
Citation: Chen, J.; Du, C.; Nie, T.;

Han, X.; Tang, S. Study of Non-Point

Pollution in the Ashe River Basin

Based on SWAT Model with Different

Land Use. Water 2022, 14, 2177.

https://doi.org/10.3390/w14142177

Academic Editor: Katarzyna

Kowalczewska-Madura

Received: 9 June 2022

Accepted: 7 July 2022

Published: 10 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Study of Non-Point Pollution in the Ashe River Basin Based on
SWAT Model with Different Land Use
Jiashuo Chen, Chong Du *, Tangzhe Nie, Xu Han and Siyu Tang

School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China;
2201866@s.hlju.edu.cn (J.C.); 2019036@hlju.edu.cn (T.N.); 2201867@hlju.edu.cn (X.H.); 2201873@s.hlju.edu.cn (S.T.)
* Correspondence: duchong@hlju.edu.cn

Abstract: The Ashe River Basin (ARB), long known as the “Golden Waterway” in Manchu, has
become one of China’s most polluted rivers. The basin area of the Ashe River is 3545 km2 and
the total length of the river is 257 km. There have not been specific studies on land use change
and non-point pollution in the ARB region. This paper uses the ARB watershed as the study area,
simulates the watershed using the SWAT (Soil and Water Assessment Tool) model, and analyzes the
hydrological processes and the temporal and spatial changes of total nitrogen and total phosphorus
in the watershed with hydrology and water quality as the objectives under different periods of
land use to reduce pollution in the watershed and protect the environment. The results show that
the simulation of runoff, and even the R2 and NS (both the coefficient of determination and the
Nash–Sutcliffe efficiency coefficient are simulated by SWAT-CUP, which is generally used to validate
the simulation results of the hydrological model, where the closer the result is to 1, the better the
effect) of total nitrogen and total phosphorus in the watershed, are also all above 0.75 and have
good applicability during regular and validation periods. Since 2000, the simulated monthly average
total nitrogen and total phosphorus levels have progressively grown. The most polluted areas are
concentrated in the middle and lower reaches of the watershed near the main streams owing to the rise
in load per unit area caused by the collection of pollutants from the upper watershed to the watershed
outlet, and even an increase in fertilizer application due to the larger area of cultivated land.

Keywords: non-point source pollution; SWAT; land use change; total nitrogen; total phosphorus

1. Introduction

While water is a precious resource all around the world, pollution is today a signifi-
cant cultural concern, limiting long-term economic growth. The most significant aspect of
water pollution is non-point source pollution, which is the most complicated to control [1].
Because non-point source pollution is tightly tied to human activities and environmental
elements such as soil, atmosphere, hydrology, and vegetation, it is difficult to monitor it
for spatial and temporal changes [2]. Land use/cover change (LUCC) has a clear effect on
the redistribution of water resources in spatial and temporal patterns, along with changes
in the transport patterns of various pollutants mediated by water in watershed hydrol-
ogy [3]. It also causes more ecological problems, such as water environment degradation,
soil erosion, and land degradation, all of which have an impact on a society’s long-term
sustainability [4]. Due to the progressive evolution of contemporary life, which has pro-
duced the fastest increasing population, expanding urbanization, and checks and balances
on local production conditions, crop production has become one of the most challenging
operations [5]. Changes in land management and consumer preferences had a tremendous
impact on marine life, resulting in the progressive rise of water blooms and eutrophication
that were previously absent [6].

The field monitoring method, emission factor method, and hydrological water quality
modeling method are the three basic techniques for analyzing water pollution used across

Water 2022, 14, 2177. https://doi.org/10.3390/w14142177 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14142177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w14142177
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14142177?type=check_update&version=2


Water 2022, 14, 2177 2 of 24

the world [7]. Field monitoring is essential in field monitoring methods, which results
in increased labor intensity, high expense, and long periodicity, and often the precision
of pollutant load cannot be predicted owing to a variety of factors such as information
unavailability or low dependability [8]. Hydrological and water quality models have been
widely applied in surface source contamination modeling in recent years [9].

The USDA in Tamburlaine, Texas and the Texas A&M University Research Office
developed the Soil and Water Assessment Tool (SWAT), a watershed-scale ecohydrological
model [10]. SWAT is a physical, chemical, and continuous time dynamic model that
includes a variety of elements with physical and semi-empirical features. This model
allows us to simulate the hydrological cycle in a watershed by inputting various spatial
and attribute data such as changes in pollution sources, and to change a certain value to
perform a simulation for pollution, so that certain solutions can be found [11].

Chanasyk et al. utilized the SWAT model to investigate the hydrology–soil interaction
for various land use types and to determine the model’s functional properties for realistic
simulation in watersheds with low rainfall [12]. Arnold et al. adapted the SWAT model
in 1993 and applied it to the Montana watershed’s high elevation sector. Because of the
high forest cover and unique geography of the area, snowmelt is the primary supply of
water [13]. Wang et al. used the SWAT model to simulate spring snowmelt pollution
sources in the Liao River’s source area and discovered that the SWAT model performs
well in simulating seasonal non-point pollution with snowmelt. They also discovered that
rainfall and snowmelt are the main drivers of non-point pollution in cold regions [14].
Shen et al. employed SWAT to estimate nitrogen and phosphorus loads in the Three Gorges
Reservoir watershed and discovered that rice paddies and non-irrigated cropland were
the most significant sources [15]. Einheuser et al. investigated nutrient concentrations in
the Saginaw River and found that nutrient concentrations had the largest impact on river
health, confirming that this combination can forecast river health as well as specify specific
protection measures. Where the combination of conservation measures includes no-till,
residual management, and native grasses, results suggest that nutrient concentrations have
the strongest influence on all three macroinvertebrate measures. Consistently, average
annual organic nitrogen showed the most significant association with EPTtaxa and HBI [16].
Thus, the SWAT model may be employed to its full potential in the area and produce
good results [17].

A study in Thailand showed that in concepts of the land use study, it was realized that
the environment of the site was prone to flooding and water quality deterioration during
the period of drastic land use change, and that non-point source pollution increased with
land use change in almost all spatial and temporal pollution loads [18]. Studies have also
shown that farmland and grasslands are considered to be sources of pollution in cities,
while forest vegetation improves water quality and is the best filter for pollutants compared
to urban sources [19]. According to agricultural research, increased crop area and long-term
fertilizer use from Dalyan led to a slight rise in nitrogen flow into rivers [20]. Experiments
conducted in the Gachon watershed and the main watershed of the Kum-gang River in
Korea showed that the reduction in agricultural land or the difference in management
practices due to fertilizer application was accompanied by a reduction in nitrogen and
phosphorus loads [21].

In the upper San Pedro River basin, urbanization was the most significant factor in in-
creasing surface runoff and water production, while replacement of desert shrubs/grasses
with herbs was the most significant factor in reducing baseflow/seepage and leading to
increased evapotranspiration [22]. An increase in surface flow will reduce groundwater
recharge. In changing the cultivation of agricultural land to vegetated grassland or for-
est, there is some possibility of reducing the frequency of flooding, but not necessarily
the duration [23].

The Ashe River Basin (ARB) is a primary tributary of the right bank of the Songhua
River and one of the biggest and best grain production bases, located close to Harbin,
Heilongjiang Province [24]. The ARB has always had serious problems, such as low flood
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control standards, poor water environment, wasted water resources, and degraded social
service functions, with rising food production and economy from upstream to downstream,
from mountainous areas to cities, and from Class III water bodies to poor V water bodies
in terms of China’s surface water environmental quality. In the Northeast, no studies
on the combination of surface pollution and land use have been produced. Studies on
runoff response are often applied, but the Ashe River Basin is generally investigated for
hydrology, and no studies on point source pollution utilizing land use as a medium have
been conducted [25].

This paper focuses on the ARB as the research object and evaluates the non-point
pollution load of the ARB, as well as the nitrogen and phosphorus pollution load and
spatial and temporal distribution pattern under extensive land use scenarios, by using
SWAT non-point pollution model. It also serves as a foundation for technical techniques for
controlling non-point pollution in the ARB, as well as supporting the protection of water
resources and monitoring water pollution in the water source region.

2. Materials and Methods
2.1. Study Area

The Ashe River basin, which flows from Mount Maoer, is a primary tributary on the
Songhua River’s right bank. The main stream of the Ashe River is 213 km long, with a basin
area of 3545 km squared, as shown in Figure 1. The elevations in Figure 1 are in meters.
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Figure 1. Topographic map of the study area location.

The Ashe River flows into the Songhua River from Shangzhi City, Wuchang City,
Acheng District, and Harbin City, among other cities and counties, and the eastern suburbs
of Harbin City. The river flows through Acheng District for 169 km, the upper reaches
of the terrain have a large height difference, the river is fast, the river bed is narrow, the
middle reaches have a medium height difference, the river bed is slightly wide, the water
flow is slow, the downstream river bed is wide, and the river is curved.

The Ashe River is a mountainous stream that has abundant water in the summer but
freezes in winter, relying primarily on mudflats for flooding.

The watershed has a continental monsoon climate; it has less rain and more drought
in spring, and is warm and rainy in summer. In autumn, it is cooler in the morning and
evening and is easy to frost, while in winter it is cold and easy to freeze. It is cooler in the
mornings and evenings in autumn and prone to frost, and it is cold and prone to ice in
winter.
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The hydrological station shown in Figure 1 has the name of Acheng Station. It receives
an average annual rainfall of 532 mm, with June to September receiving 75% of the annual
rainfall. Spring and summer bring more southeast breezes, while autumn and winter
bring more northwest winds. The maximum wind speed for the last year has been 37 m/s,
while the average temperature has been 3.4 ◦C. The average multi-year extreme maximum
temperature is 39.2 ◦C, the average multi-year extreme low temperature is −37.3 ◦C, and
the average soil freezing depth is 1.7–2.0 m.

2.2. Data Collection

The SWAT model requires both spatial and attribute data. DEM (Digital Elevation
Model), land use maps, soil type maps, and watershed hydrology maps are among some of
the spatial data. More importantly, meteorological data are used to simulate the watershed
model’s climate and precipitation sources. The coordinate system used in this paper is
the WGS 1984. The projection coordinates are used in the UTM projection, which is called
WGS 1984 UTM Zone 52◦ N because this geographical location of the Ashe River basin
is between 126◦40′ E 127◦43′ E and 45◦05′ N 45◦50′ N. The following table lists the data
sources and basic information needed for this paper (Table 1).

Table 1. Data sources and basic information.

Data Name Data Source Data Type Basic Information

DEM Geospatial Data Cloud SRTM SRTMDEMUTM 90M

Land Use Map Resource and Environmental Science and Data Center GRID 1 km Grid data

Soil type map Resource and Environmental Science and Data Center GRID HWSD China Soil

Watershed map Google Earth - -
Meteorology National Weather Science Data Center Daily Scale 2010–2020

Measured runoff data Harbin Acheng District Hydrology Station Monthly scale 2015–2020
Measured nitrogen and phosphorus data Harbin City Environmental Monitoring Center Monthly scale 2015–2020

2.2.1. Watershed System Data

The watershed system was digitized using Google Earth software and extracted using
ArcGIS 10.2, and the watershed was divided into 36 sub-basins, as shown in Figure 2.
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2.2.2. Types of Land Use

The type of land use has a relatively large impact on the model’s simulation results,
and the land use in 2000, 2010, and 2020 were chosen due to the different changes in
each period. The study area was uniformly processed to a raster size of 90 × 90 m by
cropping it and converting it to GRID format, as shown in Figure 3. In Figure 3, AGRL
represents agricultural land, BERM represents grassland, FRST represents forest land,
URMD represents urban land, URML represents unused land, and WATR represents water.
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2.2.3. Types of Soil Data

Soil data were obtained from the HWSD China Soil District; more specifically, they
were obtained from the 1:1 million soil data provided by the second survey of all Chinese
soils in GIRD format. They were then classified by the FAO-90 soil classification system
and processed by the soil classification system. Figure 4 depicts the soil type map and
Table 2 depicts the soil classification correspondence.
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Table 2. Soil type table.

Number Full Name Soil Group

PHj Stagnic Phaeozems PHAEOZEMS
PHh Haplic Phaeozems PHAEOZEMS
PHg Gleyic Phaeozems PHAEOZEMS
LVh Haplic Luvisols LUVISOLS
LVg Gleyic Luvisols LUVISOLS
LVa Albic Luvsiols LUVISOLS

GLm Mollic Gleysols GLEYSOLS
ATc Cumulic Anthrosols ANTHROSOLS

2.2.4. Meteorological Data

Table 3 shows the 25 meteorological data stations that were chosen from the data
source with China Meteorological Science Data Center for this paper, spanning the period
1 January 2010 to 31 December 2020. Figure 5 depicts the locations of meteorological stations.

Table 3. Meteorological Data.

Number Station Number Longitude (◦) Latitude (◦)

1 pcp50851 126.05 46.41
2 pcp50853 126.58 46.37
3 pcp50858 125.56 46.04
4 pcp50859 126.17 46.17
5 pcp50867 127.21 46.05
6 pcp50877 129.35 46.18
7 pcp50953 126.34 45.56
8 pcp50956 126.46 46.05
9 pcp50958 126.56 45.32
10 pcp50960 127.23 45.44
11 pcp50962 128.02 45.57
12 pcp50963 128.44 45.58
13 pcp50964 128.48 45.50
14 pcp50965 128.16 45.26
15 pcp50968 127.58 45.13
16 pcp50979 130.14 45.16
17 pcp54063 126.00 44.58

18 pcp54065 125.39 44.32
19 pcp54069 125.48 44.10
20 pcp54072 126.31 44.51
21 pcp54076 126.56 44.23
22 pcp54080 127.09 44.54
23 pcp54092 129.24 44.36
24 pcp54094 129.40 44.30
25 pcp54098 129.28 44.20
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2.3. Model Introduction

SWAT is a watershed-scale model for assessing the effects of various land use and
management practices on water quantity and quality over time. Weather, hydrology, soil
temperature and properties, plant growth, and land management are the main components
of the phase model, and all hydrologic processes can be simulated using the water balance
equation (Equation (1)) [26].

SWt = SWo +
t

∑
i=1

(
Rday −Qsur f − ETa −Wseep −Qgw

)
(1)

where SWt is the final soil water content (mm) at time t (days), SWO is the initial soil water
content on day i (mm), Rday is the precipitation of the i-th day (mm), Qsur f is the surface
runoff on day i (mm), ETa is the evapotranspiration on day i (mm), Wseep is the infiltration
water at the bottom of the soil on day i (mm), and Qgw is the amount of water returned to
groundwater on day i (mm).

Figure 6 describes the whole process of SWAT model operation.
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2.4. Validation Criteria and Model Parameter Rates

In this paper, we choose 2 methods—decision coefficient (R2) and Nash–Sutcliffe
simulation efficiency coefficient (NS)—as the measure of model efficiency [27].
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The coefficient of determination (R2) is calculated as Equation (2).

R2 =

 ∑n
i−1(Q obs −Qavg)(Q sim −Qsim

)√
∑n

i−1 (Q obs −Qavg
)2

∑n
i−1 (Q sim −Qsim

)2

2

(2)

The Nash–Sutcliffe simulation efficiency factor (NS) is calculated as Equation (3).

Ens= 1− ∑n
i−1 (Q obs −Qsim)

2

∑n
i−1 (Q obs −Qavg

)2 (3)

Both R2 and NS are simulated and calibrated by SWAT-cup, where Qobs is the measured
value, Qsim is the simulated value, and Qavg is the average of all simulated values.

Table 4 shows the evaluation criteria for R2 and NS coefficients.

Table 4. Table of evaluation coefficient effect.

Performance Ratio R2 NS

Very good 0.75 < R2 � 1.00 0.75 < Ens � 1.00
Good 0.65 < R2 � 0.75 0.65 < Ens � 0.75

Satisfactory 0.50 < R2 � 0.65 0.5 < Ens � 0.65
Unsatisfactory R2 � 0.5 Ens � 0.5

3. Results and Analysis
3.1. Model Practicality Analysis

The relevance of the selected parameters and the values taken are presented in Table 5
by selecting sub-basin 17 as the rate determination of monthly runoff data and sub-basin 1
discharge as the simulation validation of nitrogen and phosphorus, based on the studies of
Ahmad and Chen, et al. for reference [28,29].

In this research, the model warm-up term is 2012–2014, the rate period is 2015–2017,
and the validation term is 2018–2020. Figures 7–9 depict the model simulation but also the
measured effects.
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Table 5. Meaning and value of parameters.

Number Parameter Definition Mode Value Range Target Value

1 CN2 SCS runoff curve
coefficient v 0–200 Runoff 85.2109

2 ALPHA_BF Base-flow α coefficient v 0–1 Runoff 0.171

3 GW_DELAY Groundwater hysteresis
factor v 0–500 Runoff 484.5

4 GW_REVAP
Groundwater

re-evaporation
coefficient

v 0–1 Runoff 0.1602

5 ESCO Soil evaporation
compensation factor v 0–1 Runoff 0.201

6 CH_N2 Main river Manning
system values v 0–0.31 Runoff 0.1595

7 CH_K2 Effective hydraulic
conductivity of the river v 0.01–500 Runoff 91.4918

8 ALPHA_BNK River storage factor v 0–1 Runoff 0.543
9 SOL_AWC Soil water availability v 0–1 Runoff 0.665

10 SOL_K Saturated hydraulic
conductivity v 0–250 Runoff 186

11 SOL_BD Wet capacity of surface
soil v 0.5–2.5 Runoff 2.2424

12 GWQMN Shallow groundwater
net flow coefficient v 0–5000 Runoff 2085

13 SLSUBBSN Average slope length v 10–100 Runoff 88.82

14 OV_N Manning factor for slope
diffuse flow v 0–10 Runoff 6.0979

15 LAT_TTIME Soil flow measurement
delay index v 0–100 Runoff 10.26

16 NPERCO Nitrogen permeability
coefficient v 0–1 Water Quality 0.7616

17 PPERCO Phosphorus
permeability coefficient v 10–17.5 Water Quality 12.5375

18 PHOSKD Soil phosphorus
partition coefficient v 100–200 Water Quality 144.8333

19 PSP Index of phosphorus
effectiveness v 0.01–0.7 Water Quality 0.5953

20 N_UPDIS Nitrogen absorption
distribution parameters v 20–100 Water Quality 76.5

21 P_UPDIS Phosphorus absorption
distribution parameters v 20–100 Water Quality 85.1666

22 FIXCO Nitrogen fixation factor v 0–1 Water Quality 0.9516

23 SHALLST_N Nitrate concentration in
groundwater runoff v 0–1000 Water Quality 715

24 GWSOLP
Groundwater soluble

phosphorus
concentration

v 0–1000 Water Quality 951.6666

25 HLIFE_NGW Half-life of nitrogen v 0–200 Water Quality 114.3333

26 LAT_ORGN Baseflow organic
nitrogen content v 0–200 Water Quality 1.6666

27 LAT_ORGP
Basestream

organophosphorus
content

v 0–200 Water Quality 3.6666

28 BIOMIX Biomixing efficiency v 0–1 Water Quality 0.9016

29 CH_ONCO Concentration of organic
nitrogen in the river v 0–100 Water Quality 43.5

30 CH_OPCO Concentration of organic
phosphorus in the river v 0–100 Water Quality 23.1666

31 ERORGP Organic phosphorus
enrichment rate v 0–5 Water Quality 0.2583

32 POT_NO3L Nitrate decay rate in
potholes v 0–1 Water Quality 0.425

33 ORGN_CON Organic nitrogen
concentration in runoff v 0–100 Water Quality 9.5

34 ORGP_CON Organic phosphorus
concentration in runoff v 0–50 Water Quality 14.5833

35 ERORGN Enrichment rate of
organic nitrogen v 0–5 Water Quality 2.255
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The effect of monthly simulated runoff is relatively good, as can be seen in Figure 7.
The rate period’s NS and R2 are 0.79 and 0.80, respectively, and the validation period’s
NS and R2 are 0.82 and 0.86, respectively, while Figures 8 and 9 display the simulation
effect of total nitrogen and total phosphorus, which both surpassed 0.75, indicating that
the simulation effect is very suitable for the area and can fully describe changes in soil and
water pollution in the area, which can be simulated and analyzed in some way.

3.2. Analysis of Quantitative Changes in Land Use in the ARB
3.2.1. Land Use Change

The statistics of land use area of the Ashe River Basin were carried out using ArcGIS
software’s statistical categorization for three periods of 2000, 2010, and 2020, and the land
use area changes were produced in Table 6.

The main land types in the Ashe River basin are arable land and forest land, as shown
in Table 6. In the years 2000, 2010, and 2020, 3234.92 km2 (92.4%), 3227.92 km2 (92.2%), and
3115.89 km2 (89.0%), respectively, are inhabited. The area of arable land, forest land, and
grassland has been steadily decreasing according to many types of statistics. The amount
of water, urban land, and undeveloped land, on the other hand, is gradually increasing.
Arable land shrinks the most, by 27.34 km2 from 2000 to 2010, and by 72.95 km2 from 2010
to 2020, followed by forest land, which grows by 17.89 km2 from 2000 to 2010 but then
shrinks by 38.45 km2 from 2010. From 2000 to 2020, grassland declines by 17.02 km2, while
the increase or decrease of the water area is the least among the six kinds. From 2000 to
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2010, 1.03 km2 decreased, then increased by 2.37 km2 from 2010. Both urban and unused
land are expanding, with 92.07 and 44.50 km2 added, respectively. Both land for urban use
and unused land are increasing, with 92.07 and 44.50 km2 increases, respectively.

Table 6. Land use change area statistics of Ashe River Basin from 2000 to 2020 (km2).

Land
Type

2000 2010 2020 2000~2010 2010~2020 2000~2020

Area Area Area Variation K Variation K Variation K

Cropland 1668.11 1640.77 1567.82 −27.34 −0.16% −72.95 −0.44% −100.29 −0.30%
Forest 1567.72 1585.61 1547.16 17.89 0.11% −38.45 −0.24% −20.56 −0.07%

Grassland 46.03 41.72 29.01 −4.31 −0.94% −12.71 −3.05% −17.02 −1.85%
Water 31.36 30.33 32.7 −1.03 −0.33% 2.37 0.78% 1.34 0.21%
Urban 177.8 192.61 269.87 14.81 0.83% 77.26 4.01% 92.07 2.59%

Unused
Land 9.94 9.94 54.44 0 0.00% 44.5 44.77% 44.5 22.38%

Total area 3501

Overall, the decline in arable land, grassland, and forest land is the highest, totaling
100.29 km2; on the other hand, the rise in urban land is the largest, totaling 92.07 km2.

Land use change can also be analyzed using a land use dynamic degree [30], which
uses a single land use type to depict the rate of change of that type through time, with the
formula written as Equation (4).

K =
Sb − Sa

Sa
× 1

T
×100% (4)

where K is a particular land use single land use dynamic degree during the study period,
Sa is the area of a certain land use/cover type at moment a at the beginning of the study
(km2), Sb is the area of a certain land use/cover type at moment b at the beginning of the
study (km2), T is the length of the study period, and if the unit is year, K is the dynamic
degree of a certain land use in the study area during the time period.

When K > 0, it means that the area of the type is in a gradual growth trend; on the
contrary, when K < 0, it means that the area of the type is in a decreasing trend. Meanwhile,
when K = 0, it means that the area of the type in the area has not changed during this period.

Table 6 depicts that arable land and grassland have been declining in recent years,
while unused land and urban land have been rising, forest land has been increasing and
then reducing, and watershed has been falling and then increasing. The largest increases
in the magnitude of land use from the dynamic degree in the period 2000–2010 is in
towns, with a coefficient of 0.83%, while the largest reduction is in grasslands, with a
coefficient of −0.94%. Cropland and forest land are changing at slower paces of −0.16
and −0.11%, respectively. −0.33% is a moderate rate of change in water area. The state
of undeveloped land remained stable. From 2000 to 2020 as a whole, the most significant
change, excluding the change in unused land, is in urban land, followed by grassland, with
2.59% and −1.85%, respectively. The gradual growth of urban land is closely related to the
economic development within the ARB. From 2000 to 2020 as a whole, the most significant
change, excluding the change in unused land, is in urban land, followed by grassland, with
2.59% and −1.85%, respectively. The gradual growth of urban land is closely related to
the economic development within the ARB. The dynamic degree of land use is shown in
Figure 10, which is presented by means of markers because 44.77% of unused land varies
too much from 22.38% and other values.
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3.2.2. Land Use Transfer Matrix

From the analysis of changes in land use quantities as well as dynamic degrees, only a
single change of situation can be known. However, the total area of the watershed constant,
as well as the matrix transfer table, can be evaluated by changes in land use types through
time. The land use matrix can reflect dynamic information on the change of various land
types over time and can be studied by the area transferred into and out of a certain land
area over time [31].

The matrix expression is Equation (5).

Sij =

S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

 (5)

where Sij is the area of the land use type in the i-th land use type conversion j, n indicates
the total number of land use types.

According to Table 7, the transfer out in 2000 was as follows: initially, the majority
of the arable land was transferred out to urban and forest land, with just a tiny portion
transferred out to grassland. The total area transported out was 12.73, 10.91, and 5.78 km2.
The area of forest land transferred to cropland, grassland, and urban land is 1.04 km2;
grassland is mostly transferred to forest land, with an area of 10.10 km2 accounting for
22% of grassland area; and there is essentially no change in water, urban land, and unused
land. The area of arable land transferred to forest land and grassland is equal but tiny
at 1.01 km2; forest land was transferred from arable land and grassland to 10.91 and
10.10 km2 correspondingly, and grassland was transferred to 5.78 km2 of arable land area
and 1.04 km2 of forest land area. Through arable land, forest land, and water area, urban
land was shifted to 12.73, 1.04, and 1.04 km2, respectively. Taken as a whole, the land use
transition from 2000 to 2010 was minimal since development was still in its early stages.
The most arable land, forest land, and grassland were transferred out, with 29.43, 3.12, and
11.15 km2 transferred out, respectively.
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Table 7. Land Use Transfer Matrix 2000~2010 (km2).

2000 Transfer out

Cropland Forest Grassland Water Urban Unused Land 2010 Total

2010
Transfer to

Cropland 1638.69 1.04 1.04 0 0 0 1640.77
Forest 10.91 1564.60 10.10 0 0 0 1585.61

Grassland 5.78 1.04 34.89 0 0 0 41.72
Water 0 0 0 30.32 0 0 30.33
Urban 12.73 1.04 0 1.04 177.80 0 192.61

Unused Land 0 0 0 0 0 9.94 9.94
2000 Total 1668.11 1567.72 46.03 31.36 177.80 9.94 3501

There are two diagrams in Figure 11, representing the transfer out and transfer in of
land use. We can see the same color of each transfer out by the transfer out graph, while
in the bottom one we can compare well that the transfer out part is transformed into a
different land use. For example, in the middle part of the unused land represented in red,
some of it turns into yellow for cropland and some of it turns into green for forest land.
(Figure 11).
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According to Table 8, between 2010 and 2020, arable land was predominantly turned
into forest land and towns, totaling 188.19 and 161.90 km2, respectively, with a tiny part
converted into grassland, water, and unused land. The transfer of forest land was primarily
to cropland, with an area of 221.86 km2 accounting for 14% of forest land. A small portion
of urban land was turned into arable land, but as far as the 2010 transfer out is concerned,
urban land increased by 161.90 km2, which indicates that it is tending to be urbanized.
12.60 km2 of grassland was transferred to cropland and 23.93 km2 to forest land, accounting
for 30 and 57% of grassland, respectively. The area transferred out of waters is smaller, but
even the area transferred between unused land to waters is larger, accounting for more than
half of the total. Concerning the 2020 transfer in, first and foremost, agricultural transfer in
was mostly by forest land and urban land, with areas of 221.86 and 94.57 km2, respectively.
The area shifted from agriculture to forest land totals 188.19 km2. In comparison to 2010,
the area transferred from grassland to forest land totals 188.19 km2. In comparison to
2010, the transfer of grassland is around 10 km2 less than the transfer out; the major
difference is the transfer of cropland, which reaches 161.90 km2 and will reach 269.87 km2

in 2020 (Figure 12).

Table 8. Land Use Transfer Matrix 2010~2020 (km2).

2010 Transfer out

Cropland Forest Grassland Water Urban Unused
Land 2020 Total

2020
Transfer to

Cropland 1236.47 221.86 12.60 1.93 94.57 0.37 1567.82
Forest 188.19 1316.23 23.93 6.32 10.93 1.86 1547.16

Grassland 12.63 10.24 2.73 0 3.40 0 29.01
Water 12.42 3.58 0 11.59 0.09 5.02 32.70
Urban 161.90 20.57 1.51 5.39 80.50 0.01 269.87

Unused
Land 28.48 14.94 0.86 5.03 2.74 2.69 54.44

2010 Total 1640.77 1585.61 41.71 30.33 192.61 9.94 3501

The land use changes were analyzed using the aforementioned tabular observations
of the two time periods. Table 9 shows the entire land use transfer matrix analysis for
2000–2020 to better examine the changes in land use area in the ARB.
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Table 9. Land Use Transfer Matrix 2000~2020 (km2).

2000 Transfer out

Cropland Forest Grassland Water Urban Unused
Land 2000 Total

2020
Transfer to

Cropland 1247.24 217.01 10.29 1.93 90.97 0.37 1567.82
Forest 191.07 1305.03 33.29 6.32 9.88 1.86 1547.16

Grassland 15.36 10.24 0.01 0 3.40 0 29.01
Water 13.30 2.70 0 11.59 0.09 5.02 32.7
Urban 171.82 19.77 1.51 6.27 70.50 0.01 269.87

Unused
Land 28.65 14.77 0.88 5.19 2.58 2.69 54.44

2020 Total 1668.11 1567.72 46.03 31.36 177.80 9.94 3501

Looking at the land use types in the ARB over the last twenty-one years, 191.07 km2 of
arable land transferred since 2000 has been transferred to forest land, while 171.82 km2 has
been transferred to urban land. Forest land has primarily been transferred to arable land,
with an area of 217.01 km2. Watershed is transferred into forest land, townland, and unused
land, with areas of 6.32, 6.27, and 5.19 km2, respectively. Townland is mostly transferred
out of arable land (90.97 km2), and unused land is mainly transferred out of watershed,
with an area of 5.02 km2.

According to the transfer situation in 2020, arable land is primarily transferred through
forest land and urban land, with areas of 217.01 and 90.97 km2, respectively. Forest
land is primarily transferred through arable land and grassland, with areas of 191.07
and 33.29 km2, respectively.

Grassland is transferred from cropland and forest land, which provide areas of 15.36
and 10.24 km2, respectively. Water is transferred principally through 13.30 km2 of cropland,
and urban land is transferred predominantly through cropland and forest land, which have
areas of 171.82 and 19.77 km2, respectively. The percentage of unused land has increased
from 9.94 in 2000 to 54.44 in 2020, owing primarily to population growth. The amount of
unused land increased from 9.94 km2 in 2000 to 54.44 km2 in 2020, owing mostly to the
transfer of 28.65 km2 of arable land and 14.77 km2 of forest land.

In summary, the mainland types transferred out are arable land and forest land, with
451.89 km2 and 296.69 km2 transferred out, respectively. Even though the area transferred
out of grassland is just 46.03 km2, the proportion of transferred out area is 99.9%. Cultivated
land is the primary source of transfer to other types of land (Figure 13).

3.3. Runoff Changes under Different Land Use Scenarios
3.3.1. Analysis of Simulation Results at the Annual Scale

The runoff data selected for the period from 2015 to 2020 are considered the observa-
tions for rate determination and validation in this paper. The land use in 2020 is loaded
into the SWAT model, and the yearly variation of runoff is produced by examining the
monthly scale and then the land use maps of 2000, 2010, and 2020, and reducing calculation
error by holding the other values and thresholds constant (Figure 14).

The figure indicates that the value of yearly runoff increases year after year, but the
land use map of the three phases has little or no effect on the change of runoff. The land
use in the study area has no substantial impact on runoff.
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3.3.2. Analysis of Simulation Results at the Monthly Scale

The monthly runoff simulation differs from the annual simulation in that the monthly
runoff varies positively with rainfall. The changes in land use and annual runoff are
constant and do not range much across the three time periods (Figure 15).
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On a monthly scale, the runoff volume reveals an increasing and subsequently de-
creasing tendency. The runoff volume from May to September is higher, accounting for
81% of the total annual runoff volume, and the runoff volume in the other months is low,
which is related to the Ashe River’s weather, with less rain in spring and winter and more
rain in summer, i.e., from June to September, than the rest of the year, so the net flow is also
higher. The volume of runoff is modest from January to April, begins to increase in May,
and progressively decreases after reaching a peak in July.

During the modeled years, the multi-year average monthly runoff in the Ashe River
basin is 275.5 m3/s, with the average monthly runoff in 2010 being 0.29 m3/s higher than in
2000 and 0.57 m3/s higher in 2020 than in 2010, indicating that runoff is not strongly related
to land use changes, but rather to weather changes such as precipitation, evaporation,
and seepage.

3.4. Changes in Total Nitrogen under Different Land Use Scenarios
3.4.1. Simulation Analysis of Total Nitrogen at Annual Scale

The research was carried out on an annual scale using land use data from three separate
periods (Figure 16). The nitrogen loads exported from the basin show a heterogeneous
pattern of nitrogen changes from 2015 to 2020. The land use map load for 2020, for example,
where the highest load was achieved in 2020 with a value of 1962.39 t. The lowest value
was achieved in 2015, with a value of 611.63 t. In the period 2015–2020, the average yearly
total nitrogen load was 7234.12 t.
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Figure 16. Annual load of total nitrogen under three land use phases.

When the total nitrogen load is examined over three different periods, it is clear
that the trajectory of load changes differs; the load in 2000 and 2010 increases, whereas
the total nitrogen load in 2020 first declines and then grows in the state, from 611.62 t
in 2000 to 1182.03 t in 2010. It is clear here that the influence of increased urbanization
on nitrogen begins to grow steadily larger. The changes in 2015, 2016, and 2017 are
visible in the three land use differences, but the changes in 2018, 2019, and 2020 begin to
diminish progressively.

3.4.2. Simulation Analysis of Total Nitrogen at Monthly Scales

The simulated process at the monthly scale has an increasing and subsequently de-
clining tendency, with the total nitrogen export in the research area being evaluated. This
figure demonstrates that the total nitrogen load has a clear peak in months 6 and 8, and for
the land usage in 2020, for example, total nitrogen hits 185.94 t in June and then begins to
fall until it reaches 302.80 t in August. The rainfall in the research area is mostly focused on
May to September, with only a minor fluctuation in the total nitrogen load (Figure 17).
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Overall, by studying land use in each of the three eras, it is discovered that the change
in total nitrogen also varies very little due to the small variation in land use change between
2000 and 2010. In contrast, the land use change in 2020 is more visible, and it can be seen
that as towns grow, woodlands and grasslands shrink. As towns grow and woodlands and
grasslands shrink, the nitrogen content grows. The monthly average total nitrogen load
gradually climbed from 96.71 t in 2000 to 98.68 t in 2010, and eventually to 107.59 t in 2020.
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3.4.3. Spatial Distribution Characteristics of Total Nitrogen

The three land use maps were fed into the SWAT model, which calculated the average
annual load per unit for each sub-basin in 2000, 2010, and 2020 (Figure 18). From here
on, everything written is the simulated value from the software simulation, not the actual
measured value.
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According to the estimate, the average annual load of total nitrogen per unit area usu-
ally increased, rising from 2.40 t/km2 in 2000 to 2.74 t/km2 in 2010 and 2.78 t/km2 in 2020.
The average yearly load of total nitrogen per unit in all sub-basins in 2000 may be observed
from the geographical distribution, which is normally in the range of 0–16.19 t/km2.

The more serious pollution is in the main stream’s downstream section, and the
average annual unit load of each sub-basin, namely 5, 6, 9, 11, 16, 17, and 22, is more
than 2.83 t/km2, with sub-basins 5 and 9 reaching more than 10, 10.42 and 13.47 t/km2,
respectively. Because of the smaller area of the two sub-basins and the bigger average
yearly total nitrogen load pooled, the total nitrogen per unit area of the watershed is
relatively high.

The total nitrogen load per unit in 2010 is typically more balanced than in 2000, owing
to minor land use changes and the presence of larger loads in main streams and downstream
of watersheds. For the more heavily loaded watersheds 5, 6, 9, 11, 16, 17, and 22, 2010
remains the same as 2000. The total load per unit area has dropped; however, the difference
is not especially substantial.

The total nitrogen load per unit in 2020 is more varied than in 2000, but it is also
concentrated in the watersheds of the main streams, where seven sub-basins, namely 6, 9,
11, 16, 17, 22, 34, and 30, surpass 2.83 t/km2. 34 and 30, respectively, greater than in 2000,
whereas sub-basin 5 is reduced. Sub-basins 9 and 22 were the most contaminated, with
14.89 and 12.83 t/km2, respectively. This is linked to changes in land use, human activity,
and geography. Land use changes in the Ashe River basin can be recognized as the key
factor in this study based on modeling results.

3.5. Changes in Total Phosphorus under Different Land Use Scenarios
3.5.1. Simulation Analysis of Total Phosphorus at Annual Scale

SWAT model rate determination was used to analyze changes in total phosphorus
loadings in the Ashe River basin over three time periods and then integrated into land use
maps for 2000, 2010, and 2020 (Figure 19).
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Figure 19. Annual load of total phosphorus under three land use phases.

For example, the average annual load of total phosphorus was 251.3 t in the period
of 2020, reaching a maximum of 360 t in 2020, followed by 2016 and 2015. The changes
in the total phosphorus load in three different periods were not very different, but both
had a trend of increasing year by year, with the average annual load in the 2000 period
being 198.82 t and reaching 201.21 t in the 2010 period, whereas the load in the 2020 period
gradually increased from 248.1 to 267.18 t in 2015, and then gradually decreased to 248.1 t
in 2016. The load in the 2020 era climbed progressively from 248.1 to 267.18 t in 2015, then
decreased for three years before reaching its maximum amount of 360 t in 2020.

3.5.2. Simulation Analysis of Total Phosphorus at Monthly Scales

By examining the pollutant load of total exported total phosphorus in the study area,
the monthly scale simulations were similar to the annual scale simulations (Figure 20).
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Figure 20. Annual total phosphorus monthly loadings under three land use phases.

The variations in monthly rainfall and monthly total phosphorus load are consistent,
according to the graph, and the correlation coefficient reached 0.86 by looking at the land
use map for the year 2020, showing that the two are positively associated. The total nitrogen
load created with little change in land use was similar in 2000 and 2010, showing that the
total nitrogen load generated with little change in land use is similar. Additionally, in the
2020 period, land use followed the same pattern as the previous two, but with a shift in
value. The value of total phosphorus gradually increased with the rise in rainfall from June
to September, peaking at 58.91 t in September.

In general, as rainfall increases from June to September, a huge number of pollutants
seep into rivers, lakes, and seas via precipitation, and as rainfall declines with the winter,
so do the contaminants. The monthly average total phosphorus load climbed significantly
from 16.63 t in 2000 to 16.80 t in 2010, and then to 20.97 t in 2020.
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3.5.3. Spatial Distribution Characteristics of Total Phosphorus

The average annual change in total phosphorus units for individual sub-basins of the
three phases in 2000, 2010, and 2020 was studied based on simulation results obtained by
inputting land use into the SWAT model for different periods of the three phases (Figure 21).
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The average annual total phosphorus load per unit obtained from the three stages fol-
lows the same pattern as the average annual total phosphorus, increasing from 0.58 t/km2

in 2000 to 0.60 t/km2 in 2010, then gradually increasing to 0.65 t/km2 in 2020. The more
significant pollution zones are downstream of the mainstream at the more serious pollution
sub-basins 5, 6, 9, 11, 17, and 22, a total of six sub-basins, with annual average total phos-
phorus loads in the range of 0–2.91 t/km2. Sub-basins 9 and 17 have 2.91 and 2.43 tons per
square kilometer, respectively. Sub-basin 17 exceeds 1.58 t/km2 due to its urban location
and small area, as does sub-basin 9. The bigger load in sub-basins 5, 6, 9, 11, 17, and 22, a
total of 6 sub-basins, all above 1.58 t/km2, with sub-basin 9 still having the greatest load at
2.90 t/km2, a drop of 0.01 t/km2 compared to 2000. A few sub-basins have seen an increase
in unit load, for example, sub-basin 2 has grown to 0.29 t/km2.

In 2020, the total unit phosphorus load will remain unchanged from 2010, with six
sub-basins above 1.58 t/km2. The average annual total unit phosphorus load has grown
in all sub-basins, with a particularly significant increase in sub-basin 9 to 3.5 t/km2 and
values in all other sub-basins increasing by more than 15%, with sub-basin 9 increasing by
more than 0%.

4. Discussion

We used the SWAT model to replicate the ASR area and discovered that it was able to
adapt well to the environment. The water quality and hydrological conditions are as they
should be. The only downside is that sediment exploration is not possible. The watershed
is not monitored for sediment, and sediment data are not available because of the low
sediment content in the area. Although some insensitive data were removed, the model
may be better assessed if all of the data can be studied in some way.

The ASR does not alter greatly between the 2000 and 2010 periods for the three
different periods of land use, but the decline in arable land and increase in urban land use
compared to 2020 suggests that the population is expanding, which may contribute to an
increase in urban waste and water pollution. Due to the restricted land use data, we have
decided to investigate every decade in this article; however, if we can perform a study
every year, we will be able to further explore the consequence of land use change in each
year, and whether it moves from quantity to quality. In the future, this could be a more
interesting research topic.

This study intended to analyze the analysis of diverse data under various land uses
in order to investigate the topic of land use. Because the ASR is located in Harbin’s urban
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region, its runoff volume is affected by rainfall. Harbin receives 532 mm of annual rainfall
on average, with the rainy season lasting from June to September and the runoff amount
steadily rising with the rainfall. However, when comparing land use across three years, we
discovered that the monthly runoff amount did not change significantly. The volume of
runoff has a linear relationship with rainfall—which varies with precipitation, evaporation,
and seepage—rather than a direct link with land usage.

Previous research has looked into the impact of various land uses on runoff, but
there have been few studies on face-source pollution, particularly in northeastern China.
As a result, while this paper uses the SWAT model, it examines not only runoff but also
face-source features, and we expect that it will be useful in future research.

On one hand, total nitrogen and total phosphorus both reached their maximum in
2020, as evidenced by the time change in pollution load. The reason for this is the growth
of towns and cities, which has resulted in urban waste which has not been treated in a
timely manner and has been discharged into the water, causing pollution. On the other
hand, the spatial variation of pollution load shows that the pollution in the main stream
of the watershed is more serious than that in other sub-basins, partly because sub-basin 1
is the downstream export part and the pollutants generated in the upper watershed are
collected in the main stream of the watershed and flow to the outlet to be discharged; this
is partly because the main stream is an area with a relatively large area of arable land and
when the fertilizer application increases or the fertility of fertilizer application increases, it
will cause the overall pollution load to increase.

The difference between nitrogen and phosphorus is that they differ in terms of the
value of the annual load; first of all, nitrogen is high throughout the year and develops in a
gradual upward trend, reaching a maximum especially in the year 2020. While phosphorus
belongs more moderately to the 2000 period and 2010 period, the total phosphorus content
is more average; however, in the 2020 period, the phosphorus content increases, then
decreases and increases, which is the biggest difference between the two.

The parts shown in the article are data derived from simulations performed by the
SWAT model and are not measured values. In China, for example, in the North Ru River
area, we can see that the unit load of total nitrogen is between 0 and 3.20 t/km2, while
total phosphorus is between 0 and 0.98 t/km2. In the Fu River basin, the unit load of
total nitrogen is between 0 and 10.35 t/km2, while total phosphorus is between 0 and
3.15 t/km2. In the Danjiangkou reservoir, the unit load of total nitrogen is 13.35–24 t/km2

and total phosphorus is 5.9–15.0 t/km2, while the model developed in this paper is between
0–16.08 t/km2 for total nitrogen and 0–3.54 t/km2 for total phosphorus. Since different
elevations, different climates, and different soil type conditions in each area can cause huge
changes, this study looked for areas, some larger and some smaller than the Ashe; while the
soils and meteorology do vary, this is unavoidable, but the study’s values are still within a
reasonable range. This indicates that the study’s model meets the expected effect and falls
in a moderate pollution range when compared to other similar areas [32–34].

As a consequence of the simulation findings, it is discovered that ASR contamination
grows with the growth of settlements and people. Special sewage treatment plants should
be strategically located and created to prevent pollution in the watershed by promoting
environmental protection vigorously.

It should be noted that, for starters, we can only study the reservoir and other statistics
on pollution discharge using the information now available, and we hope that future
workers will be able to acquire better data for better modeling. Second, we are unable to
get high-precision remote sensing maps; nevertheless, we expect that these maps will be
made available in the future for better analysis. Finally, the pollutant source analysis model
may be improved in order to better understand the ecosystem on which humans rely.

5. Conclusions

The SWAT model was used to analyze the simulation results of hydrological and water
quality processes in the Ashe River basin; the R2 and NS of runoff simulation for both
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the rate and validation periods were above 0.79, and the simulation results of TP and TN
were also very good, with R2 and NS above 0.75, indicating that the SWAT model has good
applicability in the Ashe River basin.

The differences between 2000 and 2010 were not significant, but they were very
different from 2020, and the changes in land use in the study area led to different changes
in runoff, total nitrogen, and total phosphorus, with the changes in runoff having no
significant effect with the differences in land use. The time influence of total nitrogen
and total phosphorus is growing, while their geographical distribution is becoming more
constant. The most contaminated regions are centered along the mainstem in the middle
and lower portions of the basin, and the load per unit area of most of the basin has been
increasing since 2000, with a few exceptions.

This article can serve as a foundation and reference for the watershed’s pollution
management and environmental preservation.
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