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Abstract: Toppling is a common deformation and failure phenomenon in the reservoir bank slopes
of hydropower projects. This paper studies the genesis and evolution of different toppling bodies
during water impoundment at the Miaowei Hydropower Station Reservoir on the Lancang River in
southwest China. Toppling properties were determined and second failure characteristics analyzed
in different reservoir impoundment stages. Different degrees of toppling deformation were primarily
affected by the transverse bending stress, while the regional tectonic stress has been shown to have a
significant effect on the transverse bending of the rock layers. Combined with the on-site investigation
and monitoring results, the failure mechanisms of the different toppling deformation bodies were
analyzed. The second failure of the toppling rock mass caused by the reservoir impoundment process
is mainly the hydrodynamic splitting along fractures, wave impaction and softening on the slope foot.
The transverse bending effect of gravity is transmitted upward through joint misalignment, rotation
and slip, accelerating the speed of secondary toppling failure and forming a compression-shear failure
along the toppling tension crack. A model to predict the scope and time of failure in the toppling
deformation banks under the action of reservoir hydrodynamics was proposed.

Keywords: toppling deformation rock mass; hydrodynamic action; compression-shear failure; failure
prediction model; secondary toppling failure

1. Introduction

Many large reservoirs in southwest China have been affected by the toppling defor-
mation bank slope stability problem, and recent studies have shown that it entails a key
engineering geological problem in hydropower construction projects in southwestern China
such as complex geological genetic and failure models [1–4]. There has been much research
on the toppling slopes, mainly focusing on the geological mechanism [5,6], and some on
the stability evaluation of and treatment measures for excavation slopes [7–13]. While these
research results provide an analytical basis for the formation and distribution of toppling
deformation bodies, there has been a lack of research on the influence of reservoir water
impoundment on the failure process. Although some literature highlights that calculation
methods of toppling failure mainly consider the toppling–sliding slope, they rarely involve
toppling–bending failure [14–19]. The present analysis and evaluation of the stability of
toppling deformation rock slopes mainly fall into the following categories: (1) numerical
analysis methods used to analyze the deformation of toppling rock masses under external
actions [20–25]; (2) limited equilibrium calculations based on block theory, such as the
unbalanced thrust transfer coefficient method, the Sarma method, analytical methods and
key block theory [26–29]; (3) physical simulation used to study the mechanism and process
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of slope collapse [30]; and (4) uncertainty analysis and engineering geological analogy
methods [31,32]. Reservoirs created by dams can affect the stability of bank slopes [33].
The impoundment of the reservoir changes the boundary condition of bank slopes and
alters the stability of the reservoir slopes [34–36]. Landslides associated with reservoir
impoundment have been reported widely [37]. However, there are few reports on the
failure processes and the hydrodynamic effects on the failure mechanism of the toppling
deformation body in the process of reservoir impoundment.

At present, a large number of scholars have carried out research on the influence
of water on slope stability [38–40]. It is mostly studied from the action of saturated or
unsaturated seepage force, the changes in pore pressure and the softening effect of water
on rock mass [41–44]. The pore pressure and seepage pressure increase gradually as water
infiltrates into the slope, and eventually lead to bank slope failure [45,46]. However, the
mechanism of the influence of water on the stability of bank slope toppling deformation is
rarely studied. Due to a large number of relaxation tension cracks in the toppling defor-
mation bodies, the splitting effect of water on the rock mass accelerates the deformation
of the toppling body in the process of reservoir water storage, which often exceeds the
seepage and softening effect. Meanwhile, the effect of wave impaction on bank slopes after
reservoir impoundment has been recognized by a large number of scholars [47–52].

In this paper, a large number of different toppling degree bank slopes along the
Miaowei Hydropower Station reservoir bank were considered for the research, defining
the toppling rock mass as the first failure caused by dynamic geological process and
the further failure under the action of reservoir water storage or slope toe excavation
as the second failure. The main objectives of the present research are as follows: (i) to
develop a classification method of toppling deformation bodies; (ii) to reveal the second
failure mechanism of different toppling types under reservoir water impoundment and
different lithologies; and (iii) to propose a secondary failure prediction model of toppling
deformation bodies after water storage. This study contributes to a more comprehensive
understanding of the toppling failure mechanism in mountainous reservoirs.

2. Materials and Methods
2.1. Research Site Description

(1) The lithology of the bank slope

The bedrock strata in the reservoir area are composed of Mesozoic, Jurassic and
Cretaceous strata. The Quaternary loose accumulation layer is mainly distributed at the
foot of the bank slope, branch gully and valley terrace. Jurassic (J) strata are widely
distributed along the Lancang River and are among the most important lithologies in the
reservoir area. The basic geological conditions for the development of toppling rock mass
were obtained by field investigation.

(2) The geological structure in the reservoir area

The reservoir is located east of the Lancang River fault zone and south of the Shideng
middle-row complex anticline, which is dominated by steep vertical folds.

(3) The distribution of toppling deformation bodies in the reservoir area

Both sides of the reservoir are composed of Mesozoic strata of layered soft and hard-
rock masses, and toppling deformations are relatively serious. The layered oblique (trans-
verse) structural slope accounts for 32.8% of the bank length and 74.6% of the slope length
of the bedrock bank, which is mainly distributed on both sides of the oblique valley and
the transverse valley. The toppling deformation slope is distributed on both sides of the
longitudinal valley.

There are 24 toppling deformation bodies in the reservoir bank area based on field
investigation, mainly distributed within 1.5 to 54.6 km of the dam (Figure 1). The river has
a north–south orientation with multiple bends, and there are gullies and tributaries on both
sides of the river. A total of 20 toppling deformations are located on the right bank, and 4
are located on the left bank.
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Figure 1. The distribution of toppling deformation body locations in the reservoir area.

2.2. Methodology
2.2.1. Geological Survey and Analytical Analysis

Miaowei Reservoir began to store water in November 2016, with an initial water
level of 1314 m (water depth is about 10 m). Before the impoundment of the reservoir, a
detailed geological survey was carried out on the bank of the reservoir. After that, in the
different stages of the water level rise, unmanned aerial vehicle aerial photography and local
geological surveys were used to carry out deformation observations on the toppling bank
of the reservoir. Research work on the characteristics of toppling deformations includes
investigating the lithologies and lithologic combinations; measuring the thicknesses of
the single layers of rock, deformation degree (dip angle α (◦), maximum crack opening
s (mm), opening angle of tension fracture, length of tension fracture), distribution of rock
structural planes and the combination of the rock formations; and systematically analyzing
the rock structures of toppling deformation bodies. The relationships between the changes
in reservoir water level, lithology, toppling degree and the failure range and the depth of
the failure surface were established using statistical analysis and engineering geological
system analysis methods.

2.2.2. Field Penetration Test of Toppling Deformations

In order to study the hydrodynamic characteristics of different toppling deformations
in the process of reservoir impoundment, penetration tests were performed in different
types of toppling deformations: QD3, ZQD3, ZQD4, QD6-1, and QD14. The range of
horizontal and vertical saturated zones under the action of the reservoir water was deter-
mined by measuring the permeability coefficient with time under different occurrences and
different joint distribution characteristics of the four types of toppling deformations. The
tests adopted a single-ring injection test method. The tests consisted of two types: a vertical
penetration test and a horizontal penetration test. During the vertical penetration test, the
depth of the water was kept at 10 m, with no more than 0.5 cm of fluctuation. During the
horizontal penetration test, the initial water level, measurement time and drop height were
recorded until the water level was 0.0 m or no longer falling.

By recording the water injection per unit time and the area of a single ring, the
hydraulic conductivity k can be calculated according to Darcy’s law:

k =
Q
AI

(1)

where k is the hydraulic conductivity, cm/s; Q is the water injection per unit time, L;
A is the area of the ring or the pit side area, cm2; and I is the hydraulic gradient, which
is dimensionless.
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2.2.3. Numerical Simulation Method

The discrete element method was widely used to simulate the influence of layers and
joints on rock deformation. In recent years, it has been widely used in the research on
toppling deformation mechanisms [53–55]. In this paper, the influence of hydrodynamic
affection on second toppling failure at different water storage levels was numerically
simulated using the discrete element method. In the numerical model, the water saturation
of rock mass below the water level, the decrease of mechanical properties, the pore water
pressure between joints and the hydrostatic pressure on the toppling slope deformations
were considered.

The discrete element method (DEM) was first proposed by Cundall for analyzing
the deformation, movement trends and rigid or deformable block separation of discrete
media [56]. Discrete element method is a numerical method that is suitable for studying
and analyzing the stability of discontinuous rock slope. In this paper, the Universal Discrete
Element code (UDEC) developed by Itasca Company is used to analyze the stability of the
bank toppling slope in the reservoir area, which can effectively analyze the deformation
and failure process of the bank toppling slope with discontinuous structures such as cracks
and joints.

The reservoir water level outside the slope is set as a gradient every 10 m in the vertical
direction; that is, 9 reservoir water levels are set at the elevations of 0 m, 10 m, 20 m, 30 m,
40 m, 50 m, 60 m, 70 m and 80 m to analyze the deformation characteristics of toppling
slopes with different lithologic combination, and 10 m is the initial water level. The model
height is 100 m, and the horizontal length is 170 m (Figure 2a). The constitutive model
of rock mass adopts Mohr Coulomb material, and the yield criterion follows the Mohr
Coulomb yield criterion. The bottom of the model was set as the velocity and displace-
ment constraints in the vertical direction (Y direction) and the velocity and displacement
constraints in the horizontal direction (X direction) of the left and right boundaries. The
groundwater seepage mode is set as transient steady flow, and seepage is only formed
between joints and layers. The pore water stress is determined by the elevation differ-
ence between the calculation point and the groundwater level. The model contains five
strata (Figure 2b), where A is a toppling–collapse area, B1 is a toppling–loose area, B2 is a
toppling–relaxation area, C is a toppling–creep area and D is intact bedrock. The physical
and mechanical parameters used in the calculation are shown in Tables 1 and 2. These
parameters are obtained through physical tests and engineering analogy methods. The
modeling steps are shown in Figure 2c.

Table 1. The physical and mechanical parameters of rock mass.

Rock Mass
Natural Bulk

Density (kN/m3)
Saturated Bulk

Density (kN/m3)
Young’s Modulus

E (GPa)
Poisson’s
Ratio µ

Shear Strength

Natural Condition Saturated Condition

c′ (Mpa) ϕ′ c′ (Mpa) ϕ′

Strongly weathered slate 22.0 23.5 1 0.32 0.55 26.6 0.50 21.8

Weakly weathered slate 23.5 24.5 1.6 0.30 0.60 26.6 0.48 21.8

slate 24.5 25.0 2.0 0.30 0.68 35.0 0.56 31.0

Strongly weathered
metamorphic sandstone 25.0 25.5 4.0 0.30 0.70 38.7 0.57 35.0

Weakly weathered
metamorphic sandstone 26.0 26.5 8.0 0.28 0.80 45.0 0.64 38.7

Metamorphic sandstone 26.5 27.0 16.0 0.25 0.90 50.2 0.80 45.0
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Table 2. The mechanical parameters of joints.

Joints
Normal Stiffness

(GPa/m)
Tangential

Stiffness (GPa/m)
Shear Strength (Natural Condition) Shear Strength (Saturated Condition)

c′ (MPa) f ′ c′ (MPa) f ′

Joint surface 1.0 0.4 0.10 0.50 0.05 0.50

Strongly weathered layer 1.0 0.4 0.10 0.40 0.07 0.36

Weakly weathered layer 1.5 0.8 0.30 0.55 0.21 0.50

Slightly weathered layer 2.0 1.0 0.40 0.65 0.28 0.60

Unwhethered layer 5.0 2.0 0.75 1.00 0.50 0.85
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3. Results and Discussion
3.1. Distribution Characteristics of Toppling Deformation Body

The depth of the horizontal toppling influence in the local bank slope is more than
50 m, and it tends to gradually deepen with increasing elevation, which has a greater
impact on the stability of the bank slope and the choice of reinforcement measures.

3.1.1. Distribution Characteristics of Left and Right Banks

The toppling deformation body distributions throughout the reservoir area are related
to the topography and geomorphology, stratigraphic lithology, bank slope rock mass
structure and mechanical properties of the rock masses in the area. Mostly, the direction
of in situ stress plays an important role in toppling. Using the distribution map of the
main tributaries in the reservoir area, the rivers noticeably deviate when they are close
to entering the Lancang River, and the left-bank tributaries extend mostly in the NNW
direction (upstream direction), while the right-bank tributaries extend mostly in the SSE
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direction (downstream direction), indicating that during the process of entrenchment in the
Lancang River valley, both sides are subjected to dual forces: The lateral stress downstream
is larger than the upstream stress in the left bank, the upstream stress is larger than the
downstream stress in the right bank, and rock mass toppling upstream is greater than that
downstream in the right bank.

On the right bank, the toppling degree of the rock mass on the upstream side of the
gully is significantly higher than that on the downstream side (Figure 3a,b), but on the left
bank, the toppling degree on the downstream side is greater than that on the upstream side
(Figure 3c,d).
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Figure 3. (a) The toppling deformation body of the upstream side of the Keli River on the left bank.
(b) The toppling deformation body of the downstream side of the second gully at the dam on the
left bank. (c) The toppling deformation body of the upstream side of the Tiemenka River on the
right bank. (d) The toppling deformation body of the downstream side of the Tiemenka River on the
right bank.

3.1.2. Distribution Characteristics with Different Bank Slope Structures

On dip slopes, toppling often develops; the surface of the bank slope is covered
with toppling–collapse rock masses, with toppling–relaxation rock masses underneath,
and toppling–loose rock structure types are often missing (Figure 4a). The depth of the
broken zone is generally 5–10 m below the surface, with a maximum depth of 20 m. The
toppling collapse develops a relatively high elevation of 50–100 m above the river surface
and is related to the stresses that the elevation underwent and the thickness of the upper
accumulation terraces. There are three typical fracture-type toppling deformation profiles
on the dip slope in the reservoir area (Figure 4a,b,e). Most of them are thin-layered slate,
with thin 1 mm~2 cm interlayers of siltstone (Figure 4c,f). As the elevation increases, the
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fracture surface approaches closer to the ground. The inclination angle of the fracture
surface is approximately 20~30◦, which shows a gentle inclination angle (Figure 4d).
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Figure 4. (a) Metasandstone toppling deformation at Qingcaiping on the left bank. (b) toppling
shallow broken in metasandstone. (c) toppling broken face in consequent slope. (d) toppling broken
face in reverse slope of metasandstone. (e) toppling bending in slate. (f) slate toppling deformation
body at the crossing road downstream of Biaocun town on the right bank.

The depth of the toppling broken surface of the typical reverse slope in the Miaowei
Reservoir area is greater than that of the dip slope, usually 15~30 m. The inclination angle
of the toppling broken surface is related to the lithology of the toppling deformation body.
Generally, the harder the rock is, such as that in the bank slopes dominated by metamorphic
quartz sandstone, the steeper the inclination angle of the toppling broken surface, usually
between 40◦~55◦. The bank slope composed of thin layers of metamorphic sandstone
has an inclination angle of 30◦~40◦. On the bank slope mainly dominated by slate, the
inclination angle of the slope is below 30◦. From top to bottom, the orientation of the
rock layer changes from 260◦∠20◦~260◦∠40◦ to 252◦∠55◦~252◦∠84◦. The lower bedrock is
relatively complete, and the thickness of the crushed rock body above the broken surface
is approximately 15 m (Figure 5a). The broken surface of the toppling deformation in the
reverse slope is not a plane but a curved surface related to the elevation and the strength
of the rock mass. The inclination angle of the broken surface increases with increasing
distributed elevation (Figure 5b). Taking thin-layered metamorphic sandstone with slate as
an example, the angle of the broken surface is basically 60~70◦ in the reverse slope toppling
deformation body above the altitude of 1430 m (Figure 5c), and the angle is usually 30~40◦

between the altitudes of 1380 and 1430 m. This angle shows that the gravity of the upper
rock mass promotes the bending broken structure of the lower rock mass.
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Figure 5. (a) The angle of the toppling fracture surface is less than 10◦ in the reverse slope.
(b) The change trend of the dip angle of the rock layer. (c) The dip angle of the toppling bro-
ken failure surface is 63◦ above the altitude of 1430 m. (d) The toppling–loose rock mass of the old
highway slope on the downstream side of the Wanba River. (e) The toppling–relaxation rock mass of
QD5-1 in the transversal.

Due to the restriction of the cutting depths of the gullies, the toppling direction
of the transverse slope points upstream or downstream, and the deformation degree is
light. For example, on the old highway slope on the downstream side of the Wanba
River, the bedrock orientation is N15◦W, NE∠89◦, the lithology is medium-thick-layered
metamorphic quartz sandstone, the rock strata are stable and the upper part is toppling
toward the surface. After the toppling, the orientation of the rock layer turned to N10◦W,
SW∠43◦, and the rock formation was curved in a spine shape (Figure 5d) but not buckled,
forming a toppling–loose structure (Figure 5e). However, the deformation is still dominated
by toppling–bending and toppling–creep structures.

3.1.3. Degree of Toppling Deformation with Different Lithology

The rock structure is mainly characterized by combinations of lithology. The degree
and development depth of the toppling deformation of bank slopes with different rock
structures are different. (1) For the slate-dominated bank slope, the rock mass has obvious
rheology and can produce large deformation; (2) for the metamorphic sandstone-dominated
bank slope, the rock mass has a certain capacity to accumulate deformation. When the
accumulated stress exceeds the tensile strength or flexural rigidity of the rock mass, the
rock mass first has flexural deformation and tension fracture, and the main blocks between
the tensile fractures are rotated with the increase in stress in the later stage. (3) For the bank
slope composed of interbedded slate and sandstone, the rock mass collapses in the form of
a composite beam, and the deformation degree is controlled by the layer thickness ratio.
The metamorphic sandstone is mainly broken and destroyed and separated from the top
surface, forming blocks that by gravity act on the underlying slate, producing a transverse
bending action on the slate, which further causes the bending deformation of the slate. The
macroscopic characteristics are that the sandstone is block-shaped and the slate is curved
and deformed.
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3.2. Types of Toppling Deformation on the Bank Slopes
3.2.1. Severity of Toppling Deformation

The on-site investigation of the toppling deformation bodies shows that the toppling
deformation rock masses in the reservoir area are composed of slate, schist, and metamor-
phic quartz sandstone. The toppling deformation and fracture phenomena of the rock
bodies are intricate and complicated, and there are large differences in the deformation and
formation mechanisms of different parts. To ascertain the deformation and fracture forms,
the generation mechanisms of the rock masses at these parts, and their relationship with
the intensity of rock mass toppling deformation, the following four parameters are used to
objectively reflect the intensity of rock mass toppling deformation.

(1) The curvature coefficient 1/R, an index to measure the degree of bending deforma-
tion of the rock layer, refers to the maximum radius of the rock layer that bends from the
normal occurrence of the rock layer to the slope surface and is the reciprocal of the radius
of curvature. For plastic rock masses, the radius of curvature is large. Different structure
types of rock masses have different radii of curvature. The bank slopes dominated by thin
slate rocks are prone to bending deformation, and the radius of curvature is small, while
the bank slopes dominated by metamorphic sandstone have greater bending stiffness, and
the curvature radius is larger.

(2) The rotation angle, the difference between the inclination angle of the toppling rock
layer and the original rock, can distinguish the degree of rock layer toppling. On the same
slope, different toppling deformation zones can be divided by the rotation angle, and the
different toppling deformation zones have different forms of rock failure.

(3) Toppling tension cracks are generated perpendicular to the layer after the rock
layer is toppled and deformed. Such cracks have the characteristics of an inverted triangle.

(4) Tensile fracture connectivity is the connectivity of the toppled deformed rock mass
on its tensile fracture surface. The severity of the toppling deformation type is listed
in Table 3.

Table 3. Classification of the rock toppling deformation degree.

Severity of Toppling Curvature Coefficient Dip Angle
Rotation Ratio

Spacing of Toppling
Tension Cracks (cm)

Connectivity of
Tension Fracture General Features

Toppling broken >0.7 <0.25 <10 >80%

The rock stratum rotates
obviously with obvious
bending fracture zone and
deformed rock mass is broken

Toppling tension 0.3~0.7 0.25~0.50 10~30 60~80%

The rock stratum rotates to a
certain extent, the tension crack
is discontinuous, and the
deformed rock mass is
relatively broken

Toppling bending 0.1~0.3 0.50~0.75 30~50 40~60%

The tensile fracture of rock is
discontinuous, and the
deformed rock mass is
relatively broken

Toppling creep <0.1 >0.75 >50 <40%

The dip angle of the stratum
changes greatly, the plastic
continuous deformation is
dominant, and no
discontinuous fracture occurs

3.2.2. Classification of the Toppling Deformation Rock Mass

The quality of the toppling deformed rock mass is related to the degree of toppling
deformation, the spacing of structural planes, the thickness of a single layer and lithology.
According to the toppling deformation degree evaluation index, the toppling deformation
rock mass can be divided into four types: toppling collapse, toppling loose, toppling
relaxation and toppling creep. The properties of the different toppling deformation rock
masses are listed in Table 4.
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Table 4. Types of toppling deformation rock masses in the reservoir area.

Types Degree of Toppling Deformation Characteristics of Deformation Distribution and Lithology

Toppling collapse toppling broken
strongly toppled off and broken, and the
overall tension is loosened. The rotation
angle is greater than 50◦ .

It is mainly distributed on the surface of
the slope and has a limited distribution
range. Lithology is thin-layered slate and
thousand-shaped slate, mainly soft rock.

Toppling loose toppling tension
strongly toppled and broken, and the
overall rock mass is loose and partially
elevated. The rotation angle is 30~50◦ .

It is distributed on the shallow surface
layer of the slope, and the cover thickness
is relatively small, generally about
1 m–3 m. The lithology is mainly
thin-layered to middle-layered
metamorphic sandstone, sand slate or
sandstone and interbedded with slate.

Toppling relaxation toppling bending

gently toppled, and the local fracture of the
rock mass develops perpendicular to the
stratum, with an opening width of about
several millimeters. The rotation angle
is 10~30◦ .

It is distributed above the toppling creep
rock mass. The lithology is mainly quartz
sandstone, metamorphic sandstone, etc.

Toppling creep toppling creep

weak toppling deformation, and the rock
mass within the layer has a slight tensile
cracking deformation. The rotation angle is
less than 10◦ .

The degree of toppling is weak, mainly
occurring in the deep part of the slope.

3.3. Second Failure Mechanism of the Toppling Bank Slope with Reservoir Impoundment

Different toppling type slopes have different failure mechanisms; some researchers
have found that the tensile strength reduction is insufficient to produce toppling as this
failure mechanism starts with sliding between the layers [57,58]. For soft-hard interbedding
layered slopes, however, the toppling slope failure mainly occurs as collapse under tension
strength reduction. From the failure characteristics, the toppling bank slope was affected
by the softening strength of the foot of the slope, wave erosion, and rainfall infiltration on
the slope. When the water-storage level was raised by 50 m, the failure surface of the top-
pling deformation body often occurred at the interface between the toppling–collapse and
toppling–loose surfaces. If the underwater depth of the bank slope exceeds 50 m, the failure
surface is inside the toppling–loose rock mass. At the same time, the toppling deformation
of the rock mass has time-dependent deformation characteristics. Different bank slopes in
the reservoir area are affected by local stresses (such as slope height, topographical slope,
unloading stress) and the structure of the bank rock mass, resulting in different degrees of
development of the toppling rock mass on the bank slope. Some bank slopes have only
toppling–creep rock masses, which are determined by the stage of the development of
toppling deformation.

(1) Relationship between the height of the rising water level and toppling deformation
body failure

It can be seen from the relationship between the underwater depth of the bank slope
and the degree of failure of the toppling deformed rock mass that after the underwater
depth of the bank slope of the toppling deformed rock mass reached 45 m, deformation
and destruction began to occur (Figure 6a). When the storage level reaches a certain
height, it will induce the occurrence of toppling deformation, and Figure 6a shows that
when toppling deformation occurs, the water level generally reaches more than 45 m. The
underwater depth reached 60 m~90 m, and the toppled deformed rock mass exhibited
different degrees of shear tension failure.
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Figure 6. (a) Water depth on the front of the slope with toppling failure. (b) The relationship between
the water depth in front of the slope and the quantity of toppling failure.

During the impoundment of the reservoir, secondary failure of the toppling defor-
mation rock mass occurred on the bank slope. According to the relationship between the
toppling body failure and the water depth on the slope observed in the three stages of
reservoir impounding, the bank slope failure of the toppling deformation body mostly
occurs when the water depth on the slope exceeds 50 m (Figure 6b).

(2) Relationship between the secondary failure of the toppling deformation body
and lithology

The results of the on-site geological investigation show that the softening of the
toppling deformed rock mass in the reservoir water-storage process is the main internal
cause of the secondary failure of the toppling deformed masses. The bank slopes of the
collapsed deformed bodies are mostly a combination of thin-layered slate and thin-layered
metamorphic sandstone. Due to the fast softening of the slate, the strength of the slate that
has been toppled and broken will decrease by 50% after only one week during the water-
storage process and by 70% after one month. In the toppling–loose rock mass, toppling
tension fractures develop. Although the fracture surface does not form a unified failure
surface, the fractures have a high connectivity rate, are saturated with water and soften
faster. After the reservoir has been impounded for a certain period of time, it is affected
by the toppling–collapse rock mass outside the bank slope, and then the failure of the
toppling–loose rock mass continues.

The softening rate of the soft rocks is obtained by testing the point load strength
reduction value of rocks after water immersion softening. According to the results of
laboratory tests, the strength softening rate of the soft rocks reached 28.81% after 28 days
saturation (Figure 7a), and the level in the hard rocks after 28 days saturation was 25.51%
(Figure 7b). Due to the structural characteristics of the toppling deformed rock mass, the
reservoir water seepage rate is fast, and the slope below the water-storage level is quickly
saturated. With the increase in the water level, the toppling deformed rock mass at the foot
of the slope lost its strength after softening.
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(3) Hydrodynamic force affection on the collapse of toppling bank slope

In order to analyze the mechanism of hydrodynamic force on the secondary failure
of toppling deformation body, the discrete element numerical simulation method was
used to simulate the deformation characteristics of toppling rock mass under the action
of pore water pressure in different impoundment stages. In the numerical model, the
vertical and horizontal permeability coefficients of different toppling types were used
based on Formula (1). The total displacement of interbedded toppling slope without water
storage and water storage at 30 m, 60 m and 80 m are shown in Figure 8a–d. Before water
storage, the slope forms a deformation area with a maximum displacement of 60 mm in
areas B1, B2 and C, and the overall deformation is small. The deformation mainly comes
from the toppling–collapse and toppling–loose areas and the closed deformation of the
rock layer and joint surface. With the rise of water level, the displacement of each area
increases obviously, an obvious displacement differentiation zone is generated between
area A and area B, and the differentiation surface is in a slip arc shape. At the same time,
an obvious displacement differentiation zone is also formed between area B2 and area C.
When the storage water level reaches 60 m, the deformation of each part of the rock mass
in area A exceeds 1.00 m. The deformation gradient of in area B is obvious, finally reaching
20~80 cm. The maximum displacement in area C is less than 20 cm. Accelerated deforma-
tion occurs in area A after 10 m of water storage. The deformation of rock mass below 10 m
increases slightly with the rise of water level, and the displacement of the slope top finally
reaches 60~100 cm (Figure 8e). Area B2 and area C deform after 10 m of water level, and
the displacement in X direction of area B finally reaches 15~50 cm (Figure 8f).
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Figure 8. (a) The total displacement of slope before water storage. (b) The total displacement of
slope when the reservoir impounded 30 m. (c) The total displacement of slope when the reservoir
impounded 60 m. (d) The total displacement of slope when the reservoir impounded 80 m. (e) The
displacement in X direction of series monitoring points in area A. (f) The displacement in X direction
of series monitoring points in area B.

The numerical analysis results show that the saturated metamorphic quartz sandstone
in the toppling collapse zone A is broken and sheared, while the saturated slate is squeezed
to produce compression deformation. The shear failure of the lower saturated hard rock
in area B1 is relatively strong. After the impoundment of the reservoir, the pore water
pressure increases in the relaxation tension, promoting the development of the deformation
and the failure of the slope. Approximately 90% of the toppling bank slope failure occurred
within 30 days after the reservoir impoundment in the Miaowei Reservoir. At this stage,
the reservoir water supplies groundwater and flows from the bank to inside the slope. Due
to the development of the toppling tension fracturing of the bank slope, the seepage mode
of the groundwater is a transient and steady flow, and seepage is formed only between the
joints and the rock layer surface. The dynamic seepage pressure has little impact on the
groundwater level of the bank slope. The main effect of the reservoir water on the bank
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slope of the toppling rock mass is the increase in pore water pressure in the bank slope rock
mass and the weakening effect of the rock bank slope caused by the splitting effect of the
water on the existing fissures.

3.4. Prediction Model of Toppling Deformation under Reservoir Water Storage
3.4.1. Prediction Model of the Spatial Failure Range of Toppling Deformation Bodies

According to the failure stage and failure mode of the toppling rock mass in the
water-storage process in the Miaowei Reservoir area, the failure of the toppling deformed
rock mass on the bank slope during the impounding process occurs in stages. In general,
during the water-storage process, the toppling–collapse rock mass was first damaged, and
then the toppling–loose rock mass was damaged. This process is mainly affected by the
severity of the toppling deformation, the underwater depth, the structural characteristics
of the rock mass, the width of the water surface, the height of the slope and the slope dip.
Therefore, the prediction model of the toppling slope second failure during water storage
requires comprehensive consideration of the above factors.

According to the failure results of the toppling rock mass during impoundment, the
ratio of the thickness of the slate and the ratio of the underwater slope height to the total
slope height in the underwater bank slope are very significant (Figure 9a). The relationship
of failure is expressed by the failure index λ.

η1 =
∆H
H

(2)

η2 =
∑ hsi

h
(3)

λ = η1η2/[BT] (4)

where ∆H is the underwater slope height (m), H is the total height of the toppling rock
slope (m), Σhsi is the total thickness of the slate or phyllite in the slope below the reservoir
water level, h is the total thickness of the slope rock below the reservoir level and [BT] is
the fracture resistance quality index of the bank slope rock mass, which is determined by
Equation (5).

[BT] = σrtkv (5)

where σrt is the bending strength of the rock mass (MPa) and kv is the integrity of the rock
mass, which can be determined by the density of the joints Jv (Table 5).
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Table 5. Comparison of Jv and kv.

Jv (Joint Number/m3) <3 3~10 20~35 >35

kv >0.75 0.75~0.55 0.35~0.15 <0.15
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For the toppling–collapse rock mass, Jv is less than 0.15; for the toppling–loose rock
mass, it is 0.25~0.15; and for the toppling–relaxation rock mass, it is 0.55~0.35. Statistics
show that the failure condition of the bank slope occurs when the failure index λ is greater
than 0.25 (Figure 9b).

3.4.2. Forecasting Model of the Toppling Deformation Body Failure Time under Reservoir
Water Storage

The time of toppling bank slope failure is related to the lithological combination of
the toppling deformation body, the thickness of the toppling sections, and the slope dip.
Suppose that the average thickness of the toppling–collapse rock mass, the toppling–loose
rock mass, and the toppling–relaxation rock mass are SA, SB, and SC, and the hydraulic
conductivities are KA, KB, and KC, respectively. Therefore, the saturation time caused by
the infiltration along the inclination direction of the rock formation is expressed by the
following formulas:

TA = SA/KA I (6)

TB = SA/KA I + SB/KB I (7)

Tc = SA/KA I + SB/KB I + SC/KC I (8)

where I is the hydraulic gradient determined by the rising rate of reservoir water storage.
According to the field tests, KA, KB and KC are time-dependent, and the hydraulic con-
ductivity by the parallel and perpendicular layers on the site can be integrated into the
hydraulic conductivity along the horizontal direction of the toppling deformation body
(Equation (9)).

→
KA =

→
KAX +

→
KAZ (9)

The toppling deformation slope failure is related not only to the saturation and
softening of the rock mass but also to the reservoir water-storage rate and the dynamic
effect of the waves on the water surface. Therefore, the time to predict the failure of the
toppling deformation rock mass on the bank slope can be comprehensively determined
by Equation (10). Determine the time point by determining the storage rate.

Ew + σtη = ∑ σtihi (10)

Because part of the rock mass at the foot of the slope is softened by saturated water
and washed away by turbulence along the shore, an area cavity is formed in the lower
part of the slope. When the cavity is large enough, it will cause the upper toppling rock
mass to be sheared, resulting in slope failure. Suppose the height of the slope below the
water-storage level is ∆H, and the height of the softening and collapse of the slope foot is
∆H′. Then, the cantilever length of the toppling rock layer is MN = L, and the gravity of
the potential damage part above the cantilever section is determined by Equation (11).

W =
1
2

rwL
(

H − ∆H + ∆H′
)
/ cos α (11)

where rw is volumetric weight of rock (kN/m3) and α is slope angle (◦).
The transverse bending force acting on the cantilever rock formation is: F = w cos δ.

Where δ is dip angle of rock stratum (◦) and w is self weight of rock stratum (kN).
Assuming that the thickness of a rock layer above the cavity is hi, the bending strength

of this rock layer is σti hi, and the conditions for the rock layer to bend and break are:

σtihi ≤ w cos δ (12)

σti = σt0µ (13)
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where σt0 is the initial tensile strength of the rock formation (MPa), µ is the strength
reduction rate of the rock formation. The bending strength reduction rate of different rock
masses is obtained through experiments.

For the bank slope formed by the combination of hard rock and soft rock, the bending
strength of the rock mass can be determined by the thickness weighted average value
(Equation (14)).

σt = ∑n
i=1σtihi (14)

In this way, continue to calculate layer by layer until Equation (14) is satisfied, and the
secondary overall failure of the toppling deformed rock mass will occur.

After the impoundment of the reservoir, traction flow occurs along the shore. It
will transport the rock and soil of the bank slope that has collapsed. As a result, the
disintegrating material of the bank slope is transported to form bank slope cavities. The
carrying capacity of the traction flow is manifested in two aspects. One is the thrust of
the fluid acting on the sediment; the magnitude of the thrust depends mainly on the flow
velocity. The other aspect is the impact load; the magnitude of the load depends on the flux
of the fluid. Equation (15) can be used to calculate the traction of flow along the bank.

P = rwHI (15)

The calculation formula of saturated disintegrating rock blocks in the bank slope
caused by the traction of the flow is as follows:

p∆t = M∆V (16)

where p is the average driving force of the turbulent flow on the block, ∆t is the time, M is
the mass of the pushed object determined by the size and volumetric weight of the block
after disintegration and ∆V is the speed change. Assuming that the block leaves the bank
slope after generating L due to the impact, then

∆V = L/∆t (17)

The time required for the underwater rock mass of the slope to be transported by the
flow is:

T3 = ∆t =
ML

rwHI
(18)

where γw is the volumetric weight of the water (kN/m3); H is the water depth (m); and I is
the hydraulic gradient, which is determined by the reservoir storage rate and the gradient
of the riverbed upstream and downstream.

As discussed in Section 2.2, the time for the saturation of the underwater rock layer
and the turbulent impact existing on the reservoir bank will form a cavity in a certain area
at the slope foot. This total time is determined by Equation (19).

T = T1 + T2 + T3 (19)

where T1 is determined by Equation (8), T2 is determined by Equation (10), and T3 is
determined by Equation (18).

3.4.3. Prediction of the Toppling Bank Slope Failure Scope under Reservoir Impoundment
at 1408 m

The damage range of 24 toppling deformation bodies of the Miaowei Hydropower
Station under reservoir water level 1408 m was predicted (Table 6) using the above model.
In the scope prediction of the second failure of the toppling bank, the position of the final
failure surface needs to be determined first; this position is controlled by the depth of the
broken toppling surface. Based on the combination of lithology and layer thickness, the
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range of the preferential collapse area and horizontal erodible zone was calculated, and
then, the corresponding calculation model was used to predict the range of damage.

Table 6. Prediction results for the final failure range of the toppling deformed bank slope under the
condition of 1408-m water storage.

No. of Toppling Buildings Affected Lithology
Thickness Ratio

(Sandstone:
Slate)

Deformation
Depth (m)

Prediction of
Bank Collapse

Height (m)

Failure Time
(day)

Actual
Collapse

Height (m)

ZQD2 No Slate with sandstone 1:3 30~40 42.0 24 30

QD14 Country road Slate with sandstone 1:3 25~30 200.0 29 180

QD2 Riverside highway Slate with sandstone 1:2 70~90 12.0 636 10

QD2-1 Riverside highway slate 90% 80~100 13.0 627 30

QD3 Riverside highway slate 90% 60~70 22.0 522 60

QD4 Riverside highway slate 90% 60~70 15.0 522 35

QD5-1 Residential houses,
Riverside highway

Sandstone slate
interbedding 1:1 30~40 35.0 93 10

QD6 Residential houses,
Riverside highway Slate with sandstone 1:1.5 45~50 36.0 721 30

ZQD5 Residential houses,
Riverside highway Slate with sandstone 1:4 65~70 / * / 12

QD7 Zayang village,
Riverside highway slate 90% 50~60 140.3 320 50

QD9 Riverside highway Sandstone with slate 2:1 30~35 160.0 320 80

QD11 Riverside highway Sandstone with slate 2:1 30~40 / / 10

QD12 Riverside highway Sandstone with slate 1:3 40~45 / / 15

ZQD7 Riverside highway Sandstone with slate 2:1 20~25 47.0 65 15

ZQD8 Riverside highway Sandstone with slate 3:1 20~30 49.0 90 30

ZQD9 Residential houses,
Riverside highway slate 90% 70~80 76.3 20 8

QD5 No Slate with sandstone 1:1.5~1:2 40~50 52.0 59 30

QD8 Zayang village,
Riverside highway Slate with sandstone 1:8 40~50 56.5 52 30

ZQD1
Fengdian power
station, Riverside

highway

Sandstone slate
interbedding 1:1 60~70 / /

ZQD3 Residential houses,
Riverside highway

Sandstone slate
interbedding 1:1 35~45 36.0 57 10

ZQD4 Keli village Slate with sandstone 1:1.5 20~25 / / 30

ZQD6 No Sandstone slate
interbedding 1:1 35~40 42.0 61 8

QD6-1 Riverside highway Sandstone slate
interbedding 1:1 35~45 / / 10

QD10 Riverside high way slate 90% 60~80 / / 35

Note: * will not occur bank collapse.

4. Conclusions

Based on related experiments, field investigation of the toppling deformation index,
analytical analysis and numerical analysis, the deformation process and the toppling rock
mass is systematically analyzed, and the deformation trends of the toppling deformation
masses under the reservoir water-storage condition are predicted. The scientific basis is
provided for predicting the stability of bank slopes during normal reservoir operation and
prevention measures. The study reached the following conclusions.

(1) The first formation of a toppling rock mass is not only the result of gravity but also
the result of long-term tectonic stress. The transverse bending effect is more significant on
the reverse slope; longitudinal bending is significant in the dip slope, and toppling appears
only on the surface of the slope.

(2) According to the severity of toppling deformation, the toppling deformation rock
mass can be divided into four types: toppling collapse, toppling loose, toppling relaxation
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and toppling creep. Because the toppling–collapsed rock mass has a relatively obvious
fracture surface, it has a low resistance to softening and disintegration, and the block at
the foot of the slope is easily washed away and muddled. Secondary failure often occurs
during the water-storage process and shortly after water storage.

(3) Tension cracks formed during the toppling deformation process create good condi-
tions for the reservoir water to penetrate the slope. The groundwater level rises rapidly
with the rise of the reservoir water level, which leads to an increase in pore water pressure
and a decrease in the effective stress of the anti-sliding section, resulting in a decrease
in stability. The failure of the toppling rock mass is usually due to the free face in the
lower part, and the upper rock mass is in an unsupported “floating” state, resulting in
the concentration of compressive stress at the topographic turning point in the middle
and lower parts of the slope. Then, the deformation is transmitted upward through the
misalignment, rotation, and slipping of the joints so that the upper slope is in a tensile state,
which causes tensile cracks on the surface, and the upper rock mass is prone to collapse
due to toppling deformation.

(4) The prediction results of different toppling deformation slopes on the Miaowei
reservoir are in good agreement with the actual situation of many toppling collapses,
which proves the effectiveness of the prediction model. The second failure scope and time
prediction model of the toppling deformed rock mass proposed in this paper can be used
to predict the toppling slope failure banks during the impounding process stages in alpine
gorge reservoirs in southwest China. The results of this study are an important reference for
the development of a prevention–control design of toppling and for ensuring operational
safety in alpine gorge reservoir areas.
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