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Abstract: In this study, a stochastic rainfall generator was developed to create continuous rainfall
time series with a high temporal resolution of 10 min. The rainfall-generation process involved
Monte Carlo simulation for stochastically generating rainfall parameters such as rainfall quantity,
duration, inter-event time, and type. A bivariate copula was used to preserve the correlation between
rainfall quantity and rainfall duration in the generated rainfall series. A modified Huff curve method
was used to overcome the drawbacks of rainfall type classification by using the conventional Huff
curve method. The number of discarded rainfall events was lower in the modified Huff curve
method than in the conventional Huff curve method. Moreover, the modified method includes a new
rainfall type that better represents rainfall events with a relatively uniform temporal pattern. The
developed rainfall generator was used to reproduce rainfall series for the Yilan River Basin in Taiwan.
The statistical indices of the generated rainfall series were close to those of the observed rainfall
series. The results obtained for rainfall type classification indicated the necessity and suitability of
the proposed new rainfall type. Overall, the developed stochastic rainfall generator can suitably
reproduce continuous rainfall time series with a resolution of 10 min.

Keywords: stochastic rainfall generator; Huff rainfall curve; copula

1. Introduction

A stochastic rainfall generator is a statistical model that produces synthetic rainfall time
series with desired statistical properties. Synthetic rainfall time series can be used for vari-
ous purposes, such as rainfall–runoff modeling [1,2], design flood estimation [3–5], rainfall
projection under climate change scenarios [6–8], and prediction in ungauged basins [9,10].
The Richardson-type rainfall generator [11,12], a popular stochastic rainfall generator, can
reproduce long-term continuous daily precipitation time series. This generator uses Markov
chains to determine the occurrence of wet or dry days and then simulates the rainfall quan-
tity on wet days through Monte Carlo techniques. Although the aforementioned generator
has been proven to be successful in reproducing daily precipitation time series, it cannot be
used to obtain sub-daily or high-temporal-resolution rainfall time series.

High-temporal-resolution rainfall data can be used for different purposes, such as
analyzing short-duration extreme rainfall events and simulating floods in small catchment
areas. To generate rainfall time series with high temporal resolution [13,14], the temporal
characteristics of a rainfall event must be determined. High-temporal-resolution rainfall
data can be generated using two models: the profile- and pulse-based models. The profile-
based model combines the total rainfall quantity and rainfall profile (rainfall type) to obtain
a rainfall hyetograph. Typical rainfall types include rainfall described by the Chicago
curve [15], Huff curve [16], and triangular curve [17]. The pulse-based model considers
a rainfall event to consist of a cluster of rain cells whose occurrences follow a Poisson
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distribution. Rodriguez-Iturbe et al. [18,19] examined two popular pulse-based models in
detail: the Neyman–Scott cluster model [20–25] and Bartlett–Lewis cluster model [26–31].

In the present study, the profile-based model with Huff rainfall curves, proposed by
Huff [16] and modified by Huff and Vogel [32] and Huff [33], was adopted. Huff rainfall
curves are presented using four types of dimensionless cumulative hyetographs according
to the quarter in which the peak rainfall intensity occurs. Huff curves are popularly
used in design storm, runoff simulation, design flood, and rainfall predictions [34–40].
However, Huff curves are not representative of rainfall events with uniform temporal
distribution, and the rainfall type cannot be determined when a rainfall event has multiple
peak intensities. Therefore, this paper proposes modified Huff rainfall curves for solving
the limitations of the original Huff curves. The modified Huff rainfall curves have an
additional rainfall type to account for rainfall events with uniform temporal distribution
and can be used to classify rainfall events with multiple peak intensities. The proposed
rainfall generator uses Monte Carlo simulation for stochastically generating modified Huff
rainfall curves and other rainfall parameters (rainfall quantity, duration, and inter-event
time) to form continuous rainfall time series with a temporal resolution of 10 min.

A suitable rainfall generator should reproduce rainfall data with anticipated statistical
properties. Usually, a single rainfall parameter can be suitably generated through Monte
Carlo simulation with an appropriate marginal distribution. However, various rainfall
parameters can be interrelated. For example, a rainfall event with a longer duration is
typically associated with higher cumulative rainfall. Therefore, the generation of rainfall
parameters individually may result in the correlation between rainfall variables being lost
and distorted rainfall data being obtained. Hence, the present study used a copula [41]
to account for the correlation between parameters during the rainfall generation process.
Copulas are mathematical functions that model the dependence among interrelated vari-
ables. An advantage of a copula is that it allows the dependence structure of variables to
be modeled without the selection of marginal distributions. Therefore, copulas are widely
employed in frequency analysis in hydrology [42–48]. The present study examined the
correlation between rainfall parameters and constructed copulas for rainfall quantity and
duration to generate rainfall data with appropriate correlation properties.

The remainder of this paper is structured as follows. The basic structure of the
proposed continuous rainfall generator, the copula theory, and the modified Huff rainfall
curves are described in Section 2. Section 3 presents information on the study area, the
Yilan River Basin in Taiwan, and the collected 10 min rainfall data. Section 4 details the
development of the proposed stochastic rainfall generator, with a focus on the modified
Huff rainfall curves and adopted copula functions. The rainfall-generation results are
presented in Section 5, and the conclusions of this study are provided in Section 6.

2. Methodology
2.1. Continuous Rainfall Time Series Generation

In this study, a stochastic rainfall generator was developed to produce a continuous
rainfall time series with a high temporal resolution of 10 min. A continuous rainfall time
series contains data for alternate wet and dry periods. The wet period indicates a rainfall
event, and the dry period is called the inter-event time. A rainfall event can be characterized
by rainfall duration, quantity, and type. Therefore, a continuous rainfall time series contains
data related to four parameters: total rainfall quantity (R), rainfall duration (D), rainfall
type, and rainfall inter-event time (T) (Figure 1).
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Figure 1. Example of rainfall time series and parameters.

In this study, the generation of continuous rainfall time series basically involved Monte
Carlo simulation. First, the statistical properties and probability distribution of the four
rainfall parameters were obtained and analyzed. Subsequently, on the time coordinate,
an alternating sequence of rainfall duration and rainfall inter-event time was randomly
generated according to their statistical properties and probability distributions. Total
rainfall quantity, rainfall type and rainfall duration were generated simultaneously to
construct a rainfall event. Because of the statistical correlation between rainfall quantity
and duration, the copula method (Section 2.2) was used for simultaneously producing
rainfall quantity and duration data. Moreover, modified Huff rainfall curves (Section 2.3)
were used for better describing the temporal distribution of rainfall data. By using a
repetitive generation process based on Monte Carlo simulation, continuous rainfall time
series with the desired length were constructed.

2.2. Bivariate Copula

A copula is a multivariate distribution function that links the univariate distribution
functions of each random variable. Copulas, originally introduced in the theorem proposed
by Sklar [41], can model the correlation among variables without the assumptions made
about the marginal distributions. According to this theorem, the joint cumulative distribu-
tion function FXY of random variables X and Y with respect to the marginal cumulative
distribution functions FX and FY can be expressed as follows:

FXY(x, y) = C(FX(x), FY(y)) = C(u, v) (1)

where C is a bivariate copula, and u and v are the cumulative probabilities of x and y,
respectively. Let I = [0, 1], and let the bivariate copula C be a mapping function defined
on a unit square, where C : [0, 1]2 → I . When FX and FY are continuous, a unique copula
representation exists. Thus, FXY defines a joint distribution function with the marginal
distributions FX and FY [49]. For any u and v in I = [0, 1], the copula is bounded as follows:

C(u, 0) = 0, C(0, v) = 0, C(u, 1) = u, C(1, v) = v (2)

The aforementioned copula satisfies the two-increasing property; thus, for all u1 ≤ u2
and v1 ≤ v2, the following equation is satisfied:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 (3)
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Copulas are categorized into various families. The Archimedean copula family is
popular in hydrology because of its simplicity and practicality in application [3,50–52].
This family includes various copulas with different numbers of parameters. Salvadori
and De Michele [53,54] and Genest and Favre [55] suggested the use of one-parameter
copulas in hydrology. The present study adopted three commonly used one-parameter (θ)
copulas from the Archimedean copula family: the Frank, Clayton, and Gumbel copulas.
The parameter θ can be calculated from the relationship between θ and Kendall’s tau (τ),
which is the rank correlation coefficient. Table 1 lists the copula functions adopted in this
study and the relationships between θ and τ for these functions [56].

Table 1. Three copula functions used in this study and the relationships between θ and τ for
these functions.

Copula Function Parameter Space Relationship between θ and τ

Clayton C(u, v) =
(

u−θ + v−θ − 1
)−1/θ

θ > 0 τ = θ
θ+2

Frank
C(u, v) =
− 1

θ ln
{

1 + [exp(−θu)−1]·[ exp(−θv)−1]
exp(−θ)−1

} θ 6= 0
τ =
1 + 4

θ

[
1
θ

∫ θ
0

t
exp(t)−1 dt− 1

]
Gumbel C(u, v) = exp

{
−
[
(− ln u)θ + (− ln v)θ

]1/θ
}

θ ≥ 1 τ = 1− 1
θ

2.3. Modified Huff Rainfall Curves

Profile-based models typically use Huff rainfall curves as the basis for defining the
temporal distribution of rainfall events. These curves are empirical and dimensionless,
probabilistic representations of cumulative hyetographs. The temporal rainfall patterns
were classified into four types (Type 1 to Type 4) according to the time when the peak
intensity occurred (i.e., in the first, second, third, or fourth quarter of rainfall duration).
Figure 2 presents the temporal patterns, median (solid line), and 10% and 90% cumula-
tive probabilities (lower and upper dashed lines, respectively) of the four types of Huff
curves. The cumulative rainfall depth and cumulative rainfall duration were standardized
by the total rainfall depth and total rainfall duration, respectively, and are presented in
dimensionless form within the interval from 0% to 100%.

Although Huff rainfall curves are popular because of their ease of use, they have
certain limitations. First, if a rainfall event has multiple peak intensities, then the rainfall
type cannot be determined, and this event is omitted or randomly classified into one of
the four rainfall types [57]. Second, a rainfall event with a relatively uniform temporal
distribution cannot be well-represented by the four Huff curves. This paper proposes
the solution described in the following text to the problem caused by the existence of
multiple peak rainfall intensities. When a rainfall event has multiple peak intensities,
the maximum total rainfall in a quarter instead of the peak intensity should be used to
determine the rainfall type. However, a rainfall event with multiple peak intensities and
the same maximum total rainfall in two or more quarters cannot be classified using the
aforementioned solution. Nevertheless, this type of rare event occupies a very small
portion of rainfall time series. Because Huff curves cannot be used to designate a rainfall
event with a relatively uniform temporal distribution, this paper proposes an additional
rainfall type (Type 5) for labeling such a rainfall event. The Schutz index (explained in the
following paragraph) was used to distinguish Type 5 rainfall events from the other types of
rainfall events.
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Figure 2. Huff’s four rainfall types with the corresponding median (solid line) and 10% and 90%
cumulative probabilities (lower and upper dashed lines, respectively).

The Schutz index [58] was originally proposed as an equity measure for income metrics
in economics. Therefore, the Schutz index is an appropriate measure for assessing the
uniformity of a distribution. Schutz [58] proposed the aforementioned index on the basis of
the Lorenz curve [59], which is a probability plot with respect to a variable accumulated
in a nondecreasing order. Figure 3 illustrates a Lorenz curve for income distribution
among a population. Figure 3a depicts the histogram of the income of each 10% of the
population versus the cumulative population in a nondecreasing order (the unit of income
and population is percentage in this graph). By accumulating the income with respect to
the population, the Lorenz curve (the red curve in Figure 3b) can be obtained. The 45◦

diagonal in Figure 3b indicates the perfect-equity income. When the Lorenz curve is close
to the 45◦ diagonal, a uniform income distribution is identified. The Schutz index is an
objective measure of the closeness of the Lorenz curve to the line of perfect equity. Thus,
the Schutz index quantifies the total deviation of the income of each category (yi) from
the mean income (ymean). Figure 4 presents an example of a rainfall event to describe the
calculation of the Schutz index. The rainfall in each time step (yi) of an original event is
sorted and rearranged in a nondecreasing order, where i = 1, 2, . . . , n, and n is the last time
step. The Schutz index (S) is calculated using the following equation:

S =
1
2
·∑

n
i=1|yi − ymean|

∑n
i=1 yi

(4)
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Figure 4. Example of the calculation of the Schutz index by using rainfall data: (a) original rainfall
event and (b) sorted nondecreasing rainfall depth.

When S is 0, the rainfall in each step (yi) is the same as the mean rainfall (ymean), and
the rainfall distribution is perfectly uniform. Thus, in the aforementioned scenario, the
cumulative rainfall pattern corresponds to the diagonal in Figure 3b. When S approaches
1, the rainfall distribution is far from uniform. Thus, a small S value indicates that the
rainfall distribution can be categorized as Type 5 (uniform rainfall distribution), and a large
S value suggests that the rainfall distribution belongs to one category among Types 1 to 4.
The modified Huff curve method is illustrated in Figure 5. First, the Schutz index (S) of
a rainfall event is calculated to determine whether the rainfall distribution is uniform. If
S is smaller than a threshold (which is determined in the following section), the rainfall
distribution is considered to be uniform and categorized as Type 5. If S is larger than the
threshold, the rainfall distribution is not close to Type 5 and belongs to one category among
Types 1 to 4. In this circumstance, the existence of multiple peak rainfall intensities is
checked. If only one peak intensity exists, the conventional Huff method is used to identify
the rainfall type. If multiple peak intensities exist, the maximum total rainfall in a quarter
is used to determine the rainfall type.
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3. Study Area and Rainfall Data

In this study, 10 min rainfall data from 2012 to 2018 were collected for the Yilan River
Basin in Taiwan. The Yilan River’s watershed is located in northeastern Taiwan (Figure 6),
where the typical climate is humid and rainy. Nine rain gauges collect 10 min rainfall data
for the Yilan River Basin. As displayed in Figure 6, seven of these rain gauges are located
inside the basin, whereas two are located outside the basin.
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Rainfall time series must be analyzed to obtain their statistical properties. The primary
task is to define and distinguish a rainfall event. Researchers have used various methods to



Water 2022, 14, 2123 8 of 19

distinguish rainfall events and determine the rainfall inter-event time [60,61]. The selection
of minimum rainfall duration and minimum rainfall inter-event time is dependent on the
temporal resolution of the available data. Because the time resolution of the data collected
in this study was 10 min, and the rainfall types were distinguished according to Huff
rainfall curves, the minimum duration of a rainfall event was set as 40 min. Thus, rainfall
events shorter than 40 min were not included in the rainfall event database. Moreover, the
minimum inter-event time was set as 1 h. Thus, when a dry period was shorter than 1
h, this period and the wet periods preceding and following it were regarded as a rainfall
event [62,63]. This approach considerably reduced the number of discarded rainfall events
with durations less than 40 min.

Summer and winter monsoons occurred in the study area. Therefore, the rainfall
events in this study were divided into those occurring in the summer (from May to October)
and winter (from November to April of next year) seasons. A total of 4317 summer rainfall
events and 3246 winter rainfall events were identified in this study.

4. Stochastic Rainfall-Generation Model Development
4.1. Rainfall Type

A threshold value of the Schutz index (S) was determined to identify Type 5 rainfall
events. No a priori criterion can be used to set the threshold value; however, Bonta and
Shahalam [64] suggested using the data of more than 120 storms to obtain stable Huff
curves. The present study assumed that the number of Type 5 rainfall events was not greater
than the numbers of Type 1 to Type 4 rainfall events. This assumption is rational because
the number of rainfall events with a uniform distribution (Type 5) is usually less than those
with a nonuniform distribution (Types 1 to 4). Therefore, a grid search method was used
for S under the condition of increasing the number of Type 5 rainfall events; however,
the number of Type 5 rainfall events was constrained by the minimum number of Type
1 to Type 4 rainfall events. Consequently, the number of Type 5 rainfall events could not
exceed the minimum number of Type 1 to Type 4 rainfall events. Table 2 lists the threshold
values of S for the summer and winter seasons as well as the numbers and percentages
of Type 1 to Type 5 rainfall events. The threshold values for the summer and winter
seasons were 0.29 and 0.30, respectively. By using the derived thresholds and the process
described in the previous section (Figure 5), the identified rainfall events were categorized
into different types. Figure 7 shows the classification of rainfall types for the summer
season by using modified Huff rainfall curves. The bold black curves connecting squares,
circles, and triangles indicate the 10%, 50%, and 90% percentiles of the rainfall categories,
respectively. The colored curves represent the observed rainfall distributions. The rainfall
classification curves obtained for the winter season were analogous to those obtained for
the summer season. In Figure 7, the Type 5 rainfall events exhibit the characteristic of
uniform distribution, which is different from the characteristics of Type 1 to Type 4 rainfall
events. The results displayed in Figure 7 support the rationale that the Type 5 category is
essential for better representing a uniform rainfall distribution.

Table 2. Threshold values of the Schutz index as well as the numbers and percentages of Type 1 to
Type 5 rainfall events.

Summer Season Winter Season

Number of
Events

Percentage
(%)

Number of
Events

Percentage
(%)

Type 1 1069 24.76 869 26.77
Type 2 1003 23.24 721 22.21
Type 3 857 19.85 610 18.79
Type 4 704 16.31 534 16.45
Type 5 684 15.84 512 15.78

Schutz index 0.29 0.30
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In the traditional Huff method, approximately 40% of the identified rainfall events
would need to be ignored because they are associated with multiple peak rainfall intensities.
However, in the proposed method, only 5% of the identified rainfall events were ignored.

4.2. Copula Function

This study examined the correlation between each pair of the rainfall parameters by
using normalized rank scatter plots [48]. The rainfall quantity, duration, and inter-event
time were normalized between 0 and 1 and sorted in ascending order. These normalized
and sorted data were then used to draw scatter plots. Figure 8 displays the normalized
rank scatter plots for different pairs of rainfall parameters in the summer season. The rows
in this figure indicate different rainfall types (Types 1 to 5), and the three columns denote
three pairs of parameters. The patterns in the first column in Figure 8 indicate that the
rainfall quantity and duration (R, D) are correlated, especially for large values. However,
the patterns in the second and third columns suggest that no correlation exists between
rainfall duration and inter-event time (D, T) and between rainfall quantity and inter-event
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time (R, T), respectively. The normalized rank scatter plots for the winter season are similar
to those for the summer season and thus are not shown in this paper. Pearson correlation
coefficients were calculated using the data in the rank-normalized plots to quantify the
correlation between the rainfall parameters. The average correlation coefficients for (R,
D) in the summer and winter seasons were 0.70 and 0.85, respectively. However, the
correlation coefficients for (D, T) and (R, T) were close to 0. Therefore, the rainfall quantity
and duration (R, D) were adopted to construct a bivariate copula for rainfall generation.
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The next step involved determining which bivariate distribution function (from among
the Frank, Clayton, and Gumbel copulas) was best suited for describing the correlation
between the rainfall quantity and duration in the study area. Kendall’s tau (τ) was calcu-
lated and used to determine the θ value of the three copulas adopted in this study (Table 1).
The τ and θ values derived for the three copulas are listed in Table 3. After deriving the
aforementioned values, the three copulas were used to model the correlation between
rainfall quantity and rainfall duration. The cumulative probability functions of the three
copulas for the summer season are illustrated in Figure 9. The blue, red, and green curves
indicate the cumulative probability functions of the Clayton, Frank, and Gumbel copulas,
respectively. The black dotted line represents the cumulative probability function of the
empirical copula, which was constructed using the observed rainfall quantity and duration.
The Clayton, Frank, Gumbel, and empirical copulas exhibited similar patterns to each
other except for the Type 5 rainfall data under low cumulative probabilities. In general, the
Clayton, Frank, and Gumbel copulas can suitably model the correlation between rainfall
quantity and rainfall duration. The present study used the root mean square error (RMSE)
for objectively determining the copula with the best fit to the empirical copula. Table 4 lists
the RMSEs in probability (the vertical axis in Figure 9) for different copulas and rainfall
types. The minimum RMSEs are highlighted in bold although some values are the same
after being rounded off. The results indicate that the Frank copula was the most appropri-
ate copula for modeling the correlation between the rainfall quantity and duration in the
study area.

Table 3. Values of τ and θ for the three copulas in summer and winter.

Summer Season Winter Season

Kendall’s Tau τ
Parameter θ

Kendall’s Tau τ
Parameter θ

Clayton Frank Gumbel Clayton Frank Gumbel

Type 1 0.487 1.901 5.510 1.950 0.602 3.021 7.975 2.511
Type 2 0.417 1.428 4.394 1.714 0.633 3.455 8.893 2.727
Type 3 0.465 1.739 5.136 1.870 0.613 3.161 8.273 2.581
Type 4 0.436 1.546 4.680 1.773 0.623 3.307 8.581 2.653
Type 5 0.490 1.920 5.553 1.960 0.743 5.785 13.70 3.892

Table 4. RMSEs in probability values for different copulas and rainfall types.

Summer Season Winter Season

Clayton Frank Gumbel Clayton Frank Gumbel

Type 1 0.030 0.027 0.028 0.038 0.036 0.037
Type 2 0.024 0.019 0.018 0.026 0.024 0.025
Type 3 0.026 0.020 0.020 0.023 0.022 0.022
Type 4 0.034 0.030 0.031 0.042 0.040 0.041
Type 5 0.059 0.059 0.060 0.052 0.052 0.052

Because the rainfall quantity and duration were fitted using the Frank copula, the
rainfall inter-event time was modeled using a univariate probability distribution. In this
study, the observation data was directly applied to construct the empirical distribution for
the rainfall inter-event time.
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Figure 9. Copula functions for different rainfall types in summer.

4.3. Procedure for Stochastic Rainfall Generation

In this study, rainfall data generation was conducted through Monte Carlo simulation,
which involves repeated random sampling. First, a 50% probability is used to determine
whether a rainfall time series begins with a rainfall event or rainfall inter-event time.
Rainfall events and inter-event times are then alternately produced. To produce a rainfall
inter-event time, a number in the range of (0, 1) is randomly generated and substituted into
the empirical probability distribution. To produce a rainfall event, three rainfall parameters,
namely rainfall quantity, duration, and type, are generated.

The rainfall quantity and duration are generated simultaneously by using the Frank
copula. First, a random number is generated as the cumulative probability of the copula,
which is represented by a contour curve in Figure 9. Next, a point on the contour curve
is randomly selected with equal probability. The values of rainfall quantity and duration
can then be obtained from the location of the selected point. For the generation of rainfall
type, one out of the five rainfall types (Types 1 to 5) is randomly selected according to
their probabilities of occurrence (Table 2). After the rainfall type is determined, a random
number is generated as the percentile for that rainfall type (Figure 7). Thus, a rainfall curve
can be retrieved for the identified rainfall type with the generated percentile value.

By using the aforementioned process to produce rainfall parameters repetitively,
synthetic continuous rainfall time series of any desired length can be generated. This study
repeated the aforementioned procedure 10,000 times to generate a continuous rainfall time
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series with 10,000 sets of rainfall events and inter-event times. The results of this study are
discussed in the following section.

5. Results and Discussion

This paper proposes a methodology for generating a continuous rainfall time series
with a temporal resolution of 10 min. The statistical properties of the generated rainfall
time series should correspond to those of the observed rainfall time series. The observed
rainfall time series from 2012 to 2018 in the study area was used as the database to generate
a synthetic rainfall time series. The study area has two main seasons: summer (from
May to October) and winter (from November to April of next year). The summer season
includes the “plum rain” season (May and June) and typhoon rain season (July to October).
The typical rainfall types occurring in the summer season are stationary frontal rainfall,
convective rainfall, and typhoon rainfall. The winter season is dominated by the northeast
monsoon, which constantly brings moist ocean air into the study area. Short-duration,
heavy rainfall is typically received in summer, whereas long-duration, moderate rainfall is
typically received in winter.

The statistics of four rainfall parameters were calculated to assess the performance
of the proposed rainfall generator. Figure 10 presents the average rainfall quantity and
the standard deviation of the rainfall quantity in the summer (red circle) and winter (blue
square) seasons. The average and standard deviation were calculated with respect to rainfall
type (Types 1 to 5); therefore, five points were obtained for each of the aforementioned
parameters in each season. These points lie close to the 45◦ diagonal, which indicates
that the average generated rainfall quantity and the standard deviation of the generated
rainfall quantity are analogous to the corresponding observation data. As displayed in
Figure 10, the average rainfall quantity and the standard deviation of the rainfall quantity
were larger in the summer than in the winter season for all types of rainfall except for Type
5 rainfall (the smallest value represented by a red circle). Type 5 rainfall has a relatively
uniform temporal distribution, and Type 5 rainfall events are usually short-duration events
with low rainfall quantities. Therefore, in this study, the average rainfall quantity and
standard deviation of the rainfall quantity were low for Type 5 rainfall. In general, the
aforementioned parameters were larger for Type 2 and Type 3 rainfall than for the other
types of rainfall.
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Figure 11 displays the average rainfall duration and the standard deviation of the
rainfall duration, and the duration unit in this graph is 10 min. This figure reveals that
the average rainfall durations were generally longer in the winter than in the summer
season. The shortest average rainfall durations in the summer and winter seasons (the
lowest red circle and blue square in the left part of Figure 11) were observed for Type 5
rainfall. Moreover, the standard deviations in winter were larger than those in summer.
The aforementioned results correspond to the rainfall characteristics in the study area.
The points plotted for the average rainfall duration and the standard deviation of the
rainfall duration are close to the 45◦ diagonal, which indicates that the generated values are
close to the observed values. The rainfall quantity and duration were generated using the
copula method. Figure 12 illustrates the correlation between the rainfall quantity and the
rainfall duration in terms of τ. Positive correlation coefficients were obtained between the
aforementioned factors, which indicates that in general, the longer the rainfall duration, the
higher the rainfall quantity. The higher correlation in winter than in summer suggests that
more persistent rainfall was received for a longer duration in the winter rainfall events than
in the summer rainfall events. The lower correlation in summer can be attributed to the
various rainfall patterns observed during this season (i.e., frontal, convective, and typhoon
rainfalls). Overall, the results displayed in Figures 10–12 indicate that the selected copula
can accurately reproduce the correlation between rainfall quantity and rainfall duration.
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Figure 11. Comparison of the average and standard deviation values obtained for the observed and
generated rainfall duration.

Figure 13 presents the average and standard deviation values obtained for the rainfall
inter-event time (the time unit in this figure is 10 min). The rainfall inter-event times in
the summer and winter seasons were similar (i.e., approximately 3000 min (approximately
2 days)). The developed rainfall generator reproduced the inter-event time on the basis of
the empirical probability distribution. The averages of the generated rainfall inter-event
times were in line with the corresponding observations; however, the standard deviations
were somewhat smaller than the corresponding observations, especially for the winter
season. Figure 14 presents the number of rainfall events (in percentage) generated for the
different rainfall types. The percentages of rainfall events generated for each rainfall type
were close to the corresponding observation data presented in Table 2. In conclusion, the
proposed rainfall generation model can suitably reproduce rainfall time series with high
temporal resolution.



Water 2022, 14, 2123 15 of 19

Water 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

the observed values. The rainfall quantity and duration were generated using the copula 

method. Figure 12 illustrates the correlation between the rainfall quantity and the rainfall 

duration in terms of 𝜏. Positive correlation coefficients were obtained between the afore-

mentioned factors, which indicates that in general, the longer the rainfall duration, the 

higher the rainfall quantity. The higher correlation in winter than in summer suggests that 

more persistent rainfall was received for a longer duration in the winter rainfall events 

than in the summer rainfall events. The lower correlation in summer can be attributed to 

the various rainfall patterns observed during this season (i.e., frontal, convective, and ty-

phoon rainfalls). Overall, the results displayed in Figures 10–12 indicate that the selected 

copula can accurately reproduce the correlation between rainfall quantity and rainfall du-

ration. 

 

 

Figure 11. Comparison of the average and standard deviation values obtained for the observed and 

generated rainfall duration. 

 

Figure 12. Comparison of the observed and generated correlations between rainfall quantity and duration.

Water 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

Figure 12. Comparison of the observed and generated correlations between rainfall quantity and 

duration. 

Figure 13 presents the average and standard deviation values obtained for the rainfall 

inter-event time (the time unit in this figure is 10 min). The rainfall inter-event times in 

the summer and winter seasons were similar (i.e., approximately 3000 min (approximately 

2 days)). The developed rainfall generator reproduced the inter-event time on the basis of 

the empirical probability distribution. The averages of the generated rainfall inter-event 

times were in line with the corresponding observations; however, the standard deviations 

were somewhat smaller than the corresponding observations, especially for the winter 

season. Figure 14 presents the number of rainfall events (in percentage) generated for the 

different rainfall types. The percentages of rainfall events generated for each rainfall type 

were close to the corresponding observation data presented in Table 2. In conclusion, the 

proposed rainfall generation model can suitably reproduce rainfall time series with high 

temporal resolution. 

 

 

Figure 13. Comparison of the average and standard deviation values obtained for the observed and 

generated inter-event times. 
Figure 13. Comparison of the average and standard deviation values obtained for the observed and
generated inter-event times.



Water 2022, 14, 2123 16 of 19Water 2022, 14, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 14. Comparison of the observed and generated numbers of rainfall events for different rain-

fall types. 

  

Figure 14. Comparison of the observed and generated numbers of rainfall events for different
rainfall types.

6. Conclusions

This paper proposes a stochastic rainfall generator for producing a continuous rainfall
time series with high temporal resolution. Observed 10 min rainfall time series from
2012 to 2018 for the Yilan River Basin in Taiwan were collected, and the rainfall events
identified in the collected data were divided into summer and winter rainfall events
(4317 and 3246 events, respectively). Although the stochastic rainfall-generation process
adopted in the proposed generator is based on conventional Monte Carlo simulation,
the use of modified Huff curves and a copula enables the generated rainfall series to
exhibit appropriate rainfall types and precise correlation between rainfall quantity and
rainfall duration.

The modified Huff method not only overcomes the limitation related to classifying
rainfall events with multiple peak intensities but also includes a new rainfall type for
labeling rainfall events with uniform temporal distribution. The Schutz index was used
in this study to distinguish this new rainfall type, which is ignored in the traditional Huff
method. The modified Huff method reduced the number of omitted rainfall events in
the study area from 40% (with the conventional Huff method) to 5%. Moreover, a copula
was used to model the correlation between each pair among three rainfall parameters in
the generation process. The results indicated that the rainfall quantity and duration were
correlated. Three copulas from the Archimedean family were used in this study, and the
Frank copula was found to be the optimal copula for modeling the correlation between
rainfall quantity and rainfall duration.

The proposed stochastic rainfall generator was used to generate a continuous rainfall
time series with 10,000 sets of alternating rainfall events and inter-event times. The gen-
erated rainfall time series was assessed by comparing its statistical indices with those of
the observed rainfall data. The results of this comparison indicated that the mean values
obtained for the generated and observed rainfall quantity, duration, and inter-event time
were similar. The standard deviations of the generated rainfall quantity and duration
were close to those of the observed rainfall quantity and duration, respectively. Only the
standard deviation of the rainfall inter-event time in winter was marginally underestimated.
By using the Frank copula, the correlation between rainfall quantity and rainfall duration
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can be suitably preserved in the rainfall time series generated using the proposed stochastic
rainfall generator. Moreover, the differences between the statistical properties of Type 5
rainfall events and other types of rainfall events support the rationality and necessity of
using the modified Huff rainfall curves adopted in this study. In summary, the results of
this study indicate that the developed stochastic rainfall generator can accurately reproduce
continuous rainfall time series with a temporal resolution of 10 min.

Nonetheless, some issues are discussed in the following as potential improvements for
future works. This study used all collected rainfall observations to examine the performance
of the rainfall generator. Future work may conduct the cross-validation scheme to check
the generation performance with respect to a certain period or a particular site. This
study adopted the bivariate copula due to the correlation relationship among the rainfall
variables in the study area. The trivariate copula can be tested to model the correlation
among multiple variables. This study proposed an additional rainfall type on the basis of
Huff rainfall curves, and analysis results demonstrated the success of the modified Huff
method. However, the temporal distribution of rainfall events are not certainly restricted to
the five types of modified Huff model in this study. Alternative rainfall type methods can
be adopted in generating the rainfall time series. The proposed rainfall generator focused
on reproducing the rainfall time series with correct statistical characteristics. The spatial
rainfall feature was not considered herein. Future works can focus on developing a rainfall
generator accounting for the spatial and temporal characteristics simultaneously.
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