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Abstract: Water supply systems are essential for a modern society. This article presents an overview
of the latest research related to information and communication technology systems for water
resource monitoring, control and management. The main objective of our review is to show how
emerging technologies offer support for smart administration of water infrastructures. The paper
covers research results related to smart cities, smart water monitoring, big data, data analysis and
decision support. Our evaluation reveals that there are many possible solutions generated through
combinations of advanced methods. Emerging technologies open new possibilities for including
new functionalities such as social involvement in water resource management. This review offers
support for researchers in the area of water monitoring and management to identify useful models
and technologies for designing better solutions.

Keywords: urban water infrastructures; smart city; IoT; big data; blockchain; anomaly detection;
water demand models and forecasting; decision support system

1. Introduction

Contrary to popular belief, only 3% of the water on earth exists in the form of freshwa-
ter, of which 69% is trapped in polar ice caps and glaciers and 30% of it is groundwater. This
perspective provides an overview of the actual scarcity of this vital resource [1,2]. In this
context, urban water supply systems (WSS) have to cope with the increase in population
and growing economy [3].

Water supply systems represent a key infrastructure for modern society, defined by a
set of interconnected hydraulic components to collect and distribute water, encompassing
raw water sources, water pumps, transmission infrastructure, treatment plants, storage
tanks and distribution systems to deliver the water to the final consumers.

The sustainability of water resource management is of primary concern in the formu-
lation of large scale policies and governance mechanisms for the development of resilient
infrastructure in urban environments. A key factor for ensuring an effective management
of natural water resources is represented by the open data paradigm, that can provide a
bridge between local and global scales.

In this sense, the Open Water Data Initiative [4] was defined with the purpose of
connecting fragmented systems into a connected water data framework across the U.S. to
facilitate integration and knowledge sharing for designing large-scale solutions. The com-
mittee assembles multiple organizations from the government level: federal level (e.g., U.S.
Army Corps of Engineers, U.S. Department of Agriculture, U.S. Department of the Interior,
U.S. Environmental Protection Agency), regional, state and local level (e.g., Association of

Water 2022, 14, 2174. https://doi.org/10.3390/w14142174 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14142174
https://doi.org/10.3390/w14142174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4116-694X
https://orcid.org/0000-0002-1142-8008
https://orcid.org/0000-0001-7497-0251
https://orcid.org/0000-0002-5294-6768
https://orcid.org/0000-0002-8305-2652
https://orcid.org/0000-0003-0792-3820
https://orcid.org/0000-0002-7773-1077
https://doi.org/10.3390/w14142174
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14142174?type=check_update&version=1


Water 2022, 14, 2174 2 of 32

State Drinking Water Administrators, Interstate Council on Water Policy, National Associa-
tion of Clean Water Agencies), to the industry (e.g., American Society of Civil Engineers,
Electric Power Research Institute) and academia (Universities Council on Water Resources),
as well as professional associations (e.g., American Water Resources Association, American
Water Works Association, National Ground Water Association). The Open Water Web was
defined based on a set of layers, from data modeling, to community involvement, which is
discussed further in this review paper, as follows:

• Water data catalog: data sources and ontologies, further discussed in Sections 2.2 and 6.1;
• Water data as a service: standards, visualization and delivery, e.g., IoT, further dis-

cussed in Section 3 and Big Data, further discussed in Section 4;
• Water data enrichment: data modeling and advanced processing, e.g., AI methods,

further discussed in Section 5;
• Water data and tools marketplace: community exchange, extensions, e.g., Decision

Support Systems, Blockchain, further discussed in Sections 4 and 6.

The European equivalent is represented by the INSPIRE Directive [5], focusing on
the integration of spatial information across different domains to support environmentally
aware policy-making through open data and interoperability. The latest INSPIRE Confer-
ence was focused on the environmental agenda and sustainability, covering the political
roadmap and retrospective on the implementation and findings since the adoption of the
directive, the architectural roadmap, i.e., an overview of the new technologies and their
implications, and the Green data initiative, encouraging data-driven innovation to enable
the implementation of the European Green Deal [6].

Considering the importance of water in nearly every domain, with direct implications
in daily life, the large-scale initiatives and frameworks are supported by a considerable
research interest focused on various aspects of water resource management.

Pamidimukkala et al. [7] provide a classification of challenges in urban water infras-
tructure found in the literature, of which the most frequent ones were identified as: climate
change (environmental), aging infrastructure and improper maintenance (technical and
infrastructure), lack of infrastructure capital (financial and economic), population growth
and rapid urbanization (social). The paper also lists some of the more common models
for improving resilience of urban water infrastructure through preventive and corrective
actions: standards (GIS—Geographic Information Systems), applications (EPANET—The
Environmental Protection Agency Network), methods (Bayesian network, Monte Carlo sim-
ulation) and instruments (WNTR—The Water Network Tool for Resillience). Last, but not
least, the paper presents concrete problems that were resolved with Big Data methods
and Blockchain in various sectors (with the focus on water domain), either by using them
separately, or by interconnecting them in a hybrid architecture.

Considering the integration of ICT (Information and Communications Technology)
systems for water resource management, complex event processing (CEP) methods in WSS
focus on event streams to identify patterns in real-time, detecting leaks and anticipating
problems based on water pressure and flow, using advanced queries and policies.

To evaluate the trends in the context of this research, we extracted from Google Scholar
a number of papers published during the past 10 years debating topics related to water
and ICT systems: IoT (Internet of Things), Big Data, Anomaly Detection, Decision Support
Systems (DSS) and Smart City.

From this analysis, IoT shows the largest growth in the overall level of interest for
this subject since 2017, while the other topics are more constant since 2015, as shown in
Figure 1.

Nonetheless, the overall number of papers has increased exponentially over the
analyzed time frame, suggesting an increase in the level of interest related to water in the
context of emerging technologies.
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Figure 1. Number of papers related to the topics of interest by year published.

This review article focuses on the latest research in the domains of interest for water
infrastructure management. The numbers of referenced papers for the corresponding years
are shown in Figure 2a. As the number of papers has increased considerably since 2017,
the number of references cited in this article show a similar trend. A qualitative analysis is
revealed in Figure 2b, in the form of a word cloud generated from keywords in paper titles,
showing a balanced distribution of topics related to this review article.

(a) (b)
Figure 2. Evaluation of referenced papers. (a) Number of referenced papers by year. (b) Word cloud
from referenced paper titles.

The content of the paper is organized as follows: Section 2 introduces the concept
of smart cities in the context of water infrastructure management based on standard
frameworks and enabling ICT technologies. The section begins with an evaluation of
several review articles that present an overview of the concept using manual and automated
classification methods. Then, an overview of the technologies and frameworks for data
collection and processing is discussed. In Section 3, the integration of IoT is discussed from
the perspective of enabling technologies and frameworks. An evaluation of IoT boards
and platforms provides an overview of the enabling technologies. The multiple levels
of integration are discussed in the context of water infrastructure monitoring solutions:
sensors, platforms and applications. Afterwards, the importance of Big Data methods in
water infrastructures is presented in Section 4. With the amount of data being processed in
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real time increasing continuously, the usage of Big Data is imperative. The main concerns
taken into consideration are data security and data irreversibility. These two key aspects
can be improved by using Blockchain combined with Big Data architectures. Section 5 is
dedicated to the presentation of methods used for data analysis in water infrastructures.
As a first step, several preprocessing techniques are mentioned, which are used to eliminate
errors and noise from the input data as well as for the enhancement and normalization
of the collected data. Then, a significant part of the section discusses anomaly detection
techniques, meant to generate alerts in case of deviations from water quality standards,
in case of water consumption anomalies (e.g., caused by leaks) or in case of cyber security
attacks. The last part of the section presents water infrastructure modeling techniques used
to identify consumption patterns, hl to generate demand forecasting and to predict water
pipes failure. Section 6 emphasizes the importance of monitoring water consumption to
ensure good water supply management. Ontologies are a key factor in processing consumer
data in order to validate their consistency. Moreover, the analysis of the collected data
and the extraction of the relevant one from a large data set is essential in order to be able
to make decisions that lead to the conservation of water resources. All these aspects of
monitoring and predicting water consumption are also used in the context of drinking
water, which has a major impact on human health. Thus, the more consumers use water in
a responsible way, the more they will take care of their long-term health. The paper ends
with our final conclusions in Section 7.

2. Water Infrastructure Management in Smart Cities

Smart cities represent a modern paradigm towards improving the quality of life by
integrating intelligent systems in a large-scale context, with citizen involvement [8].

The concept of a Smart City dates back to the mid-1970s, defining an integrative
approach for urban ecosystems supported by technology. Since the mid-2000s, technological
advancement and urbanization have propelled the level of interest in smart city applications,
with more than 2,500,000 related studies listed on Google Scholar.

The level of integration between connected systems allows for multi-domain opti-
mization towards achieving higher levels of sustainability and collaboration between the
stakeholders [9].

An automated method of classifying the main interests from the smart city applications
was presented by Stübinger and Schneider [10] in their review paper that systematically
surveys the top 200 Google Scholar publications, in which, using natural language pro-
cessing combined with clustering methods, they manage to identify five relevant streams:
smart infrastructure, smart economy and policy, smart technology, smart sustainability
and smart health. These trends are further analyzed using time series forecasting, revealing
that the topic of smart sustainability was predicted to be increasing in interest over the next
few years.

Bellini, Nesi and Pantaleo [11] realized a manual classification of the identified smart
city applications, obtaining eight main categories: smart governance (e-Government,
Decision-Making Policies, Citizens’ Participation), smart living and infrastructures (Smart
Buildings, Smart Home, Smart Education, Smart Tourism and Cultural Activities), smart
mobility and transportation (private/public traffic management, dynamic routing, smart
parking, sustainable mobility, vehicle sharing), smart economy (smart business, e-Commerce,
smart retail and shopping, peer-to-peer marketplaces, peer-to-peer labor services), smart in-
dustry and production (Industry 4.0, predictive maintenance, smart manufacturing, smart
agriculture and farming), smart energy (sustainable energy, smart grids, smart lighting),
smart environment (air quality monitoring, weather monitoring, smart waste manage-
ment, smart water) and healthcare (smart hospitals, telemedicine and telenursing, e-Health
records, healthcare tracking).

In [12], an overview of research papers related to urban water infrastructure manage-
ment is presented, covering water distribution networks, nature-based solutions, urban
drainage networks and communication technologies.
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A table summary of smart city domains is presented from three different perspectives:

• Services, applications and features;
• IoT and sensing technologies involved;
• Real-world case studies.

Improving water infrastructure management in the context of smart cities requires
considerable research effort to develop effective strategies for leak detection: hardware solu-
tions (using specialized sensors [13,14], autonomous mobile robots [15,16]), modeling and
simulation models (hydraulic models [17–21], evaluating optimal sensor placement), com-
putational intelligence (demand forecast, anomaly detection, priority evaluation [22–27]),
and participative solutions (mobile crowdsensing for monitoring the environment [28]).

2.1. Technologies

A primary challenge in the context of smart cities is represented by the integration
of multiple technologies and approaches that cross different domains of activity, requir-
ing a broad perspective and understanding of the system as a whole [29,30]. Moreover,
the role of each component has to be clearly defined, in order to achieve the desired global
outcomes [31,32].

Smart cities are fundamentally supported by physical infrastructure, advanced ICT
systems and social involvement. Data collection, context awareness, advanced computation
and connectivity represent the core technological factors in smart cities [33].

In [34], the opportunities and challenges for the development of smart cities are ex-
plored in the context of four disruptive technologies: IoT [35], big data [36], AI (Artificial
Intelligence) [37,38] and blockchain [39,40]. In the context of water infrastructure, IoT repre-
sents the foundation for various applications that involve other technologies and represents
the connection between the physical infrastructure and the digital world. “Disruptive
technologies are considered key drivers in smart city progress” [34]. At the same time,
the integration of various technologies represents an important step towards improving
the quality of service in a large-scale WSS.

Wireless sensor networks (WSN) have solved many of the problems in water quality
monitoring that traditionally required manual analysis in laboratory settings [41]; therefore,
it is now common for smart water management solutions to integrate IoT technologies for
real-time remote monitoring, having a lower cost of hardware and low energy requirements.
The typical IoT architecture can be generically described by the multiple layers involved:
sensors, gateways, cloud services and dashboards [1].

An overview of wired and wireless communication technologies applicable for Smart
City environments is presented in [12], based on the data rate (1 kb/s–10 Gb/s) and trans-
mission range (1 m–100 km), classified as either LPWAN (low-power wide-area network),
mobile communication, short/medium-range or wired communication. The recommended
measurement (10 s–1 mo.) and transmission intervals (30 min–1 mo.) are provided for the
communication technologies commonly used in IoT configurations.

Considering the broad range of technologies involved in smart city water infrastructure
management, an in-depth overview of each technology is beyond the scope of this article; a
more focused perspective is presented in the following section, showing how these can be
integrated in the context of enabling frameworks.

2.2. Frameworks

A domain of convergence between the emerging technologies with applications in
water infrastructure is represented by GIS (geographic information systems), which can be
used in nearly all aspects of smart city environments, from design and planning, to moni-
toring and maintenance operations [42].

In the context of ICT applied in the water domain, EPANET is a free tool created by
USEPA (the United States Environmental Protection Agency) to perform hydraulic simula-
tions. It is commonly used in civil engineering to design well-planned water distribution
networks [43]. The software provides capabilities for simulating hydraulic behavior based
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on physical parameters and evaluating network configurations, calculating the pressure
at the nodes and the flow in the pipes by solving the mass conservation equation for each
node and the energy conservation equation for each pipe and pump.

Oberascher, Rauch and Sitzenfrei [12] present a detailed guideline for smart city
deployments of monitoring and control networks, with consideration of sustainability re-
quirements.

To encourage consumers and building owners to monitor water consumption data,
an online platform called ENERGY STAR was developed [44]. The EPA Water Score was
defined in collaboration with the the USEPA WaterSense Program [45]. To encourage
participation, the consumer can adapt according to the recommendations to achieve a better
EPA score.

To define a framework for collaborative approaches in water management, open data
represents a key paradigm for applications in the public domain. Multiple datasets can be
used for water management solutions, focusing on, but not limited to water infrastructure
in Smart Cities:

• Water Levels of Rivers and Lakes—Hydroweb (LEGOS/GOHS- Laboratoire d’Etudes
en Géophysique et Océanographie Spatiales/Géophysique, Océanographie et Hy-
drologie Spatiales) [46].

• Global Reservoirs and Lakes Monitor—G-REALM (USDA/FAS—U.S. Department of
Agriculture/Foreign Agricultural Service, IPAD—International Product Assessment
Division) [47].

• Database for Hydrological Time Series of Inland Waters (DGFI TUM—Deutsches
Geodätisches Forschungsinstitut der Technischen Universität München) [48].

• Dynamic Surface Water Extent (U.S. Department of the Interior) [49].
• Self-calibrating Palmer Drought Severity Index (CRU UEA—Climatic Research Unit

from the University of East Anglia) [50].
• Global Land Precipitation (CRU UEA—Climatic Research Unit from the University of

East Anglia) [51].
• AQUASTAT Core Database (FAO—Food and Agriculture Organization) [52].
• Precipitation (ANM—Romanian National Weather Administration) [53].

There are multiple data modeling frameworks for water management, an example
being described in the 12th Chapter of the book Data Science and Big Data Analytics in
Smart Environments [54]. The proposed framework includes a data ingestion module,
a data processing model and data visualization capabilities, providing support for real-
time applications in water resource management. The solution is based on ODC (Open
Data Cube)—an open-source framework used for processing geospatial data to provide
support for informed decisions—and CKAN—an open-source tool used by organizations
to publish datasets.

3. IoT in Water Infrastructure Monitoring

Increasing the efficiency of water supply networks is especially important in dry areas,
where drinking water is scarce. Smart water infrastructure relies on IoT systems to improve
monitoring capabilities, providing decision support for water resource management [55].

As safe water is becoming a scarce resource, water quality monitoring needs to be
automated as well, to provide real-time feedback for the operators and consumers. IoT
systems can provide a cost-effective alternative for real-time monitoring in water infras-
tructure; however, there are few papers that focus on water quality monitoring using IoT
technologies. In [56], a solution based on IoT has been developed using low-cost hardware
and open-source software and was found to be comparable to industry-standard SCADA
monitoring systems in terms of measurement accuracy.

Nowadays, IoT can be seriously considered for monitoring WDNs (water distribution
networks). Pressure monitoring is important to reduce the occurrence of leaks in WDNs,
while flow and pressure sensors are usually installed in very few locations due to the
high costs involved. Leak detection capabilities are evaluated using a sensitivity matrix
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and optimization problems are formulated to determine the optimal locations of pressure
sensors in large-scale WDNs [57].

The water quality parameters used in IoT measurement solutions include temperature,
electrical conductivity, potential of hydrogen (pH), turbidity, oxidation-reduction potential
(ORP/REDOX), free chlorine, total dissolved solids, dissolved oxygen, sodium, fluoride,
manganese, magnesium hardness, calcium hardness and hydrogen sulfide. WHO/USEPA
defines safe limits of drinking water based on these parameters.

Starting from the important aspects from the water monitoring—low cost, portability,
low energy consumption, IoT-based and real-time—and using WHO/USEPA minimum
standards for drinking water, Jan, Min-Allah and Düştegör [1] rated the related works
on a scale between 20% and 100%. A considerable number of papers were analyzed
and classified by scope: general reports, leak detection, water management, flood-level
monitoring, water level monitoring, agriculture and aquaculture, automatic control of
water pumps, water control in smart cities and water quality.

Due to the vast ecosystem of IoT technologies, frameworks and applications, the in-
tegration of various components into a large-scale ICT system is of particular interest
for water infrastructure monitoring. Multiple levels of integration can be considered,
of which the most representative for this context were defined as: sensor level, platform
level and application level.

Measurement nodes are usually required to collect data from sensors, and process
and update local displays and communicate with cloud servers. Based on the complexity
of local data processing, there are many embedded solutions available, e.g., Raspberry Pi
4 Model B, Intel Galileo Gen 2 and NVIDIA Jetson. IoT sensors and actuators in water
monitoring can be classified by their applications: water level monitoring (e.g., ultrasonic
sensors, infrared sensors, time-of-flight LED sensor, LIDAR), water leakage monitoring
(e.g., portable sensors, moisture sensors, water flow sensors) and automatic refilling of
water storage tanks (e.g., relays, power electronics) [2].

IoT connects physical devices and can be employed for real-time monitoring of water
infrastructure in remote locations. Water quality monitoring (WQM) sensors play a key role
in the overall efficiency of IoT in water quality monitoring and should follow some general
guidelines for quick installation: having built-in signal conditioning circuitry, acquired
from a reputable vendor and using adequate materials for the particular scenario.

In terms of hardware, there are multiple development kits with different real-time
and processing capabilities that can be classified as: microcontroller boards (e.g., Arduino
UNO R3, Arduino Mega 2560, Arduino Due, Arduino Nano 33 IoT, NodeMCU, ESP32,
BBC Micro: bit V2) and single board computers (e.g., Raspberry Pi 4 Model B, BeagleBone
Black, Intel Edison) [58,59].

A classification of IoT Boards is shown in Figure 3, based on the low-level interfacing
and high-level processing scores calculated from technical specifications. The latest IoT
boards available on the market were assigned to the following categories: MCU (micro-
controller boards), MCU-WS (microcontroller boards with wireless connectivity) and SoC
(system-on-a-chip boards).

The evaluation considered the interfacing capabilities, i.e., number of digital pins, ana-
log pins, UART (universal asynchronous receiver-transmitter), USB (universal serial bus),
Wi-Fi, Bluetooth, PWM (pulse-width modulation), ADC (analog to digital converter), DAC
(digital to analog converter), I2C (inter-integrated circuit), SPI (serial peripheral interface),
CAN (controller area network), Ethernet, HDMI (high-definition multimedia interface)
and processing capabilities, i.e., size of flash memory, EEPROM (electrically erasable pro-
grammable read-only memory), RAM (random-access memory), number of CPU cores,
CPU speed, architecture (number of bits) and support for modern operating systems.
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Figure 3. A classification of IoT boards.

It was found that MCU boards offered generally lower interfacing and processing
scores than MCU-WS boards, as MCU-WS boards are usually equipped with more powerful
chips to support the wireless communication protocols. Naturally, SoC boards scored the
highest in terms of processing power, and are lacking in low-level interfacing capabilities
when compared to MCU-based counterparts. The Raspberry Pi 4B shows the highest
processing score and an average interfacing score, whereas the ESP32 was found to be the
most versatile for IoT applications, showing the highest overall score.

There are many Cloud IoT Platforms that can be used for general purpose applications,
working with real-time measurements and providing configurable dashboards, such as
Blynk, Pachube, Thringer.io, Ubidots, ThingSpeak, Arduino and Adafruit.

The Ubidots Cloud platform was deployed in [60] to monitor real-time water con-
sumption in households, offering real-time notifications, reports and charts. As confirmed
in [61], smart water meters can provide detailed feedback in the context decision support
systems for sustainable water consumption behavior.

Although there are many PaaS (platform as a service), IaaS (infrastructure as a service)
and SaaS (software as a service) solutions available on the market, most offer a broad
range of features for general-purpose applications from the provider perspective. The IoT
components are commonly represented as devices, gateways, user interfaces and services.
The functional requirements involved in general-purpose IoT platforms include support
for design, implementation and operations. These characteristics were evaluated in [62],
based on the publicly available descriptions of the platforms.

A classification of IoT platforms is considerably more subjective in terms of flexi-
bility and usability from the end-user perspective. Functional requirements related to
general characteristics, i.e., primary value, availability and scalability, security and reli-
ability and connectivity can vary depending on the application type, i.e., consumer IoT
(e.g., wearables, devices, B2C products) or industrial IoT (e.g., automotive, aerospace,
manufacturing, agriculture) [63].

Some of the most advanced IoT platforms provided by large corporations, i.e., Google
Cloud IoT, Microsoft Azure IoT Hub and Amazon AWS IoT Core, were reviewed in [64],
based on a set of factors: (i) general features, i.e., scalability, availability, security and
privacy, plug and play, real-time data, storage and support; (ii) technical capabilities,
i.e., supported protocols, certified hardware and SDKs; (iii) usability, i.e., developer friend-
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liness, configuration effort and time to market; (iv) affordability, i.e., solution type and
pricing. Although every platform offered the complete set of general features, specific
technical capabilities were significantly different, each platform supporting a different
range of protocols, certified hardware and SDKs.

However, there is no universally compatible platform for specific applications in urban
water management, and custom solutions are often designed due to the inherent limitations
and risks involved in the integration of third-party solutions into a large-scale system [1].

Applications of IoT in water infrastructure monitoring include data processing capabili-
ties to enable decision support for effective resource management and maintenance operations.

Extracting demand patterns is useful in customer segmentation analysis, i.e., resi-
dential, commercial, industrial and for detecting anomalies, i.e., burst water pipes, leaks
and unauthorized consumption.

For example, Cominola et al. [65] presented a data-driven approach that revealed
water use profiles from smart meter readings, based on the difference between usage time
and volume. The proposed framework uses water-proof ultrasonic sensors, data collection
methodologies, cloud-based technologies and data analysis for detecting the status of
consumption and leaks, extracting trends and supporting decision making.

Yang et al. [66] used Autoflow as an intelligent water resources management system
that can extract the types of water usage, e.g., showering, toilet use and washing dishes,
with an accuracy of about 90%. Usually, these systems are useful to detect leaks and can go
a step forward by offering recommendations directly to consumers.

3.1. Technologies

IoT is closely related to open-source hardware and software platforms, providing
superior flexibility and lower cost when compared to traditional monitoring and control
solutions for water infrastructure management. Wireless communication can be enabled by
LoRaWAM technology for low-power, interconnected devices over medium-long distances,
or GSM/GPRS modems for long distances.

In this sense, IoT represents next-generation infrastructure, superseding SCADAs and
PLCs, and moving towards decentralized architectures that improve system efficiency,
scalability and adaptability to new workflows. Bruno et al. [56] proposed a system that
used an Arduino microcontroller as a cost-effective solution for pressure measurement,
focusing on the data collection, communication, storage and virtualization levels. Upon cal-
ibration using hydrostatic and hydrodynamic experiments, it was found to achieve a higher
measurement quality and data acquisition frequency than SCADA.

Although GSM and Wi-Fi are commonly used in water monitoring, these technologies
consume maximum power during transmission, and cannot be used continuously with
battery-powered nodes. The advancements in wireless sensor networks (WSN) have
minimized power consumption by using prescribed time intervals; however, this method
does not work for control purposes, such as operating a water pump. Singh et al. [67]
suggest a combination of wireless technologies to enable communication between local
components and real-time operation as required for more complex automation.

Communication networks suitable for water supply systems include low-power wide-
area networks (LPWAN), e.g., Sigfox, LoRaWAN and NB-IoT, which are characterized by
long-range, low energy consumption and low cost [68–70]. The large-scale adoption of
open-source technologies and platforms accounts for a growing community of developers
and a more versatile approach for real-world deployments [55].

LPWAN is especially suitable for pressure-based leak detection in urban water in-
frastructure where optimal sensor locations are not accessible for power sources. Pointl
and Fuchs-Hanusch [71], compared GPRS with LPWAN standards, using a self-developed
low-power pressure-monitoring device, having real-time application capabilities, with a
reduced cost of operation.
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3.2. Frameworks

Frameworks for water supply management address the efficiency of water supply by
leak detection, automatic meter reading, online billing and water consumption monitor-
ing. Mathematical models provide the theoretical foundation for designing effective IoT
frameworks, centered around monitoring consumption levels, leakage reporting and cost
optimization, in the context of smart cities. Monitoring water resources extends across mul-
tiple layers: device perception layer (sensor networks), information communication layer
(data acquisition systems) and application layer (processing and decision support) [72].

Applications that benefit from collecting large amounts of data from IoT networks
often require advanced computation and decision-making capabilities. The increased
connectivity of IoT systems provides the foundation of advanced AI and collaborative
applications, connecting devices and citizens in large-scale smart government strategies.

Although there are many research works focusing on either big data applications in
water management or intelligent systems for analyzing large amounts of data generated by
the sensors, few papers address the real-time operation and dynamic behavior of water
supply systems.

Gonçalves, Soares and Lima [73] propose an IoT framework for intelligent water man-
agement, called REFlex Water, using declarative processes and complex event processing
to model the water system and analyze the real-time operation.

The framework is defined for physical layer (components of the water supply system
and IoT devices), middleware IoT layer (Orion Context Broker—monitoring interface
updater, Perseo—event processor and rule enforcer, Cygnus—historical data collector,
SHT-Comet—graph visualizer, MongoDB—data storage) and application layer (declarative
business workflow, rule engine, control panel).

Pérez-Padillo et al. [55], proposed an architecture that is defined by four levels: data
collection level (using a Honeywell pressure transducer), communication level (using a
Sigfox network operator and an Arduino MKR FOX 1200 board, with a focus on energy
consumption), cloud database and analysis level (Sigfox back end, ThingSpeak platform)
and platform and visualization level (ThingSpeak platform). The prototype was installed
in Córdoba, Spain for monitoring drinking water supply in 10 municipalities. The sensors
were installed in optimal locations based on the Sigfox signal quality. The configuration
was able to quickly detect leaks and breakdowns, as well as anomalies in pump operation
by analyzing pressure measurements.

4. Big Data Methods in Water Infrastructures

Big Data is one of the technologies that created a brand new level when talking about
information. Even if we talk about structured, semi-structured or non-structured data,
relational or non-relational databases, sensors that generates data or any other IoT devices
that are able to transfer data to a central point of computation, Big Data can incorporate all
these terminologies. From data generation to data transfer, data sanitation and refinement
but also decision making based on this information, the entire process represents methods
of Big Data that can be applied in various domains. The domain of “water resources” is not
an exception and, during the last period, Big Data was successfully implemented in a lot of
software architectures.

An important aspect when talking about all these solutions, data transfer from sensors
or any other devices to the central processing point is the security of the data and how
these data cannot be manipulated in a malicious way. Another topic that can be taken into
consideration is the data persistence and how the architects ensures that these data are
not altered.

Blockchain may be a solution that can solve the previously presented aspects by its
security, transparency and irreversibility.

Initially designed as a technology in the financial sector, with limited usage through
Bitcoin, the ecosystem stated to reach its maturity in the last years and new opportunities
appeared with the new architecture. With applicability in various numbers of domains
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such as: decentralize finance, energy, gaming and much more, the technology presents
more and more interest for all sectors, including the water resource sector.

Figure 4 presents the two technologies that are discussed in this section. When talking
about Big Data, we discuss about keys term such as: big databases, remote communication,
IoT devices, various sensors (e.g., water meter sensor), data analysis, data centers, data
processing that requires strong CPU usage, wireless data transfer, artificial intelligence
and much more. On the other side, blockchain comes with linked peers, verified transac-
tions, distributed network, consensus mechanism, certified validators, decentralization,
transparency and immutability.

Figure 4. Big Data and Blockchain—Technology Overview.

Even if Big Data represents huge amounts of data that are generated and processed
with high speed and blockchain is a technology that, at the beginning of its existence,
had serious restrictions on the amount of transactions that can be processed on a concrete
time-frame, nowadays it is possible to use these two solutions in the same architecture in
order to create robust and secure applications.

4.1. Big Data Solutions

Big Data concepts have become more and more popular in recent years, since the
amount of data generated by both human actions and machines/software components
increases each day. Expanded in all the domains, and with an increasing number of
developed solutions in various sectors, this concept has challenged software architects to
find new ways to store, process and use this amount of data. On the other hand, Blockchain
comes with a new concept of decentralized architecture, increased security, transparency
providing data ownership and trust [74].

Adamala [75] described the advantages of using Big Data in water resources engi-
neering. They started by defining the “V” dimensions of the Big Data: volume (the data
that are generated: terabytes, petabytes and exabytes), velocity (the duration from the
time when data are generated until the time when it is processed and analyzed), variety
(characterized by the different types of data that can be processed: unstructured or struc-
tured, relational or non-relational), veracity (referring to data accuracy) and value (the
value added by Big Data usage for a concrete set of data). All these data require a lot of
attention and strong processing techniques based on well-defined algorithms and very effi-
cient optimization in order to create valuable systems that can determine or make actions
in an (semi-)autonomous manner. Regarding analyzing techniques that are used in Big
Data, the author enumerated: A|B testing, classification, cluster analysis, data integration,
data mining, ensemble learning, genetic algorithm, machine learning, natural language
processing, neural network, network analysis, optimization, pattern recognition, regression,
sentiment analysis, signal processing, spatial analysis, statistics, simulation, time series
analysis and visualization. Some examples of Big Data usage in the water domain can
be irrigation solutions with monitoring sensors and real time data processing or water
pollution prevent system that could be easily used to report faster any incidents, but also
many other applications in the water decision support system or other sub-domains.
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Part of the previous presented tools and technologies were used in the article posted
by the authors of [76]. In this paper, they presented a Big Data solution combined with
some computational technologies approach regarding ways of improving the process of
water pollution minimization. One of the tools that they provide as example in SAGIS
(Source Apportionment GIS) tool used to link all the factors: human health, wastewater,
environment and chemical substances that are thrown in the water and produce a big
impact in the entire ecosystem. Even if the Big Data technologies evolved so much in
the last period, there are still some limitations and a lot of space for improvements when
talking about the water sector.

The importance of water treatment is also discussed in [77]. The authors concluded
that the development process for a solution that aims to improve the water sector is more
complex than others due to a multitude of factors, the amount of data that can be collected
from various sensors (quality sensors, water flow sensors, environment sensors) become
hard to be parsed and analyzed; however, once the system is improved and developed, there
is a consistent additional value that will be added in the water management workflows,
decision making and water treatment processes.

4.2. Big Data and Blockchain Solutions

To accomplish a higher standard of security and privacy, when talking about Big
Data, Es-Samaali, Outchakoucht and Leroy [78] designed a solution that uses blockchain in
order to facilitate the access to the data, naming the solution an access control framework.
According to the same paper, even though there are new technologies and tools that can
be used in this domain (Spark, Hadoop, NoSQL), there is still an increasing demand for
ensuring that the applications are robust and secure but also to minimize the potential
attacks that may happen. In this context, blockchain allows solutions based on peer-to-peer
communication, where there is no need for a central authority to validate all the operations
and the actions happening by consensus mechanisms.

The increased security of blockchain architecture may be used also in water irrigation
systems [79]. Starting from a previously designed project named SWAM (smart water
management), the authors added the blockchain infrastructure as an additional layer of
trust by authorizing the device and improve the security of the sensors that are monitoring
the water quality and the communication between the sensors and the gateway. Further,
an important aspect that was taken into consideration is the fact that by using blockchain,
the amount of data that is transmitted from the nodes to the platform is not modified.

An important water-related sector where blockchain technology can be used is waste
water management. Hakak et al. [80] designed an architecture of a blockchain solution
based on initial case studies and presented all the requirements in order to integrate this
technology in the waste water/pollution preventing domain.

Another important sector where Big data and Blockchain can be used is in the context
of Smart Cities. According to Yu, Yang and Sinnott [81], an important aspect in the Smart
Cities environments is the way of validating and auditing all the data that are transmitted
by various systems and applications. Big Data are generated by a multitude of sensors,
devices, IoT components and so on, and all the data should be audited in an optimized
way, since the performance of the audit system determines the performance of the used AI
architecture. The Big data auditing schemes raised more and more attention during the
last period and this is why the authors of this paper designed an optimized solution based
on blockchain with decreased costs (especially on computations) in comparison with the
existing schemes.

Even if the usage of these two technologies together (Big Data and Blockchain) seem to
be hard to accomplish, Hassani, Huang and Silva wrote the article named “Big-Crypto” [82],
in which these two concepts are presented and linked together based on concrete solutions
or proposed architectures. The aim of that paper is to review what has been studied in
these areas and evaluate solutions in real domains.
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The expansion of Big Data technologies impacted most of the sectors, with concrete us-
age in energy [83], banking [84], analysis [85] or forecasting [86]. Further, various solutions
are used in the decision making systems, risk management and water management systems.

Mystiko [87] is another approach of combining blockchain with Big Data, built over
Apache Cassandra in order to allow high scalability and full text search. The architecture
of this solution is composed by multiple micro-services and each service handles small
pieces of the application: storage service, miner service, chain service, Kafka and Etcd
(service registry).

As mentioned in the previous subsections, one of the most aspects that may be taken
into consideration when using blockchain is the scalability. This is an ongoing impediment
that causes a lot of troubles from analysis to the implementation of Blockchain–Big Data
solutions, regardless of the domain. A possible solution that uses Hadoop Ecosystem
was designed by Sahoo and Baruah [88] and their solution was to shift the validation of
the blocks after the blocks were added into the distributed database. Even if the added
blocks are invalid, these blocks are kept in the chain to maintain the immutability and
the validation/voting process is performed afterwards. Based on Hbase infrastructure,
the solution produced good performance metrics, with about 5900 transactions per second
for a test infrastructure with eight nodes.

5. Data Analysis in Water Infrastructures

As more data are readily available from smart water monitoring systems, there is
need for techniques that extract meaningful information from raw data series, to be used
in decision support systems. Data analysis in data collected from urban water infrastruc-
tures comprises preprocessing steps, feature extraction, anomaly detection (for signaling
abnormal events), pipe failure prediction, water demand modeling and forecasting.

5.1. Data Preprocessing

Irrelevant, noisy or unreliable data have negative effects on the information extracted
using any type of data analysis technique. For this reason, raw data need to be transformed
through a series of preprocessing steps into datasets that are ready to be analyzed. Data
preprocessing techniques include data cleaning, normalization, transformation, scaling,
reduction and so on [89].

Sets of data obtained by monitoring urban water infrastructures, such as water quality
data or water consumption data, are usually represented as time series or the observation
points are time-correlated and the values are mainly sensor readings. As presented in [90],
time series are susceptible of several errors due to faulty sensors or due to transmission issues:

• Missing data—the number of recorded values in a period of time is smaller than the
expected one;

• Duplicate data—there is more than one value with the same timestamp (duplicates
are removed from the dataset);

• Irregular time steps—a data record does not respect the expected time interval between
consecutive data records (values will be filled in by interpolation);

• Sensor failure data—faulty sensors will generate erroneous data that will appear as
outliers in a dataset.

To address these problems, various data cleaning techniques are used.
Missing data can be filled in by using estimated average values, predefined default

values or through prediction. Kofinas, Spyropoulou and Laspidou [91] propose a method-
ology for synthetic household water consumption data generation, which they use to fill
in missing data in real datasets. In the presented algorithm, distributions of incidents
(incidents are defined as periods of time when water is used inside a household) and
flowrates are generated based on real water consumption data. These distributions are
later used to generate synthetic incidents and flowrates. Finally, to be able to create water
incidents that last a few minutes, clusters of incidents are generated by using the law of
inverse square distance. In other cases, such as the one presented in [92], missing data
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are interpreted as a failure of the sensor and data related to that sensor is removed from
the dataset.

Outliers generated by faulty sensors can be filtered out by applying lower and upper
thresholds. More advanced filtering techniques are sometimes required to remove outliers
and noise. In [93], for example, outliers and noise values are removed by using the
box–whisker method and the discrete wavelet transform.

More data preprocessing techniques are specific for the preparation of datasets used
for machine learning. Transformation, normalization and dimensionality reduction are
used in [94] before discovering water consumption patterns through clustering and cluster
classification. At first, raw water consumption data are transformed into 24 h consumption
columns, so each data point is a weekly mean. Then, a min-max scaler is applied to nor-
malize data. Finally, to improve clustering and classification performance, ‘t-distributed
stochastic neighbor embedding’ is used to transform the 24 column normalized data into
two column data. Two steps of transformation and normalization are applied on raw data
in [95], to discover interconnections between urban water and energy usage. The first trans-
formation step aggregates monthly data into annual data. In the second step, annual water
consumption data are transformed in water consumption per person. In the last step, min-
max normalization is used in order to increase the performance of the clustering technique.

5.2. Anomaly Detection Techniques

Anomaly detection techniques are used for different purposes in water infrastructures,
from detecting water quality problems, such as pollution in ground waters, rivers or water
cleaning facilities, to infrastructure issues such as malfunctioning meters, sensors or water
leaks, to disruption in consumption patterns or cyber security-related events. As follows,
we review anomaly detection methods for three categories of objectives: to detect events in
water quality data, to detect disruptions in water consumption patterns and water leaks
and, finally, to detect cyber security issues.

5.2.1. Water Quality

There are two main directions of research for anomaly detection in water quality data:

• Detection of water contamination in rivers;
• Detection of water contamination in water distribution systems.

The two directions differ in terms of data characteristics and variability, water pa-
rameters regulations, anomaly types and more. For this reason, the methods applied for
anomaly detection are different.

Leigh et al. [96] present a framework for automated anomaly detection in water-quality
data, developed for monitoring of rivers, through a remote sensor system. The first step
of the research was to identify and define the different types of anomalies that may be
detected in the quality of the rivers’ water, such as: large sudden spikes, low variability
of parameters, constant offset, high variability, impossible values, drifts, out-of-range
values, missing values, etc. Depending on the anomaly type and the type of the measured
parameter, the authors propose different approaches, from rule-based methods, toward
regression-based time-series analysis and feature-based methods. The authors conclude that
a combination of the proposed methods is likely to provide better results while minimizing
false detection rates.

The authors of [97] focus on anomaly detection on data collected from a water cleaning
facility. They adapt a data-mining and clustering algorithm called ADWICE (Anomaly
Detection With fast Incremental ClustEring [98]). The basic idea of the algorithm is to
identify, in the training phase of the algorithm, a set of clusters considered “normal cases”
in a multi-dimensional space. An anomaly is considered a multi-parameter observation
that does not fit in a normal cluster. As the paper shows, the complexity of the anomaly
detection procedure is given by the fact that water quality parameters may have seasonal or
cyclic variations that should not be mistaken with variations caused by true contamination.
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Dogo et al. [99] analyze supervised machine learning methods used for anomaly
detection in quality measurements collected from water distribution networks. The authors
group these methods in traditional machine learning, extreme learning and deep learning
methods and compare them using F1 score as the metric. They conclude that a solution
based on SVM has the best results but it has the important drawback of being time and
memory-intensive during training. Hence, Dogo et al. propose a hybrid method that
combines deep learning for feature extraction and extreme learning for decision making.

In [100], the authors propose combining several preprocessing and resampling meth-
ods with different classifiers in an ensemble learning setup to address the problem of using
imbalanced data sets for supervised machine learning. The paper contains an extensive
study of the performance of each combination of methods in the ensemble and their re-
spective training time. The conclusion is that dynamic classifier selection techniques can
improve classifiers’ ability to learn from imbalanced datasets.

Shalyga, Filonov and Lavrentyev [101] evaluate the possibility of using artificial neural
networks (ANN) for anomaly detection in water distribution infrastructures. In order to
find the most efficient network configuration for a given dataset, a genetic search algorithm
is proposed. For experiments, the authors are using the secure water treatment (SWaT)
industrial control system (ICS) testbed dataset. The basic idea behind the anomaly detection
is to compare evolution in time of the parameters in the given dataset with the values
predicted through the neural network. The authors use different filtering techniques (e.g.,
exponentially weighted smoothing, mean p-powered error, weighted p-powered error, etc.)
in order to reduce the effect of noise or erroneous readings. The goal of the genetic algorithm
is to configure the settings of the neural network: the number, type and dimension of layers,
the weights and initializes, the type of activation functions used, etc. Finally, the authors
evaluate the relevance of different performance metrics in the case of anomaly detection
in water quality, demonstrating that the numenta anomaly benchmark (NAB) seams the
best choice.

Muharemi, Logofătu and Leon [102] evaluate the impact of imbalanced datasets on
several machine learning methods for detecting anomalies in the water quality data, such
as: logistic regression, linear discriminator analysis, support vector machines (SVM), ANN,
deep neural networks (DNN), recurrent neural networks (RNN) and long short-term
memory (LSTM). Their conclusion, based on the conducted experiments, is that all of these
methods are greatly affected by imbalanced datasets, but the largest vulnerability was
observed for DNN, RNN and LSTM.

5.2.2. Water Consumption

Compared to water quality data, water consumption data are more easily available
through smart meters; however, there are less available labeled datasets. As a result, many
anomaly detection methods are based on pattern identification/classification or are based
on rules.

Vercruyssen et al. [103] propose a semi-supervised anomaly detection method, which
they use to detect water leakage in supermarkets. The authors argue that in many real cases
supervised learning is not feasible because of the lack of properly labeled data; therefore,
an anomaly is considered a sample that deviates significantly from the clusters considered
normal. Such an approach, however, may generate false positives for rare cases of normal
behaviors; therefore, the authors propose a constrained clustering-based semi-supervised
method. The idea is to start as an unsupervised learning method and that, as a high volume
of data is collected, corrective measures are applied. The authors propose equations for
computing the anomaly score, point deviation, cluster deviation and squashing function,
which are used to improve the detection capability of the system. The proposed method
outperformed previous methods, which were based only on unsupervised learning.

Patabendige et al. [92] propose a method to detect anomalous water use for non-
residential water users. The algorithm calculates an anomaly score for each day, based
on ten features of daily demand and its historical context. The score is calculated taking
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into consideration the K-nearest neighbor (KNN) neighborhood. The authors use calendar
contexts within the anomaly detection algorithm. A calendar context for a day d is a
subset of days from the database D that would be expected to have similar water use as
d. This allows them to give possible causes to the detected anomalies. The score and its
explanations are posted to users to help them track down the physical causes of anomalies.

Fuentes and Mauricio [104] propose a water leak detection algorithm based on rules,
historical context and user location. The algorithm covers 10 possible water consumption
scenarios between normal and anomalous consumption. Five anomalous cases are checked
to detect leaks: negative consumption value, continuous consumption in last 24 h, three
similar consumption values in a row, high consumption compared to past behavior and
user’s presence at home.

The authors of [94] use clustering and cluster classifications techniques based on
K-means and KNN to discover water consumption patterns and argue that certain patterns
expose water leaks inside households.

5.2.3. Cyber Security

Another important objective for anomaly detection in water infrastructures is the
discovery of cyber security issues.

Ramotsoela, Abu and Hancke [105] make a survey of anomaly detection techniques
used in critical water infrastructures, with the focus on intrusion detection. The authors
classify the different detection methods into parametric and non-parametric methods,
based on the methods’ requirements of a-priori knowledge. The authors also analyze the
feasibility of using different basic classification and search techniques for anomaly detection,
such as: SVM, KNN, ANN, genetic algorithms and hybrid systems. The final part of the
paper presents different approaches used for detecting anomalies in water infrastructures,
such as data integrity attacks, denial of service (DoS), data tampering and node misbehavior.
The conclusion is that complex detection methods that need a training (learning) phase
use a high volume of normal and abnormal traffic, which in many cases is not available.
Anomalies are less frequent in real infrastructures, which generate imbalanced training
sets; therefore, the authors propose experimental setups where anomaly injection can
be simulated.

Guathama, Somu and Mathur [106] propose a multilayer perceptron model to identify
cyber-attacks against a water treatment infrastructure. In the first step, a temporal model of
the system is built using a multilayer neural network. Then, parameter values are predicted
based on the obtained model. In the final step, the CUmulative SUM (CUSUM) method
is used to detect abnormal deviations between the observed and predicted sensor values.
The main challenge of this research was to properly establish a threshold beyond which an
anomaly is considered and the elimination of false positives caused by noise.

5.3. Water Demand Models and Forecasting

One of the challenges of water management in urban areas is water demand fore-
casting. To obtain good results, there are several problems that need attention in this area
of research:

• Understanding the factors that influence water demand;
• Providing models and discovering patterns for water consumption;
• Being able to detect and handle changes in water consumption patterns.

5.3.1. Factors That Influence Water Demand

Many factors have impact on water demand forecasting [107–109] for industrial,
commercial, public and residential customers: housing density, the dynamic of population
growth, the water supply system capacity, water prices, the income of customers, climatic
conditions and so on.

Rinaudo [109] shows that land-use planning factors such as housing density greatly
influence residential water use. Moreover, in the case of single-family houses with outdoor



Water 2022, 14, 2174 17 of 32

pools or gardens, climate conditions add to the factors that increase water use. Another
factor that influences water demand is climate change through increasing temperatures
and declining rainfall [109].

Abu-Bakar, Williams and Hallett [107] identify the factors that influence water demand
and group them into: environmental, psychological and contextual factors. Environmental
factors, including climate, geography, seasonality and population growth mainly influence
aggregate water demand. Contextual factors such as plot and building size, outdoor usage,
occupants profiles (age, gender, education), metering and psychological factors (awareness,
knowledge, conservation behavior) have impact on household water consumption.

5.3.2. Water Consumption Patterns

Being able to provide water consumption models for urban areas is essential for the
management of water resources, because they play an important role in the process of
estimating aggregated water demand and peak consumption periods. Moreover, models
are used to generate synthetic data in simulations, when high frequency data obtained
through smart monitoring devices are not available. Kossieris and Makropoulos [110]
define statistical models for residential water demand using 15-min and hourly water
demand data recorded in 20 households. The authors define a probability density function
and cumulative distribution function that describe the water demand process. Furthermore,
they explore the statistical properties of the dataset (mean value, standard deviation,
skewness, etc.) of the dataset and its variations (seasonal and daily). Finally, the authors
evaluate probabilistic models that best fit their data, concluding that Weibull, Gamma and
Lognormal distributions perform the best.

A different approach is presented in [111], where household water consumption is
estimated by using an agent-based behavioral model, through simulation. Household
occupants are modeled as agents with different water use and presence (at home) behav-
ior. Agent’s behavior and daily activities are modeled using state machines. Alvi and
Sarjoughian argue that their agent-based simulation approach can be used for policies
planning in the absence of high resolution water consumption data.

A higher number of solutions are based on discovering patterns in water consumption
data trough clustering [112–114]. Dziminska et al. [112] apply two clustering methods, hi-
erarchical agglomeration and K-means, to build histograms of diurnal water consumption
for apartment buildings. They discovered at most three different consumption patterns
for a single building and concluded that water use was different during work free days.
Abu-Bakar, Williams and Hallett [113] discover four distinct water consumption patterns
through K-means clustering and KNN classification. K-means clustering was applied
after determining the optimum number o clusters (k) using the elbow method. They
label the clusters according to the predominant peak demand time and discover that pat-
terns that contained multiple peaks during the day were more prone to internal leaks.
Rahim et al. [114] conducted clustering experiments on two datasets derived from raw
digital water metering data, one containing engineered features set and another one con-
taining weighted probabilities of water use events (shower, tap, toilet, etc.) that occur at
three different time intervals (15 min, 30 min, 60 min). Their conclusion was that K-means
clustering works better on the engineered features dataset, whereas on the other data, the
number of clusters depends on the type of water use event, the type of day (weekend, week
day), profiling interval and probability of use.

5.3.3. Analyzing Water Consumption Changes

It is very important to have methodologies for estimating the impact of newly intro-
duced rules and regulations on water consumption models, to be able to rapidly adjust
to increasing water demand. The recent COVID-19 pandemic created the opportunity to
assess the impact of spread-prevention actions and population behavior changes on urban
water consumption and to create methodologies that support water resources planning
and management.
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Several papers investigate water consumption pattern changes due to COVID-19
pandemic [94,112,115,116] from different perspectives. Some of them provide methods to
support water demand management strategies and water leak detection [94,112], while
others try to identify connections with altered behaviors [115] or with new regulations
issued by government authorities [116].

Kalbusch et al. [116] apply Wilcoxon and Kruskal–Wallis statistical tests and Prais–
Winsten regression models on data collected from IoT monitoring systems to assess water
consumption changes in both residential and non-residential areas of Southern Brazil.
Through this analysis methods, they observe a decrease of up to 53% in non-residential
water use and an increase of 11% in residential water use and correlate these changes with
the period in which social distancing measures were applied.

A similar study was conducted by Ludtke et al. [115] on a residential area in northern
Germany. In this case, the authors use a linear mixed model to compare daily water
consumption before and after the COVID-19 pandemic and eliminate the effects of the
climate by applying Bayesian statistic to be able to estimate only the effect of the pandemic.
Their results show a 14.3% increase in daily water consumption. Furthermore, the authors
investigate possible reasons for the change in the water consumption behavior and conclude
that many altered practices may persist and cause permanent changes in water demand
peak times and the water volume required in residential areas.

Abu-Bakar, Williams and Hallett [94] focus on identifying changes in household water
consumption and water demand peak times by using K-means algorithm for pattern recog-
nition and KNN for pattern classification. The authors provide a characterization of the
consumption patterns and an analysis of the shift between patterns and peak consumption
times. The methodology proposed in [94] serves as a basis for identifying hotspots within
the water distribution network, for detecting household network leaks and as support for
water resource planning.

Dziminska et al. [112] use K-means algorithm to discover water consumption pat-
terns for apartment buildings. Their objective was to generate synthetic water demand
histograms to be used for modeling water supply networks. The authors observe that while
analyzing the data collected before the COVID-19 pandemic, they were able to generate as
much as three different daily synthetic patterns, the data collected during the pandemic
generated more clusters and inconclusive results due to a certain randomness in the daily
water consumption behavior. Their conclusion is that the data analysis methodology needs
to change to be able to obtain better results.

5.3.4. Water Demand Forecasting

Forecasting can be performed for short, intermediate (medium) or long term, all
implying different approaches. Rinaudo [109] defines the horizons and aims for water
demand forecasting as follows:

• Short-term forecasting: estimate water demand over the coming hours, days and
weeks to optimize the operation of water systems focusing on customer behavior;

• Intermediate-term forecasting: estimate water use over 1 to 10 years to be able to
foresee the variability of water consumption by a fixed or slowly changing customer
base while considering changes in weather, economic cycles and customer profiles;

• Long-term forecasting: estimate water use over horizons of 20–30 years to plan and
build long-lifespan water supply infrastructures.

Long-term water demand forecasting methodologies, as presented in [109], include
temporal extrapolation models, “unit water demand”-based models, multivariate statistical
models, models based on end user behavior, models based on urban planning and hybrid
models. These models have to be integrated with land-use plans and climate change
variables and need to be finely tuned using a number of scenarios that represent plausible
possible alternatives for the future. Similarly, the authors of [108] claim that long-term
forecasting should rely more on econometric methods and simulations rather than on
computational intelligence methods such as machine learning.
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Intermediate-term forecasting methods focus more on finding yearly water use pat-
terns in aggregate monthly consumption data. Padulano et al. [117] present a methodology
for identifying annual water demand patterns through clustering using K-means and
self-organizing map (SOM) to be used for the estimation of water consumption for non-
monitored households. Zubaidi et al. [93] propose a methodology to predict monthly water
demand, which uses an adaptive neuro-fuzzy inference system. The presented method-
ology comprises several steps of data preprocessing including normalization, de-noising
and feature engineering before feeding the data to the prediction model. The authors stress
the positive impact of the preparatory steps executed on raw data on the performance of
the predictor.

The amount and the variety of methods that are explored in the area of short-term wa-
ter demand forecasting is considerably larger than for intermediate or long-term forecasting,
the main reason being the multitude of solutions that fit this problem.

An extensive study of short-term water demand prediction methods is presented
in [108]. Souza, Azevedo and Libânio group these methods in linear (exponential smooth-
ing, Autoregressive Integrated Moving Averages, linear regression), non-linear (ANN,
fuzzy logic, SVM, statistical) and hybrid methods. Their conclusion is that there is no global
method or model that outperforms all others in all cases. Moreover, they show that hybrid
models are more robust in terms of performance compared to classical models.

Benítez et al. [118] perform a study that applies pattern similarity-based methods to
predict water consumption, which they successfully used to detect and locate water leaks in
early stages. They conclude that transforming traditional water distribution networks into
smart water networks consisting of a large number of devices scattered over the network
and measuring a wide variety of parameters of the distribution network in a continuous
and automatic manner would support water flow daily predictions.

Boudhaouia and Wira [119] evaluate the robustness of two prediction models for water
consumption, which are based on machine learning techniques. Their study reveals the fact
that long short-term memory (LSTM) has the lowest errors compared to back-propagation
neural network (BPNN) and is able to detect the long-term dependencies between time
steps of water consumption.

Du, Zhao and Xie [120] propose an autoregressive moving average model combined
with a Markov chain (ARIMA-M) to predict daily water consumption. The Markov chain is
used to correct the prediction errors of the ARIMA model, which tend to accumulate over
time. The experiments showed that the proposed model improved prediction accuracy and
eliminated the effect of overfitting.

Koo et al. [121] conduct extensive experiments on several widely used models for
short-term water demand forecasting: ARIMA, radial basis function-artificial neural net-
work (RBS-ANN), quantitative multi-model predictor plus (QMMP+), and LSTM. For the
experiments, the authors use hourly water consumption data from smart water meters
in an urban area with several types of water consumers (domestic, church, pre-school,
restaurants, community center and shops). Their observations show that all these models
are limited because they underestimate or overestimate the water demand and fail to
estimate peak water consumption amounts. The conclusion is that only water consumption
data are not enough to make precise predictions and that there is need for more factors
(customer behavior, weather, household members characteristics, etc.) to be considered
while building a water demand prediction model.

Figure 5 summarizes the techniques employed for data analysis in the area of urban
water infrastructures. The results, water demand models, predictions and datasets an-
notated with anomaly labels or anomaly scores are inputs for decision support systems,
urban planning and water supply infrastructures development.
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Figure 5. Data analysis techniques in water infrastructures.

5.4. Pipe Failure Prediction in Water Supply Networks

Computational intelligence-based tools play an important role in planning the reha-
bilitation of water supply networks, as the number of unexpected pipe failures can be
greatly reduced by replacing the pipes that have the highest probability to break in the
near future. If large amounts of data that describe past incidents in the water infrastructure
are available, statistical and machine learning techniques can provide predictions about
future incidents. There are several approaches to modeling water pipe deterioration using
computational intelligence methods. Dawood et al. [122] classify these models into:

• Failure prediction models, which include pipe break prediction and pipe rate failure
assessment methods;

• Risk analysis models that describe structural deterioration due to age, pipe–soil
interaction and other factors;

• Models for water quality failure due to pipe deterioration;
• Condition monitoring and assessment models;
• Remaining useful life models;
• Leak detection and prioritization models.

Furthermore, they recommend taking into consideration factors such as soil type,
traffic loads and trenchless method of construction along with data collected from remote
sensors, to obtain more accurate results in estimating pipe break rates.

Giraldo and Rodriguez [123] compare statistical and ML methods for pipe failure
modeling. They use pipe failure records collected in a time span of six years to train and
validate their models. Besides failure history, the factors taken into consideration for their
analysis are pipe material, age and diameter. They also investigate the impact of several
other factors on their model such as pipe length, precipitation, land use, soil type and the
presence of hydrants. Their conclusion is that both statistical and ML models have shown
acceptable results and that Poisson regression was most suitable for predicting lower failure
rates, whereas gradient-boosted tree was most suitable for unbalanced datasets.
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Robles et al. [124] propose a methodology to predict pipe failures in water supply
networks in which they use logistic regression (LR) and support vector classification (SVC)
as predictors. The experimental dataset, in this case, contains pipe break and pressure
historical data as well as information about pipe material, length, diameter, age and
number of connections. To improve the accuracy of their system, the authors employ
various preprocessing steps (e.g., missing values and outlier handling, rescaling) before
data are passed to the predictors. The experimental results show that both LR and SVC
perform very well in terms of accuracy (over 75%) and recall (over 84%), LR having slightly
better accuracy in some cases.

Amiri and Najafzadeh [125] present a methodology for assessing pipe break rate by
analyzing data containing number of pipe failures, pipe localization, depth of installation,
pipe pressure and age. They compute the pipe break rate using three different AI models:
multivariate adaptive regression spline (MARS), gene-expression programming (GEP)
and M5 model tree. Their experiments show that the MARS model has the best results
overall, whereas the GEP model is second best with a slight difference in the testing stage.
Moreover, extended experiments on different datasets show that the GEP model tends to
overestimate pipe brake rates, while the MARS model proves to be more reliable.

6. Water Infrastructure and Decision Support Systems

In order to have a sustainable economy, natural resources and ecology play a key role,
according to the BCC Research Report [126]. The challenge of ensuring the sustainability of
water resources is to monitor, plan and manage water supply networks, which evolve from
day to day, reaching complex systems that involve multiple integration of data sources.

Emerging Big Data and linked open data (LOD) technologies are solutions for integrat-
ing a large amount of data related to water resources management [76]. Thus, significant
information can be extracted that helps to create a decision support system based on a wide
range of data. The purpose of water monitoring services is to collect and integrate data
from different fields, such as: meteorological, environmental, quality data, climate change,
feedback, etc. [127]; however, unfortunately, there are still interoperability issues and thus
the exchange of data is limited, along with the analytical power of business intelligence
(BI) tools.

6.1. Ontologies

Monitoring water consumption and providing the possibility for end users to see
their own consumption and can significantly increase awareness, improving the decision-
making process regarding the management of water resources [128]. It should be noted
that continuous monitoring involves a large volume of data. Such an approach is present
in smart cities, where the concept of Internet of Things (IoT) is also integrated. To avoid
advanced data analysis techniques, a quick fix is to use ontologies such as smart city
ontology (SCO) [129,130].

The analysis of ontologies in the field of water resources has begun to be of great
interest to researchers. Water resources management in smart cities emphasizes the supply
of water in normal parameters to all consumers [131]. Several studies have been made in
order to streamline water management, based on ontologies and aspects related to water
quality, its reuse or leak detection [132,133]. In [134], Rivera et al. present the most used
related ontologies. There are public and government institutions working to develop new
methods by which they can make their data visible, in order to publish it as a LOD. They
also focus on creating new user-friendly interfaces to make data easier to analyze.

To increase the degree of enrichment, several knowledge graphs (KG) were used,
which are based on LOD concepts such as: DBpedia [135], Wikidata [136] and YAGO [137].
These KGs help the original datasets through connections to other external repositories
(GeoNames), allowing access to descriptions and properties in different languages. In addi-
tion, an important feature for a valid dataset is consistent data [138]. To create a rich data
set, the European Portal [139] collects data from the public portals of European countries.
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Based on the Reusing Open Data report [139], it was concluded that the second largest
category of data reused by institutions belonging to EU member states is geographical
data; thus, by combining several data sets, multidimensional models can be created that
provide consistent support in the decision-making process by using different evaluation
techniques. To publish multidimensional data, the W3C encourages the use of RDF Data
Cube Vocabulary [140].

6.2. Decision Support Systems

Big data collected from sensors are a necessary food for DL to generate those predic-
tions but, at the same time, are a challenge requiring decisions to choose only relevant
data from a huge data set [141]. The dire need for the development of decision sup-
port systems came due to an explosive economic urban growth [142,143]. Sustainability
of water resources entails a complex urban water management system, integrating new
technologies and decision-making systems to facilitate data modeling and consumption
efficiency [144,145]. This provides a broader view of the water sector and thus consumption
can be optimized, providing longer-term reliability.

It should also be noted that the water management system is complex and to control it,
it requires resources, methods and statistics as a basis for decision-making systems [146,147].
A key factor is represented by data collection, analysis, processing and storage [148]. An-
other decision is to choose representative data from a big data collection [149]. For example,
making predictions provides decision support for accurate optimizations.

A new challenge in the context of decision-making systems is to build an efficient
water management infrastructure. In order to achieve this, it is necessary to know in detail
the problems related to urban water consumption [150,151]. Moreover, water consumption
has increased rapidly in recent times. Some of the reasons are climate change and rising
temperatures, industrial development and population growth [152]; therefore, a decision
taken in this direction to reduce the volume of water consumed is to increase water
prices [153]. For this reason, it is recommended that consumption data be analyzed from
several perspectives.

Obviously, good decisions made in a timely manner provide optimal results; how-
ever, in order for a decision to be good, several perspectives must be analyzed in parallel,
both from a socio-economic and a cost–benefit point of view. Moreover, if the decision
involves the integration of several areas, then it is considered complex and a more in-depth
analysis is needed [154].

On the other hand, it must be taken into account that a complex analysis can make the
prediction process difficult [155]. Various studies have been performed in the field of urban
water management over time, and researchers have discovered and proposed a variety of
solutions, including statistical analysis models [120], exponential smoothing methods [156],
grey theory models [157], neural network models (ANN [158] and LSTM [159]).

6.3. Deep Learning Solutions

As mentioned in the previous subsection, deep learning (DL) has a major impact
on research today [160]. In the field of water, DL has a significant role in trying to solve
challenges such as interdisciplinarity, hydrological scaling, regionalization of data, etc.
Research in other fields is an important basis for water resources management. For example,
it has been found that DL is increasingly used in scientific exploration [161]. Scientists
claim that DL is essential in the decision-making process, by analyzing in depth the neural
networks and extracting perspectives/directions. Moreover, DL obtained unrivaled results
in improving highly accurate predictions [162].

Since 2012, DL has achieved undisputed performance as a leader in machine learn-
ing [163]. If, traditionally, water science consists only in tracking and managing the water
cycle, with the advent of DL in studies related to water resources management, new
challenges appear such as interaction with other subsystems (climate, vegetation, socio-
economics, human dynamics) [164]. Currently, several aspects need to be considered in
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order to build a sustainable ecosystem, such as human feedback, high water demand due
to population growth, water quality, etc. Moreover, urban water infrastructure is very
complex and depends of many parameters, but nowadays advanced technology offers
enough resources to overcome this challenge [165].

6.4. Predicting Water Consumption

For statistical analysis methods to provide encouraging results, the data collected need
to meet certain assumptions, which is not always feasible. Further, grey theory models are
used especially in the context of rare data; however, given that water consumption involves
several factors, a more in-depth analysis is needed to provide a more accurate prediction
of a complex volume of data. For example, in [166] the authors described a model for
predicting water consumption in the Middle East, using neural networks combined with
time series. This solution is also based on climate factors, which are constantly changing
and can have a major impact on consumption.

Another approach to predicting water consumption, which is also based on climatic
factors, is presented in [167] and consists of using an improved fuzzy wave pattern. This
model uses noise reduction methods for water consumption over a period of time, using
this data to train the model. Thus, the results obtained are more efficient than the classic
fuzzy models; therefore, climate change is an essential component in the decision-making
process related to consumption efficiency methods; however, keep in mind that there are
many other factors that can change water consumption. Achieving an optimal connection
between factors while also optimizing each factor is a complex process.

6.5. Drinking Water and Health Risks

An in-depth understanding of the characteristics of water quality and quantity plays
an important role in making timely decisions to avoid certain risks. Moreover, drinking
water is essential for survival; therefore, more attention should be paid to the allocation
of water resources, while taking into account risk management. In this sense, decision
support models are indispensable, streamlining risk assessment and applying mitigation
measures in order to facilitate access to available water resources.

A factor that should not be neglected is the transmission of diseases through water,
if it does not meet all the conditions related to quality. Thus, a quantitative microbial
risk analysis (QMRA) is also needed [168]. For such an analysis, decision makers play an
important role in risk mitigation. A cost–benefit analysis (CBA) must also be considered to
maintain a healthy and sustainable ecosystem and to minimize the socio-economic risks.
For example, in [169] the authors proposed an evaluation of drinking water, from a chemical
and aesthetic point of view. In principle, the decisions already taken were analyzed and an
overview of the aspects before and after the decisions taken was observed. Moreover, it
was found that following this analysis, more accurate predictions are obtained regarding
the cost–benefit aspects.

Another approach is presented in [170], combining QMRA and CBA to measure
microbial health risks and socio-economic profitability. Moreover, in the process of drinking
water treatment, the need for a holistic approach is emphasized. The results obtained are
an essential input for the decision makers, helping the water suppliers to make the right
decisions at the right time. It is also important to integrate several citations into the decision-
making process. Consumers play a key role in this process and therefore it should be noted
how they perceive water quality, the risks that may occur to health and the costs involved
in drinking water treatment.

Figure 6 presents the flow of a decision system within the water infrastructure. It
starts with collecting data from smart sensors and continues with pre-processing the data.
Given that the volume of data obtained is large and that not all the data collected are
revealing, the inconclusive ones must be eliminated. The next step is to analyze the data
and use the ontologies to give consistency to the entire data set. After that, advanced
machine learning algorithms, more specifically deep learning algorithms are used to make
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predictions regarding water consumption. The aim is to continuously monitor the demand
for water to ensure the quality of drinking water and also to prevent the risks that may
arise due to leaks, waste or water scarcity.

Figure 6. Decision making flow in water infrastructure.

7. Conclusions

As shown in Figure 7, urban waters infrastructure management, in the context of a
Smart City, has multiple challenging aspects that include: smart infrastructure monitoring,
data collection, storage and management, data analysis and decision support. In this paper,
we made an overview of state-of-the-art techniques applied in these areas of interest.

Figure 7. Urban water infrastructures management areas of research.

In Section 2, the Smart City concept is described, based on extensive literature re-
views, as a broad context for water infrastructure management, with many interconnected
domains that integrate large-scale technologies and frameworks. From smart infrastruc-
ture, to data collection, and to advanced computational strategies, the developments in
Smart City provide a vast ecosystem of technologies and approaches for urban water
infrastructure. Considering the smart water infrastructure, the enabling technologies and
frameworks are presented with a focus on the physical devices that can provide low-level
sensing capabilities, and the high-level processing strategies based on frameworks and
open datasets in the water domain.

In Section 3, the perspectives for integrating IoT technologies in monitoring water
infrastructure are evaluated in terms of potential scenarios and applications. The IoT com-
ponent is represented by physical devices and platforms that can be adapted for monitoring
various parameters in water supply systems. The section includes a classification of IoT
development boards and a literature review of IoT platforms that can provide practical
guidelines for possible applications in this domain. Multiple technologies and frameworks
are described, from industrial standards to research works and reference architectures.

Throughout Section 4, the possibilities for using Big Data and Blockchain in water
resource domain were evaluated. The research has shown that the Big Data methods can be
successfully applied in a large variety of water systems. An important interest is manifested



Water 2022, 14, 2174 25 of 32

in the waste water management, water pollution prevention, irrigations and water resource
management. From data collection to data processing and decision making, Big Data is an
important tool that can facilitate all the phases and automate the flows. Blockchain may
add the trust, security and transparency that are crucial factors for all these systems in
order to be robust and secure. The usage of these two architectures in the same context is
possible and guarantee for healthy and solid solutions. Another important aspect in the
context of globalization is related to application scaling and integration between various
technical solutions. As lesson learned from the previous implementations it is critical to
achieve easy-to-integrate architectures that put together multiple institutions from various
layers (federal, regional, local) with companies from private sectors. Blockchain can be
an innovative solution for this requirements by its decentralization and security facilities.
The technology can be a bridge between a local used solution to a global infrastructure
accessible around the world and managed through consensus mechanisms by consortium
of international organizations.

Data analysis plays an important role in the management of smart urban water infras-
tructures, as the information that can be extracted from a very large amount of monitoring
data is quite valuable and can bring insight about the maintenance and further development
of water infrastructures. Section 5 presents a review of the techniques and methodologies
employed in this area, from pre-processing methods applied on raw data, to anomaly
detection, to water pipe failure prediction, to water demand modeling and forecasting.
As in many other areas of research where large amounts of data are generated, there are
many techniques that are based on clustering and classification using machine learning;
however, still, in some cases (e.g., anomaly source explanation, water demand model char-
acterization) rule-based or statistical approaches have been proven useful. Computational
intelligence techniques proved to produce highly accurate results for anomaly detection,
water demand pattern extraction and classification, pipe failure prediction and for short
term water demand forecasting. Of course, there are cases in which these techniques will
not produce good results, and this is the case for long term water demand forecasting,
where, as presented in our overview, there is need for other types of solutions. As expected,
we cannot provide a general recipe for any of the aspects of data analysis in this field of
interest, nor point out a technique that will provide a minimum guaranteed performance
for water infrastructure datasets, because there may be multiple pre-processing and data
analysis combinations of steps that will produce similar results in terms of performance;
however, our review presents some solutions that have good results for several categories of
problems. By analyzing the available literature on the subject, we can point out that future
developments need to be directed towards integrating weather, economical, administrative
and user behavior data into models developed for urban water management.

The majority of the computational intelligence techniques reviewed in this paper have
been tested on a small scale to assess their potential for decision support, in the context
of urban water infrastructure maintenance and administration. Decision support systems
must integrate many distinct tools to be able to address multiple issues such as insuring
water quality, water availability, infrastructure maintenance and so on. For example,
notifications and alarms are generated by anomaly detection tools to signal abnormalities
such as water contamination, distribution network malfunctions, or water treatment facility
cyber attacks. Water demand models are used together with simulation tools to assess
the effect of introducing new rules towards lowering water consumption, or to evaluate
water demand for residential areas under development. Pipe failure predictors need to be
integrated in infrastructure maintenance planning tools to be able to reduce the high costs
of unexpected pipe breaks. Future steps must be directed towards the integration of these
tools and their interoperability, through data and methodology standardization, to be able
to create large scale systems for water infrastructure management.

Section 6 highlights the importance of monitoring water consumption using modern
algorithms for data processing, analysis and prediction, thus providing input for an intelli-
gent decision-making system. Quantifying the demand, use and risks in terms of water
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resources is a particularly important challenge with effects now but especially in the future.
To better understand the problems related to ecological risks and human health and to
make informed decisions, it is important to use new methods and tools that improve access
to data and facilitate the open exchange of information about water. This challenge can
be made possible by using the concept of open water data, which provides an innovative
infrastructure and support for data sharing and modeling in order to develop new, modern
and optimal solutions. Decision support systems domain had a significant increase in the
last decades. From simple solutions, based on trivial methods to sophisticated architectures
that includes multiple areas, complex algorithms for mapping and modeling water data
with cross-domains scalable technologies, nowadays the possibilities are much more variate
and creates bridges between local and global stakeholders. With all these components,
we must take into account a new key factor: ensuring the security (both data security
and applications security). Another point of view when talking about water solutions
workflows is the security of the processes that are applied in water treatments in order to
not alter the data that are used in the applications but also affect the worldwide ecosystem
or the humans health. Global water consumption is growing significantly each year. This
influences the decisions made at the socio-economic level to keep the management of water
resources under control. A major risk for society is water shortages. Water demand is
increasing in recent years and thus the supply capacity is limited. An effective solution is
to continuously monitor the demand and consumption of water resources to prevent risks.
Furthermore, the steps of processing and analyzing the data collected from the sensors are
essential in the decision-making process. Ontologies also provide data consistency that
is then analyzed using complex machine and deep learning algorithms. Deep learning
has stood out in recent years for the accuracy of its results, being indispensable in studies
conducted by researchers. Moreover, it offers encouraging results in predicting water con-
sumption, being an important factor in conserving water resources. Finally, in order to keep
drinking water within normal parameters that do not affect human health and to avoid
other risks that may arise, additional attention should be paid to the steps described above.

As presented throughout this paper, there are many advanced technologies and meth-
ods that are used to develop smart water management systems: IoT for smart monitoring,
blockchain for data management, computational intelligence for data analysis and ontolo-
gies for knowledge representation; however, ICT technologies alone do not solve all the
issues of urban water management as many more factors such as climate change, social,
economical, political and behavioral, influence this domain; thus, efficient management of
water resources is a permanent challenge for society, especially for researchers who have to
provide the technological means for these complex interdisciplinary systems.
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