function, although several functions were tested (linear, radial bias,
sigmoid). Cross-validation was the most used method for the optimisation of parameters
(i.e., gamma value for the radial basis function and the regularisation coefficient), although
Chen et al., 2020 [63] used Sequential minimal optimisation.

Decision Tree
Three types of decision trees were used in the reviewed papers: decision trees, random

forest, and Gradient-Boosted Regression tree. In Demissie et al. [85], k-fold cross-validation
was used to optimise the DT’s pruning levels (used to reduce the complexity of the trees and
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reduce overfitting by removing redundant trees sections). Michael et al. [82] highlighted
that decision trees have the ability to incorporate different data sources; thus, existing
historical data can be combined with new surrogate or indicator data (such as rainfall) to
detect whether the new data indicate potential problems that would warrant the collection
of more traditional samples. To note, while DT provides the most accurate prediction
improvement with updated data, IDW represents a good compromise between prediction
accuracy and easy implementation. In the Random Forest model of Miro et al. [99], the
parameters to optimise were the pruning levels, the learning rate and maximum tree depth,
and the number of trees examined. Hyperparameters were adjusted generally by cross
validation. Furthermore, the RF with the number of trees providing sufficient performance
with a reasonable computational time was chosen as best model. The main advantage
of using RF model is the reduced computational time with respect to numerical models,
which allows incorporating it as a step of decision-making studies to speeds up the process.
In the Gradient-Boosted Regression Trees [95] the parameters defining the individual trees
included tree depth, shrinkage (a form of regularisation), learning rate, and maximum
number of leaves on a tree. One advantage of GBRT is the possibility to use a variety of loss
functions; Fienen et al. [95] used the HUBER loss function, an intermediate between squared
difference and absolute difference. Hyper parameters were adjusted by cross validation
with k = 10. The key tuning hyperparameters were the learning rate and maximum tree
depth. The tradeoff curves of the best set of tuning parameters were explored for each
technique; other metrics of skill/fit were calculated based on R2 score.

5.2. Comparison between Machine Learning Techniques

The comparison between different machine learning techniques in the reviewed stud-
ies showed that:

- The performance of ANN with RBF as the activation function performed the best in
simulating groundwater dynamics in arid basins, compared with ANN multilayer
perceptron and SVM [63]. In detail, SVM performed the best in the training stage,
while RBF in the verification stage; ANN’s performance was lower than these two.

- Regarding ANFIS, no improvements are remarked with respect to ANNs, although
greater performance with respect to the MODFLOW numerical model is documented [68].

- With respect to multilayer perceptron ANN, TLRNs can provide an appropriate tool
for processing time-varying information. The main advantage is that TLRNs require a
lower memory compared to multilayer perceptron, due to their lower network size.
Furthermore, TLRNs have a low sensitivity to noise.

- Compared to simple ANN, ELM showed better performance, much less modelling
time, less modelling error, and less weights norm [100].

- With respect to ANN, BN models provided easier implementation, higher prediction
accuracy, and a greater ability to deal with missing or incomplete data [46]. It allows
an uncertainty estimation more accurate than other machine learning models because
the variables are modelled by means of probability distributions. When used as a
metamodel, replacing a regional groundwater model to simulate the source of water-
to-well [95], BN showed lower cross validation predictive skill compared with ANN
and GBRT. However, the BN includes estimates of the uncertainty of predictions as
part of the technique. GBRT required the least time with respect to BN and ANN.
Thus, in this case, the choice between a statistical learning approach such as ANN
or GBRT and the BN approach depends upon the preference of the modeller and the
aims of the problem.

- When used to predict the annual change in GWL as effect of managed recharge, RF
produced the most accurate average basin GWL representation respect to observations,
compared with SVM and ANN [99].
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5.3. Results of Testing Hybrid or Ensemble Models

The use of hybrid models and a combination of techniques for data pre-processing
(described in Section 3.3) allowed a significant improvement in each modelling phase.

- ELM and WA-ELM were both used to simulate GWL in an arid basin [100]. However,
the ELM model with the db2 mother wavelet for data pre-processing showed a better
performance with a significant accuracy improvement compared with the physically-
based models.

- The hybrid approach of Nikolos et al. [101] provides a fast way to integrate the
physically-based models within an evolution-based optimisation procedure (DE al-
gorithm) by replacing the calls of the PTC model with an ANN. The ANN provides
a tool to perform an optimisation run with the DE algorithm with very short time,
serving as a fast and accurate surrogate model.

- The hybrid modelling approach HANN [102] showed a high model structure strength
since it integrated a robust data pre-processing and input variable selection techniques.

- Using machine learning models in hierarchical approach can significantly improve
the results of physics-based models [82]; moreover, by that way, advantages and
disadvantages of different machine learning models are identified and insights are
provided into which data are most valuable to long-term monitoring objectives and
which are not. In particular, Michael et al. [82] found that DT consistently provided the
most accurate predictions of hydraulic head compared with IDW and ANN. However,
when using all of the data across time, IDW showed substantial improvements. Given
that IDW is simple to use and is widely accepted among practitioners, it could be
considered as an optimum choice.

- The computational time of regional physically-based models can be substantially
reduced by introducing an empirical (or statistical) representation of numerical models;
this consists of machine learning models trained using numerical models inputs and
outputs, which can be used to make predictions of variable of interest [95,99].

5.4. Results of Machine Learning Models Used to Reduce or Correct Errors in Physically-Based Models

This section summarises the main features of the machine learning models used for
error correction and reduction (described in Section 3.4). IBW models were constructed to
correct MODFLOW models by using the position of observation wells, calculated heads,
evapotranspiration rates, and stress periods as inputs, and the residuals of MODFLOW
model as outputs [79,82]. The parameters to optimise were the values of weighting function
parameters and the number of neighbors n. Parameters of SVM models were already
described in Section 5.1. When used to correct the error of physically-based models, both
IBW and SVM have been shown to successfully reduce the magnitude and biasedness of
the prediction error. Xu et al. [79] remarked that the popularity of SVM can be attributed to:
(1) good generalisation performance; (2) always having a globally optimal solution (instead
of local optima); (3) representation of the solution sparsely by a small subset of all training
examples (Support Vectors) [87]. On the other hand, because IBW does not involve the
training process and is less affected by the size of the training dataset, it is particularly
recommended when the number of data is too small for other techniques to learn the spatial
pattern of residuals [85]. In the case of spatial prediction, the simple IBW updates the future
predictions better than DT and ANN and SVM; IBW models allow locally improving the
results, and its degree of localisation and complexity can be adjusted flexibly. Thus, when
groundwater model errors show local patterns, the application of IBW is advantageous.
When considering both spatial and temporal prediction, IBW performed roughly as well as
the more sophisticated SVM.

6. Discussion

Assessments of machine learning applications in GWL forecasting reveal that the per-
formance of such methods is comparable to, or even more accurate than, that of numerical
ones. Overall, the reviewed papers prove the capability of machine learning methods for
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capturing the nonlinear relation between groundwater and climate variables, especially
where physically-based models would be difficult to implement. Machine learning models
require a lesser number of input parameters and avoid the model building and parameter
estimation stages typical of numerical models. Machine learning models can be a valid
alternative for numerical models requiring long runtimes (i.e., complex regional models,
models simulating many different processes, uncertainty analysis, sensitivity analysis), be-
ing capable of reducing computational times without sacrificing accuracy of detail in GWL
forecasting. The very short time allows integrating machine learning models in decision-
making processes when rapid and effective solutions for groundwater management need
to be considered. Data-driven models are computationally efficient tools to correct head
error prediction of numerical models; they work for error from multiple sources, and do not
invoke assumptions on the error distribution [49]. Input data different from those used in
the training stage can be included (e.g., pumping rate, boundary conditions, etc.); therefore,
the data-driven models can be used to improve the prediction of physically-based models
under scenarios that differ from the conditions used for calibration. Moreover, machine
learning models can be applied successfully for modelling river–aquifer interactions.

Many studies exist concerning the use of machine learning models for groundwater
simulation, developed on the basis of a limited number of observation points, without
comparing results with numerical models. Conversely, the comparison of numerical and
machine learning models is still a scarcely diffused task. In these comparative studies,
each modeler uses the machine learning techniques for fixing a specific weakness of the
numerical model, or to ameliorate poor fitting between simulated and observed values; in
most cases, modellers explore different machine learning techniques to establish which one
adapts better to its scopes. However, there are currently no well-defined procedures for
the use of machine learning techniques to enhance results of numerical models, and this
can limit the diffusion of the method. Another reason can be that the modeler should be
familiar with both numerical and data driven models to correctly use both model types.
Indeed, even if machine learning modelling does not consider the behaviour of the natural
system, a certain degree of knowledge about the hydrological parameters and how they
affect the results is required in order to avoid, for example, model overfitting (which means
fitting the model to all the input parameters, preventing the generalisation ability of model,
which is, in turn, given from the parameters effectively influencing groundwater level).
In other words, the modeler should be able to manage both physically based data and
statistical distributions of data, coupling different skills: those typical of hydrogeologists
and those typical of statisticians/mathematicians. In many cases, a modeler (or a team of
modellers) can meet both these requirements, but it is not so common. In addition, machine
learning models are viewed with some skepticism by numerical modellers. Physically
based represent the technique most widely diffused and used by local administrators for
groundwater management. Usually, the results of a physically based model are improved
by the integrating new observations (when available) or by tuning model parameters in
order to modify the conceptual model. The machine learning approach, instead, aims at
detecting the inherent mechanism, increasing prediction skills without deriving this from
physical knowledge. This ‘black box’ nature, where no insight is gained into how the model
generated the solution, is not widely accepted among numerical modellers and can prevent
the use of machine learning models.

Regarding different machine learning methods to simulate the GWL when numerical
models already exist, it can be said that from this review it is not possible to make a rec-
ommendation about one particular type of machine learning model for a specific problem.
One advisable option could be testing different types of machine learning techniques in the
different phases of the GWL modelling to detect the proper machine learning method in
each stage and then couple them to achieve an optimum performance. However, hybrid
modelling such as the combination of different techniques (e.g., data pre-processing such
as time series decomposition or spatial clustering) and the hierarchical combination of
machine learning models help to improve the accuracy of prediction. Moreover, some
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of the machine learning models appear to be suitable for updating numerical models
previously calibrated, improving predictions as new data are collected (i.e., DT, [82]; IBW
and SVM, [79]). Furthermore, when using machine learning models to correct the error of
physically-based models, both IBW and SVM show better performance than DT and ANN.
However, the simple IBW allows locally improving the results, and this suggests that it is
suitable when errors show local patterns.

Some authors highlighted the main disadvantages of machine learning models with
respect to numerical models:

- The numerical models are comparatively more reliable. While showing a lower
prediction error than the physical models, machine learning models cannot return
many of the outputs of a physical model, such as flux estimates or total water balance.

- Xu et al. [79] found that data-driven models are difficult to interpret physically. The
updated head no longer conserved mass for the given model inputs, which can
confound the physical interpretation of the results and prevent understanding errors
in the conceptualisation of the groundwater system.

- Numerical models exhibit a higher generalisation ability than machine learning meth-
ods because they are based on the physics of the system [63]. Conversely, machine
learning models are applicable to problems that require a high number of model
runs without considering the physical system (e.g., optimisations, real-time models,
sensitivity/uncertainty analysis).

- Usually, while the machine learning models may be more efficacious for predicting
short-term GWL and reproducing highly localised flow impacts, numerical modelling
is more appropriate for long-term projections, or in areas where field data are insuffi-
cient for the given problem. However, it should be remarked that Almuhaylan et al. [68]
were able to use machine learning models to perform long-term prediction (up to
50 years), by training the ANN/ANFIS model for the prediction of changes in ground-
water levels instead of the direct simulation of water levels.

Thus, each type of model (numerical or machine learning) is suitable for a specific
type of problem. As suggested by many authors, numerical and machine learning models
can be successfully used as complementary to each other as a powerful groundwater
management tool:

- when few field data exist, the results of numerical models can be improved by train-
ing machine learning models, which allow to obtain accurate groundwater level
forecasting at specific observation wells;

- machine learning models cannot substitute a numerical model as one single model,
but can be used to simulate water table fluctuation at every individual observation
well with reduced computational time;

- accurate results of machine learning models in specific test sites can be used to obtain
the best GWL data required by the numerical model as input;

- the physical dynamics of the system must be sufficiently understood by the modeller
in order to identify the important predictor input variables of machine learning models.
Results of numerical models help to understand the physical system; this can help, in
turn, choosing the input parameters for machine learning models. Coppola et al. [3]
suggested using ANNs to perform a sensitivity analysis on the interrelationships
between input and output variables;

- Numerical models can simulate different scenarios, allowing for detection areas requir-
ing particular management strategies, thereby supporting the design of an effective
monitoring network, which, in turn, may improve both machine learning predictive
capability and performance.

Given the results of this review, one should evaluate the best machine learning tech-
nique based on:

- The aim of the work, for example: improvement of prediction at some well location,
numerical model error correction, numerical model updating;
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- the need to produce a probability distribution of the results and obtain uncertainty
estimation within the model, (i.e., in areas with few data);

- the availability of data for training and testing (number and spatial-temporal distribution);
- the need to speed up decision making processes and reduce the computational time;
- the degree of expertise of the modeller, which should drive the searching for a good

compromise between model complexity and prediction performance.

To note, this review only accounts for groundwater flow models; robust groundwater
flow models are the basis for setting up groundwater solute transport models. The com-
parison between physically based and machine learning models focused on groundwater
solute transport should be the subject of future research.

7. Conclusions

This study presents a review of 16 papers regarding the use of numerical models
and machine learning techniques for the prediction of groundwater level, which were
published in 10 international journals and 1 book from 2003 to 2020. Machine learning
techniques are used to improve or speed the prediction process of physically-based models,
which are developed with different codes and software, from regional to site scale, and
with data collected over time windows spanning from one to hundreds of years. Machine
learning methodologies, approximating the complex behavior and dynamics of physical
systems, allow for the optimisation of predictions of a large number of scenarios within
a short period of time, compared with the long computational time required for the cor-
responding simulation time using a numerical model. Machine learning models do not
return many of the outputs of a physical model, such as flux estimates and residence
time calculations, or total water balance. Thus, machine learning models cannot be used
to substitute numerical models in large study areas, but are affordable tools to improve
predictions at specific observation wells. Results of this review suggest that numerical and
machine learning models can be successfully used as complementary to each other as a
powerful groundwater management tool. The machine learning techniques can be used
to improve the calibration of numerical models, whereas the results of numerical models
allow understanding the physical system and selecting proper input variables for machine
learning models. Among the machine learning techniques, the hybrid machine learning
models show better results accuracy.
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