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Abstract: Climate change and the development of urban centers within flood-prone areas have
significantly increased flood-related disasters worldwide. However, most flood risk categorization
and prediction efforts have been focused on the hydrologic features of flood hazards, often not
considering subsequent long-term losses and recovery trajectories (i.e., community’s flood resilience).
In this study, a two-stage Machine Learning (ML)-based framework is developed to accurately
categorize and predict communities’ flood resilience and their response to future flood hazards.
This framework is a step towards developing comprehensive, proactive flood disaster management
planning to further ensure functioning urban centers and mitigate the risk of future catastrophic
flood events. In this framework, resilience indices are synthesized considering resilience goals (i.e.,
robustness and rapidity) using unsupervised ML, coupled with climate information, to develop
a supervised ML prediction algorithm. To showcase the utility of the framework, it was applied
on historical flood disaster records collected by the US National Weather Services. These disaster
records were subsequently used to develop the resilience indices, which were then coupled with
the associated historical climate data, resulting in high-accuracy predictions and, thus, utility in
flood resilience management studies. To further demonstrate the utilization of the framework, a
spatial analysis was developed to quantify communities’ flood resilience and vulnerability across the
selected spatial domain. The framework presented in this study is employable in climate studies and
patio-temporal vulnerability identification. Such a framework can also empower decision makers to
develop effective data-driven climate resilience strategies.

Keywords: community resilience; data-driven methods; machine learning; resilience; flood hazard

1. Introduction

The severity of climatological and hydrological hazards has been increasing over
the past decades, with an especially higher frequency of flood hazard over the past three
decades, heavily impacting the livelihood of exposed communities [1–3]. The changing
climate has been significantly affecting the weather conditions and climatological factors
(i.e., mean temperature, humidity, and precipitation) [4,5]. Data records since 1996 show
that in North America, and similarly around the world, the rate of extreme weather
events and rainfall (i.e., more than 100 mm of rainfall in 24 h) is alarmingly increasing,
accompanied by an increased frequency of floods [6]. This is attributed to the higher rate of
urbanization into flood-prone areas, where the urban environment now hosts over 50% of
the world’s population, with an expected increase to 70% by the year 2050, boosting the
probability of flood-related disasters through the vulnerable community’s exposure [7,8].

As a direct consequence of such increase in flood exposure and related losses, flood
disaster management stakeholders have been moving to adopt a proactive risk-mitigation
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response, rather than a reactive post-disaster response approach [9,10]. However, flood risk
needs first to be quantified in order to efficiently develop better mitigation strategies and
eventually enhance resilience. In this respect, flood risk is identified as the expected damage
(i.e., consequence), resulting from a hazard’s probability of occurrence, coupled with the at-
risk-community’s exposure and vulnerabilities, considering different uncertainties [11–13].

With the increasing climatological disasters and flood risk, community resilience re-
search is steadily gaining more traction worldwide. While a community is defined as a
“Place designated by geographical boundaries that function under the jurisdiction of a
governance structure (e.g., town, city, or county)” [14], community resilience is the ability
of a community to adapt to, predict, and rapidly recover from future disruptions, back
to a predefined target state [14]. Flood risk is a result from the simultaneous realization
of three aspects: (i) flood hazard: the potential, or probability, of a flood event of certain
characteristics occurring at a given location, (ii) flood vulnerability: a measure of the sus-
ceptibility, and the adaptability, of the exposed community to the flood hazard, and finally
(iii) flood exposure: the assets, humans, and otherwise (i.e., infrastructure systems) that
are located in a flood-prone area [11,13,15]. This indicates that a severe flood hazard does
not necessarily yield a high-risk flood, as it can occur in an area with a low number of
exposed elements, but flood risk can be quantified only when the exposed and vulnerable
community prone to said hazard is coupled with the hazard realization [12,15]. As an ex-
tension, resilience analysis evaluates the extended functionality loss and recovery trajectory
of communities prone to flood hazards, taking into account the direct and indirect losses as
well as restoration costs [5,12].

Previously, resilience has been defined differently across different fields; however,
in the context of this study, resilience is defined as the ability to resist being affected by,
and rapidly recover from, some external disturbance [16]. Resilience is quantified through
the four attributes including: two objectives (i.e., goals) of resilience: robustness and
rapidity, enabled by two means: resourcefulness and redundancies [17,18]. Robustness
is the inherent ability of the system to retain its functionality level when exposed to
stress or extreme demand; rapidity is the time needed for the system to bounce back to a
certain predefined target functionality level; resourcefulness is the availability of adequate
resources within the system to maintain its functionality under extreme demand levels, and
finally, redundancy is the availability of alternate components to maintain functionality
during the external hazard [17,19]. It is worth noting that rapidity measures the total time
needed for the system to bounce back to its target functionality, including the downtime of
the system (i.e., the duration of the hazard itself).

Over the years, numerous researchers have embarked on flood categorization and
prediction studies [20–23]. However, most such studies focused on the hazard’s features
and, to a lesser extent, on the direct impact and losses due to the flood hazard or long-term
recovery cost and time [24–29]. In this respect, this study aims at developing a prediction
framework that classifies the long-term potential impacts, recovery, and resilience of the
exposed community, a categorization that captures the resilience of the exposed communi-
ties rather than simply the hazard’s characteristics. To achieve that, having reliable data is
imperative to accurately incorporate said damage and characteristics within an objective
data-driven resilience prediction framework [30]. The incorporation of the hazard, system
vulnerability, and exposure employed in this framework would result in a comprehensive
assessment of the short-term potential impacts, direct and otherwise, of the flood event
through robustness assessment (i.e., flood risk), as well as the long-term impact on the
exposed community through rapidity evaluation (i.e., resilience assessment). The study
presented herein is employable in vulnerability identification and flood prediction stud-
ies, providing an imperative decision support tool for stakeholders and policymakers to
allocate adequate resources and potentially save billions of dollars.
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2. Flood Resilience Prediction Framework
2.1. Framework Design and Layout

The aim of this research is to develop a flood resilience prediction framework that
captures the probable and resulting impacts of floods on respective exposed communities.
Such a framework would serve as a practical data-driven tool for quick and actionable
early-warning system. Such a system will subsequently aid policy and decisionmakers in
developing resilience-guided risk management strategies, accounting for the four attributes
of resilience. Classification and data driven models require a sufficient number of obser-
vations in a dataset to allow for meaningful classification and clustering [23]. While this
necessitates the accessibility to a large volume of high quality data, there are also alternative
ways to account for missing data within an employable dataset.

As can be seen in Figure 1, the framework presented herein is comprised of two main
parts: (a) resilience-based categorization and (b) resilience-based prediction, and each part
of the framework is comprised of different stages.
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Part (a): resilience-based categorization framework: this part is divided into three
main stages: Stage (i) Data compilation, cleaning, and visualization: the first step is to
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compile a comprehensive dataset, with enough variables to capture the resilience attributes,
as well as the features of the flood events (e.g., flood depth and duration). Following
data gathering, data preprocessing starts to ensure data suitability for a reliable analysis
and data imputation for missing values. Datasets are investigated for the identification
of any biases or skewness within the dataset, as well as the accommodation for missing
data. Missing data can induce disruptions to the ML algorithm, rendering replacing or
removing observations with missing variables. Accounting for missing variables can be
performed through multiple approaches, 1) by removing observations with missing vari-
ables altogether, 2) by averaging the readings from other nearby observations with similar
conditions to the observation with missing variables, or 3) by using unsupervised learning
to cluster the dataset and take the average of the cluster variables as the reading for the
missing variables. In this study, a combination of approaches 1 and 2 was employed [31–33].
Finally, data visualization was conducted to identify inherent characteristics and interde-
pendencies within the dataset, which is pivotal in choosing an appropriate model for the
following stage.

Stage (ii) Selection of Machine Learning (ML) model: ML models are designed to
analyze high-dimensional data. They have been utilized across different fields such as
engineering, biology, and medicine and in different applications such as banking, targeted
advertisement, social networks, and image and pattern recognition [34–37]. ML models
are used to identify pattens and discover behaviors in large datasets, while continuously
adapting to new data features to enhance model performance. ML models are expected
to handle large datasets with complex interdependent features and identify hidden pat-
terns [38]. ML models are divided into supervised and unsupervised algorithms (also
named classification and clustering algorithms, respectively) and will be discussed in
more detail in the following section. In the developed framework, the categorization in
part (a) employs unsupervised (clustering) techniques, while part (b) employs supervised
(classification) algorithms [38,39].

Stage (iii) Features and clusters analysis: the results of Stage (ii) in Part (a) are used
in developing the features of each category (cluster). By conducting a feature analysis,
the developed clusters can be used in developing a spatial analysis to identify vulnerable
communities based on the considered resilience metrics. The deployment of the clustering
algorithm results ensures the development of unbiased managerial insights, facilitating
the decision-making process for utilizing the resilience means (i.e., redundancies and
resourcefulness) to better enhance the resilience of the more vulnerable communities.
The developed clusters in Part (a) are vital in the development of the predictive analysis
in Part (b), where this categorization framework can aid decision makers in translating
predicted flood hazards and risks into actionable plans, increasing the robustness by
reducing the loss of functionality, and ensuring a quick recovery to the target state.

Part (b): Resilience-based prediction framework: similar to Part (a), Part (b) is also com-
prised of different stages; while these stages are similar in concept with their counterparts
in Part (a), the details and the nature of the algorithms differ greatly.

Stage (i) Data compilation: the first step is compiling the dependent and independent
variables of the dataset. In this stage, the study area is identified for the development of the
predictive model where the features, characteristics, and exposure are fairly similar. The
dependent variables selected for this framework are the climate information corresponding
to recorded flood events (e.g., maximum temperature, minimum temperature, precipitation,
wind speed, air pressure, humidity, etc. . . . ), whereas the independent variable would be
the resilience-based categories developed in Part (a) of the proposed framework. Similar
to most ML algorithms, the dataset should be comprehensive and of good quality and
diversity to produce actionable results. Data imputation and cleaning are conducted to
ensure the reliability of the data and avoid skewness and imbalances in the dataset.

Stage (ii) Data preprocessing and analysis: for this stage, the gathered dataset is
studied to identify the interrelationship between the different variables and thoroughly
examine which variables to be included in the analysis to reduce the noise in the data
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while ensuring that all the resilience metrics and the hazard features are comprehensively
represented. This feature selection step can be achieved through exploratory and sensitivity
data analyses, feature selection, or correlation analysis between different variables of the
available data. Following that step, data cleaning and preprocessing commences. The
performance of data-driven models is strictly tied to the quality and quantity of the dataset
involved in the development of the model, whereas finding a readily available dataset
that matches all the required criteria for analysis is typically very challenging. Therefore,
numerous methods have been developed to deal with missing data, unbalanced data,
and skewed data (e.g., data imputation, removing datapoints with missing variables, take
average readings from nearby sources, etc.) [32,33].

Stage (iii) Development and testing of the ML models: in this stage, a supervised
ML model is developed to predict flood resilience categories based on climate data corre-
sponding to the recorded flood events. Supervised ML models can be used in predicting
discreet, continuous, or categorical data. The classification required for the analysis herein
falls under the multi-class classification category, where the dependent variables are used
to predict a categorical independent variable of more than two classes (Wu et al., 2004).
For this classification, different algorithms were validated and tested to determine the
most suitable algorithm for the current dataset (e.g., Naïve Bayes classifier, Support Vector
Machine, Decision Trees, Artificial Neural Networks, Ensemble techniques, etc.), where
they were assessed based on a common performance criteria, which is to be explored
further in the Methodology section [33,40–42].

2.2. Methodology

Machine Learning is an artificial intelligence tool designed to learn autonomously from
a training dataset, mimicking the behavior of the human brain through the learning process.
By deploying ML models on appropriate datasets, the model extracts the dataset’s inherent
features and adjusts itself to better enhance its performance [43]. As mentioned, ML models
are broadly divided into two types, supervised and unsupervised learning models, where
they use labelled and unlabeled data, respectively, for training and validation. In the field of
natural hazard and community resilience, ML and data-driven models have been recently
been employed in achieving the overarching goal of increasing community resilience in
the face of natural and anthropic hazards [25,42–46]. For the framework developed herein,
both ML model types are utilized, where the unsupervised learning is utilized in the
development of the community resilience categories, and supervised ML techniques are
employed to predict the community resilience metrics under future flood hazards.

2.2.1. Unsupervised Learning: Clustering

Unsupervised ML models use partitioning algorithms to cluster observations based on
a predefined similarity measure such that observations with common features are placed
in the same cluster [47]. This is an unguided process that does not require a predefined
objective, ensuring that the clustering is based on inherent features of the dataset. This
similarity measure is assessed by measuring the distance between different observations,
where two, or more, observations are considered similar when the distance between them
is minimal. Henceforth, observations within a cluster should be closer to one another than
that of other clusters.

Choosing the similarity measure depends heavily on the type of data and objective of
the study; such measures include the Euclidean, Cosine similarity, Manhattan, and Gower
distances [48]. For this study, multiple similarity measures were explored to determine their
applicability with the available mixed-type dataset (i.e., dataset containing both categorical
and numerical data). For the Gower distance within the Partitioning Around Medoids
algorithm, the developed dissimilarity matrix from the dataset was skewed, which results
in a biased algorithm favoring seasonal clustering instead of resilience-based clustering.
Eventually, weighted Euclidean distance was adopted in this study as it measures the
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weighted proximity of the observations within a three-dimensional space [48,49]. It is
important to note that other approaches may also be employed in the current study.

For the framework presented herein, two clustering algorithms were employed to de-
velop the resilience-based flood categories, namely K-means clustering and self-organizing
Maps. The K-means clustering technique, and its variations, is the most heavily used
partitioning (clustering) algorithm [50], where observations are divided into a predefined
number of clusters (K). Prior to the partitioning algorithm, multiple values are assumed
for K, and the optimal value is that with the minimum intra-cluster variation (i.e., the total
within-cluster sum of squares (WSS)). For the current study, the WSS utilized the squared
Euclidean distance between the observations and their respective cluster’s centroid [51–53].

SOM is a type of Artificial Neural Networks (ANN) algorithm trained to cluster data
into groups in an unsupervised approach. The input space is organized according to a
predefined topology of neurons, where each neuron is assigned a number of observations.
ANN is an artificial intelligence technique by which complexinterrelationships within a
dataset are uncovered automatically based on inherent patterns in the dataset [54,55] by
mimicking the behavior of the human brain when transmitting signals through neurons,
albeit through artificial neurons. There have been numerous ANN techniques developed
to date, each of which may befit a specific application (e.g., self-organizing maps, recurrent
neural networks, and feed-forward back-propagation neural networks). However, ANN
is more commonly employed in predictive algorithms [54,56,57] and pattern recognition
applications [23,36,55,58]. For the study presented herein, SOM was utilized using the
Deep Learning Toolbox in MATLAB, where the Kohonen rule was adopted [55,59].

2.2.2. Supervised Machine Learning: Classification

Classification is a supervised ML technique that learns and utilizes features of a
dataset to derive patterns and classify new input data. Supervised ML models learn
from a training dataset, which is comprised of dependent (i.e., predictor variables) and
independent variables (i.e., predictand variable) and applies the identified patterns on a
testing dataset, while applying optimization techniques to increase the model’s perfor-
mance [41,60,61]. Numerous classification techniques have been developed to date (e.g.,
continuous, discreet, numerical, or categorical). In the present study, the independent
variable is class-based; therefore, multiclass classification techniques will be employed in
the current study (e.g., Naïve Bayes classifier, Classification Trees, Support Vector Machine,
ANN, etc.). To improve the performance of said models, classification models employ
ensemble techniques—bagging, random forest, or boosting [62–64].

Naïve Bayes Classification

The Naïve Bayes classifier algorithm employs Bayes’ theorem with the assumption
that the variables are conditionally independent given the value of the class variable (i.e.,
Naïve). The algorithm employs joint conditional probabilities of the dependent variable
of the training dataset given their respective independent variable [65–67]. The output of
said model is the conditional probabilities of the class labels assigned based on the highest
class-label’s joint probability for each observation in the dataset. The theorem employed in
this algorithm calculates the conditional probability for class variable y using Equation (1),
where (x1, . . . , xn) are the n dependent variables.

P(y|x1, . . . , xn) =
P(y)P(x1, . . . , xn|y)

P(x1, . . . , xn)
(1)

By applying the naïve assumption for all i, and substituting with P(x1, . . . , xn) as a
constant, the resulting conditional probabilities can be expressed as Equation (2):

P(y|x1, . . . , xn) ∝ P(y)Πn
i=1P(xi |y) (2)
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This theorem can be interpreted such that a data record belongs to a certain class (M) when
the conditional probability P( Mi|x1, . . . , xn) returns the highest value of all classes. The
reader is referred to the studies by McCallum and Nigam (1998) [68] and Zhang (2004) [69]
for further details on Naïve Bayes classification.

Decision Trees

Within the Classification and Regression Trees (CART) algorithm, classification trees
are utilized to predict categorical (discriminate) data, unlike regression trees which deal
with predicting continuous independent variables [41].

Decision Trees utilize a binary recursive partitioning algorithm, since each split (i.e.,
rule or partitioning step) depends on the prior splitting step. The data is partitioned
into homogenous subgroups (i.e., nodes) using binary Yes-or-No questions about each
feature of the sub-group, where this process is repeated until a suitable stoppage criterion
is reached (e.g., maximum number of splits). For each split, the objective is to identify
the optimum feature upon which the data can be split, where the overall error between
the actual response and the predicted response is minimal. The analysis presented herein
is concerned with classification trees, where the partitioning is set to maximize the cross-
entropy or the Gini index [38,70]. The Gini index is a measure of purity (or lack thereof) in
the classification model, where a small value indicates that a subgroup (i.e., node) contains
predominantly observations from a similar class. High values of mean decrease in the
Gini index correspond to a more important variable (i.e., feature) within the classification
model [38]. The Gini index is relied upon herein given the type of data utilized in the
demonstration application presented later in this study.

For model accuracy and performance enhancement, there exist numerous employable
ensemble techniques (e.g., bagging, boosting, and random forest) [63,64]. Bagging is a
bootstrap aggregating technique used for fitting multiple versions of the model drawn from
the training dataset. Bootstrapping is a random sampling technique of the data, taken by
replacement, such that a datapoint can still be available for selection in subsequent models
while using all the predictors for the sampling technique [71]. Each model is then used to
generate training for the DT model, and the averaging of all the predictions is subsequently
used, resulting in a more robust model than a single tree [63,70,72].

Random forest further improves bagging techniques to enhance model performance,
where the selection of the predictors is also randomized at each split at the node within the
tree rather than using all the predictors. The size of the tree is maximized by repeating the
aforementioned process iteratively, and the prediction is based on the aggregation of the
prediction from the total number of trees [63,73–76].

Prediction Model Performance

For classification models, the overall model accuracy and misclassification errors are
widely used. However, this criterion is not always suitable for asymmetrical or skewed
datasets where the majority of the data falls within a single category. To introduce a more
accurate measure of the predictive performance, the precision, recall, and F1-score for each
category in the testing and training datasets were calculated. In this respect, precision
is the number of correct predictions per class within multiclass classification, which is a
measure of how accurate each class prediction is. Recall (i.e., sensitivity) on the other hand
is the number of correct class predictions out of all correct examples in the dataset, and it
captures the ratio between the correct classifications and the actual classification for the
dataset. Finally, the F1-score is considered an integration between the precision and recall
of the model, where it balances the concerns of both performance measures [77]. Precision,
recall, and the F1-score are evaluated according to Equations (3)–(5), respectively, where
the information can be extracted from the confusion matrix of each model.

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

F1–score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

In the equations above, TP refers to True Positive, which is the number of correctly
predicted observations, and FP refers to False Positive, which is the number of predictions
incorrectly assigned to a class, whereas FN refers to False Negative, which is the number of
observations incorrectly assigned to a wrong class [60].

3. Framework Application Demonstration

To showcase the employability of the developed framework, the data from the Na-
tional Weather Service (NWS) were adopted for the derivation of the resilience-based
categories. Subsequently, these categories were then coupled with climate data extracted
from the National Oceanic and Atmospheric Administration’s (NOAA) National Centers
for Environmental Information. The framework was thus applied to: (i) identify the fea-
tures of the exposed communities along with their vulnerability using descriptive data
analysis, (ii) identify interdependence between different features of the adopted dataset to
appropriately choose a suitable ML model, (iii) categorize the communities’ flood resilience
by combining flood features with resilience metrics within the dataset (i.e., robustness
and rapidity), and (iv) test the model performance in terms of accurately predicting the
communities’ resilience when exposed to flood hazard, using climate data as predictand.

The earlier work presented in the study by Abdel-Mooty et a. (2021) [59] serves as a
foundation for the categorization stage of the prediction framework developed herein. In
their study, Abdel-Mooty et al. (2021) developed a flood resilience categorization, resulting
in five community flood resilience categories. These categories are thus employed through
the second stage of the framework developed in the current study. In the following section,
a brief summary of their findings is presented, followed by a description of the flood
prediction demonstration.

3.1. Part (a): Resilience-Based Categorization

In the first stage, the dataset compiled by the NWS was employed. This dataset is one
of the longest-run annual flood damage recorded in the United States [78]. The data were
gathered through third party organizations and directly reported to the NWS database
according to the predefined guidelines. As such, the quantity and quality of the gathered
data is governed by the available resources (e.g., time and funding availability) of said
agencies [78]. The dataset contains records of flood events occurring across the United
States between 1996 and 2019. The related damages, time, geographical center, month, and
year for each recorded flood event are compiled within this database [78,79]. Within the
dataset, the recorded damage was divided into property and crop damages, which were
subsequently combined into a single variable within the analysis named Monetary Damages.
It is worth noting that the damages recorded in this dataset pertain to only the direct
damage resulting from the flooding water on the exposed assets and does not consider
the indirect (cascade) damages (e.g., opportunity loss). Within the present dataset, the
term “flood event” refers to only the flooding aspect of any natural disaster. Despite the
aforementioned limitations, this dataset is still considered one of the best resources for
flood damage records in the United States [30,79]. Figure 2a shows a temporal analysis,
while Figure 2b shows a spatial analysis of the flood events occurring within the same
period, where the numbers on each state are the number of recorded floods, and the colors
are used to indicate the relative total monetary damage of each state. This analysis shows
that the largest number of records and the largest monetary damage are within the state of
Texas. This is attributed to the increased heat content over the western Gulf of Mexico, as
it produces higher humidity and temperatures. This heat content is directly proportional
to the precipitation resulting from different storms [80] and can also be attributed to the
tropical weather region that Texas falls within, given that this region is susceptible to a
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large number of devastating hurricanes and extreme rainfall, coupled with the increased
exposure caused by the increased urbanization rate [21].

1 

 

 

Figure 2. Descriptive spatio-temporal analysis of the employed dataset where (a) the annual number
of floods between 1996 and 2019 indicated by season and (b) a multilayer spatial analysis of the
dataset with the total number of records and the total damage in USD per state indicated by color.

Considering the objective of the current study, incorporating resilience metrics is key
in identifying resilience-based categories. As such: (i) flood records that did not cause any
monetary damage, injuries, or fatalities were excluded from the dataset, as they will not
produce any resilience metrics to measure and will induce bias within the categorization
model, and (ii) property and crop damage were summed up into a total monetary damage,
and as mentioned earlier was adjusted to accommodate the inflation rate over the years
using the Customer Price Index from the Bureau of Labor Statistics [81]. This monetary
damage, along with the injured people and fatalities, represent the robustness of the
exposed community, while the duration of the flood event represents downtime of the
exposed community, which is a component of the rapidity metric.

The analysis showed that: (i) flood events that occurred during the spring were split
into two categories based on their impacts, (ii) flood events causing longer disruptions
were separated in a separate cluster, identifying a correlation between event duration and
the impact of the flood event on the exposed community (i.e., relating robustness with
rapidity and overall resilience), and (iii) flood events that resulted in the loss of human lives
were clustered together. Events falling in Categories 1, 2, and 4 are more common than
Categories 3 and 5 in terms of annual number of events. Given the multidimensional nature
of resilience, more emphasis in the analysis was placed on the value of human injuries
and fatalities than monetary loss. As such, although events in Category 3 follow those of
Category 5 in terms of average damage per event, events falling in Category 4 follow those
of Category 5 in terms of average affected people per event; hence, it was assigned a higher
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category than Category 3. It should be recalled that the event duration mentioned herein
is the hazard’s duration, which represents the down time of the community before the
initiation of recovery efforts, representing a part of the total rapidity of the community. It is
also worth noting that a longer flood duration corresponds to a less robust infrastructure
system (e.g., drainage networks) to accommodate the hazard’s capacity effectively, resulting
in a lower overall resilience of the exposed community. The results were analyzed for
the inherent features of each cluster, and each category was assigned a Flood Resilience
Index (FRI) that increases gradually as the robustness decreases (i.e., functionality loss
increases). As such, communities that are exposed to flood disasters with impacts falling
in Category
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Table 1. The community flood resilience-based categories.

Community Flood
Resilience Category Title 2

1
Communities exposed to events that occur in the summer, causing

disturbance less than 264 h (11 days) and/or causes up to 250 injuries
and damage less than $2.5B without fatalities

2
Communities exposed to events that occur in the spring, causing any

disturbance duration, causes up to 20 injuries and damage up to
$1.5B without fatalities

3
Communities exposed to events occurring in any season, causing

disturbance more than 264 h (11 days), and causing up to 250 injuries
with any damage value and without fatalities

4
Communities exposed to events that occur in winter or fall, causing
disturbance less than 264 h (11 days) causes up to 250 injuries and

damage up to $2.5B without fatalities

5

Communities exposed to events occurring in any season, causing any
disturbance duration that results in more than 250 injuries, causing
damage more than $2.5B, with fatalities, and Communities exposed

to events occurring in the spring that are not under class 2

3.2. Part (b): Resilience-Based Prediction

For this stage of the framework, a smaller geographical location needed to be identified
such that the meteorological features of the dataset would be comparable, comprehensively
representing the seasons and their respective hazard for said communities. This was
also needed such that the built environment would match its respective hazard, given
that different seasons (and subsequently the characteristics of the natural hazard) differ
drastically across the United States (e.g., the winter in Michigan is drastically different than
that of Florida and Texas). However, the framework is applicable on any location within
the United States mainland as long as it is included in the development of the indices in
part (a) of the framework. By inspecting Figure 2, as mentioned earlier, the state of Texas
had the most recorded number of flood disasters between 1996 and 2019, and the most
recorded damage as well. The high number of records is suitable for the development of
the prediction model, as the model will need a large dataset for development, training,
and testing. As such, the state of Texas was selected for the development of the prediction
stage of the framework. The disaster database that recorded between 1996 and 2019 in
the state of Texas was paired with the developed categories in Table 1 on a county level,
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where each event was assigned an index across the different counties, and the average
index was calculated and assigned for each county. Figure 3 shows the spatial distribution
of the total number of recorded disasters and average FRI across the counties. The spatial
analysis shows a low correlation between the number of events and the FRI of a community,
given that the more common flood events are those of low severity [11]. It is also worth
mentioning that the spatial analysis shows a concentration of high FRI across the coastal
area around the Gulf of Mexico. This can be attributed to high-tide flooding, which is
becoming increasingly common in recent years as a result of relative increase in sea level [82].
According to NOAA, coastal communities are witnessing an increase in high-tide flooding,
with some areas reporting a rapidly increasing rate [82,83]. This can also be attributed to
the nature of the natural hazards affecting the area, where a damage of $6B was recorded in
2018, and the devastating Hurricane Harvey, which affected the entire state in 2017, causing
an extreme rainfall event resulting in widespread devastation across different counties. The
total damage from Hurricane Harvey reached $128.8B, leading to one of the most expensive
natural disasters in modern history [82–84]. The spatial analysis presented in Figure 3 is
also in line with the Cartographic Maps of Precipitation Frequency Estimates published
by NOAA in Atlas 14 Volume 11 of Texas in 2018, showing an increased precipitation
frequency and magnitude over the coastal area with the Gulf of Mexico [85].

Water 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

of Texas had the most recorded number of flood disasters between 1996 and 2019, and the 

most recorded damage as well. The high number of records is suitable for the develop-

ment of the prediction model, as the model will need a large dataset for development, 

training, and testing. As such, the state of Texas was selected for the development of the 

prediction stage of the framework. The disaster database that recorded between 1996 and 

2019 in the state of Texas was paired with the developed categories in Table 1 on a county 

level, where each event was assigned an index across the different counties, and the aver-

age index was calculated and assigned for each county. Figure 3 shows the spatial distri-

bution of the total number of recorded disasters and average FRI across the counties. The 

spatial analysis shows a low correlation between the number of events and the FRI of a 

community, given that the more common flood events are those of low severity [11]. It is 

also worth mentioning that the spatial analysis shows a concentration of high FRI across 

the coastal area around the Gulf of Mexico. This can be attributed to high-tide flooding, 

which is becoming increasingly common in recent years as a result of relative increase in 

sea level [82]. According to NOAA, coastal communities are witnessing an increase in 

high-tide flooding, with some areas reporting a rapidly increasing rate [82,83]. This can 

also be attributed to the nature of the natural hazards affecting the area, where a damage 

of $6B was recorded in 2018, and the devastating Hurricane Harvey, which affected the 

entire state in 2017, causing an extreme rainfall event resulting in widespread devastation 

across different counties. The total damage from Hurricane Harvey reached $128.8B, lead-

ing to one of the most expensive natural disasters in modern history [82–84]. The spatial 

analysis presented in Figure 3 is also in line with the Cartographic Maps of Precipitation 

Frequency Estimates published by NOAA in Atlas 14 Volume 11 of Texas in 2018, show-

ing an increased precipitation frequency and magnitude over the coastal area with the 

Gulf of Mexico [85]. 

 

Figure 3. Spatial distribution of the number of records and the average FRI over different counties 

in the state of Texas. 

3.3. Managerial Insights and Results 

Figure 3. Spatial distribution of the number of records and the average FRI over different counties in
the state of Texas.

3.3. Managerial Insights and Results

To complete the dataset for the prediction framework, climate information corre-
sponding to each recorded flood event in each county was then extracted from the Global
Historical Climatology Network (GHCN-Daily) under the National Center for Environ-
mental Information [86,87]. To draw reliable insights from the proposed methodology,
a comprehensive dataset must be present that includes all the pertinent variables with
enough observations over the years to avoid biases. However, the present dataset implicitly
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presents this information through the spatio-temporal characteristics of the flood events
when exposed to their relative communities.

The extracted climate data, as available, contained four variables for each recorded
flood event: Maximum Daily Temperature, Minimum Daily Temperature, Average Daily
Temperature, and Maximum Recorded Precipitation. These variables were then employed
as predictors (dependent variables) for the FRI resulting from the recorded flood events
(independent variable) to be used in the development of the prediction model. The dataset
is subsequently divided into two subsets—Training and Testing (70% and 30%, respectively).
The training subset was used in the development and training of the ML model, where the
FRI implicitly contains information about the resilience (i.e., robustness and rapidity) of the
exposed communities, and the climate variables contain information on the climatological
features of the location, weather extremes, and different attributes, and causes, of the flood
hazard. This comprehensive dataset was then inspected using exploratory data analysis
and correlation plots, as shown in Figure 4. This figure presents a 5 × 5 matrix, in which
the variables are labelled on the columns and rows. The matrix contains four information
groups: (i) frequency scatter plots located at the lower triangle of the matrix, excluding the
last column; (ii) smoothed frequency curves located at the diagonal of the matrix, where
the last cell at the bottom right is a histogram for the categorical variable; (iii) correlation
coefficients located at the upper triangle of the matrix, excluding the last column; and finally
(iv) box plots located at the last column of the matrix. It is worth noting that this figure
also presents statistical data analyses, as it shows the statistical distribution of the dataset
within its variable space as well as the correlation between different variables. The box
plots in Figure 4 show that the maximum, minimum, and average temperature variables are
overlapping, evenly distributed and with a low range of outliers. This indicates that these
variables are interdependent, which shows a consistency in the climatological features of
the selected geographical study area. This is also supported by the correlation coefficients
as the correlation between these variables is high across all the FRI categories. However,
the precipitation variables contain heavy-tailed distribution with a larger range for the
outliers, indicating an exceptionally large surge in the value of precipitation, which leads
to the recorded flood events. The latteris supported by the correlation coefficient values
between precipitation and other indices, especially at FRI-1, where the severity of the flood
event is low, yet the frequency of occurrence is high [59]. This analysis supports the need
to use ML models over traditional statistical learning models, as ML models are better
equipped to deal with complex interdependent data for numerous applications [59,88].

3.4. Model Performance and Discussion

For this analysis, multiple ML classification models were tested, namely, Bagged
Decision Trees (DT), and Random Forest (RF) Techniques as ensemble-type models, and
Naïve Bayes (NB) classification. The dataset was split as mentioned earlier to training and
testing datasets, where the split was chosen randomly to ensure a homogenous distribu-
tion of the data in both subsets since the dataset is not evenly distributed along all FRI
categories. In this analysis, (i) Bagged DT with 1000 bootstrap replications was used in as
an ensemble method, with a minimum split of four; (ii) RF models with a wide range of
trees up to 6000 was tested, and while all of them had similar performances, two models
were highlighted in this study—RF with 300 trees and RF with 1000 trees—both with four
variables randomly sampled at each split and a shrinkage parameter of 0.01 (referred to
herein as RF 300 and RF 1000, respectively); and finally (iii) Naïve Bayes classification, as
discussed earlier, with a 70–30% split between training and testing data subsets. Each of
the aforementioned models have their own assessment measures for model performance
(e.g., Gini impurity, entropy measure for DT, Mean Square Error, etc.). As such, other
performance evaluation indices were utilized in this analysis to objectively compare the
predictive performance in replicating the testing data subset of the employed algorithms.
To that end, the precision, recall, and F10-score have been employed per Equations (3)–(5),
respectively. The performance indices can be seen in Table 2; the accuracy and misclas-
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sification for all the models are compared, where it can be seen that the models perform
adequately (for training subset: 53.8%, 97.8%, 98.2%, and 98.2% for NB, RF 300, RF 1000,
and Bagged DT, respectively, and for the testing subset: 50.9%, 57.9. 57.8%, and 57.3% for
the NB, RF 300, RF 1000, and Bagged DT, respectively). It can be concluded that the DT
ensemble models are over-trained in the training dataset but perform better than the NB
classifier in the testing dataset even if the results are comparable. This proves the need for
a better performance measure for the class in each model—as seen in Table 2, the precision,
recall, and F1-score for the training and testing subsets across all the classes. Figure 5 shows
an enhanced visual inspection of the performance indices of the four models, where it can
be concluded that the performance of the NB classification model is inferior to the ensemble
techniques in terms of correctly classifying the data; this can be attributed to the fact that
NB models perform better with smaller datasets, as they follow the laws of independent
probabilities, indicating it does not perform well with correlated data [89]. In the training
subset, the precision, recall, and F1-score for the ensemble models (i.e., Bagged DT, RF
300, and RF 1000) do not fall below 85% for all classes, which indicates a very good fit for
the employed dataset. However, in the testing subset, the results vary for each category.
While the results are overall satisfactory for all the ensemble models, the Bagged DT model
had better performance when it came to Category 5 (RF models resembled 23% of the
precision of the Bagged DT), where the data points falling in this category were scarce
compared to the other categories. However, the RF models outperformed the Bagged DT
in the precision of Category 3 (65% for the RF models compared to 20% for the Bagged DT
model), indicating that random sampling for the variables in addition to the observations
in the training algorithm yielded more favorable results than the Bagged DT. The results
displayed in Table 2 and Figure 5 show that even though the models are comparable, given
the importance of correctly classifying flood events falling in Category 5 due to its severity
and impact, the Bagged DT is thus preferred over the RF models.
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Table 2. Predictive model performance comparison for different class predictions in the different ML models.

Training Precision Training Recall (Sensitivity) Training F1-Score Training

FRI-1 FRI-2 FRI-3 FRI-4 FRI-5 FRI-1 FRI-2 FRI-3 FRI-4 FRI-5 FRI-1 FRI-2 FRI-3 FRI-4 FRI-5 Accuracy Misclass.

Naïve
Bayes 86.9% 38.7% 33.3% 40.5% 23.0% 52.1% 42.9% 75.0% 67.6% 52.5% 65.2% 40.7% 46.2% 50.7% 32.0% 53.8% 46.2%

RF 300 99.6% 98.3% 94.4% 99.1% 85.2% 98.2% 97.3% 100.0% 98.6% 99.1% 98.9% 97.8% 97.1% 98.8% 91.6% 97.8% 2.2%
RF 1000 99.6% 98.7% 94.4% 99.0% 84.4% 98.2% 96.9% 100.0% 98.7% 100.0% 98.9% 97.8% 97.1% 98.8% 91.6% 98.2% 1.8%

Bagged DT 98.4% 97.2% 94.1% 98.5% 93.3% 99.2% 98.2% 94.1% 97.8% 89.3% 98.8% 97.7% 94.1% 98.1% 91.2% 98.2% 1.8%

Testing Precision Testing Recall (Sensitivity) Testing F1-Score Testing

FRI-1 FRI-2 FRI-3 FRI-4 FRI-5 FRI-1 FRI-2 FRI-3 FRI-4 FRI-5 FRI-1 FRI-2 FRI-3 FRI-4 FRI-5 Accuracy Misclass.

Naïve
Bayes 89.0% 36.8% 50.0% 33.6% 8.5% 52.0% 42.2% 40.0% 58.5% 27.8% 65.7% 39.3% 44.4% 42.7% 13.0% 50.9% 49.1%

RF 300 72.7% 48.5% 66.7% 58.5% 8.5% 64.8% 50.2% 25.0% 57.8% 27.8% 68.5% 49.3% 36.4% 58.1% 13.0% 57.9% 42.1%
RF 1000 73.4% 50.4% 66.7% 55.6% 8.5% 64.1% 50.0% 28.6% 57.4% 26.3% 68.4% 50.2% 40.0% 56.5% 12.8% 57.8% 42.2%

Bagged DT 66.9% 48.1% 20.0% 58.4% 36.7% 70.1% 50.9% 33.3% 58.5% 18.0% 68.5% 49.4% 25.0% 58.5% 24.2% 57.3% 42.7%
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Further investigation of the RF and Bagged DT models shows that the variables used
as predictors in the current study influence the behavior of the predictive analysis at
each class. This influence indicates the need for more comprehensive and climatologically
representative variables to be used as predictors. In data-driven studies, model performance
depends heavily on the available dataset; as such, the authors were constrained by the
available data to use in the validation of the developed methodology. A comprehensive
dataset would include as much observations as possible over a wider time span, with
numerous variables (e.g., atmospheric pressure, wind speed, wind direction, humidity,
topology exposure, etc.). To assess the importance of the individual variables in the analysis,
the mean decrease Gini (MDG) was employed in the RF ensemble models. Figure 6 shows
the MDG and the mean decrease accuracy for the RF with 300 and 1000 tree models, the
MDG indicates that the average temperature is the most important variable in both models,
followed by the precipitation in the RF 1000 models, and the minimum temperature in the
RF 300 model, albeit with a very small difference with the precipitation in the RF 300 model.
This supports that the Average temperature (correlated with the minimum temperature)
and the Precipitation are key variables when predicting the community-flood resilience in
exposed communities.
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The results of the analysis displayed in the current study shows that the framework
and methodology presented herein are applicable in flood resilience prediction studies. This
framework informs decision-making process through developing an early-warning system
that can be continuously updated by including new, and more accurate, climate data. The
framework presented herein can also be coupled with global climate models to study the
temporal changes in flood resilience and the climate impact on infrastructure resilience. This
coupling would enable informed decisions and policies for a better utilization of resilience
means (i.e., resourcefulness and redundancy) to enhance the community’s climate resilience.
It is worth noting that these predictions and projections will be subject to the uncertainty
associated with the climate models; as such, a reliable ensemble from multiple models
needs to be used in order to reduce the effect of this uncertainty and reduce the variability
between these different models.

The framework presented herein can also be applicable in different data-driven studies,
where the purpose is to investigate the spatio-temporal vulnerability of a system facing an
external disruption (e.g., vulnerability-based evacuations).

4. Discussion and Conclusions

As the IPCC 2021 report stated, extreme rainfall events are expected to increase in
frequency and intensity over the next decade, with an increase of over 2.0 m in the average
sea level by the end of the current century. Numerous studies were developed to assess
community resilience, mostly considering the feature of the hazard rather than the features
of the exposed system at risk. The current work aims to: (1) identify specific variables to
represent resilience means across a specific time-span to develop an comprehensive dataset
for data-driven models, (2) develop resilience indices using unbiased data-driven methods
under different weather conditions across a specific region, (3) develop a comparative
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spatial analysis to identify at-risk communities and assess their vulnerabilities to further
enhance their resilience [59], (4) couple the indices with climate information to develop a
well synchronized dataset to be used with future climate models for accurate resilience
prediction, and finally (5) test the framework using the NWS disaster records to develop
flood resilience indices. The output of said categorization is then coupled with the historic
climate information from NOAA corresponding to the disaster records from 1996 to 2019.
The resulting dataset is used to develop, train, and test the prediction ML model.

The demonstration application of the developed framework was developed using
unsupervised ML techniques in Part (a) and supervised ML in Part (b). In Part (a), the
model was applied to the NWS’s historical disaster database, collected across the United
States from 1996 to 2019. This dataset included variables with information regarding the
damage, duration, indirect/direct injuries, and fatalities, and these variables were used to
extract the resilience information correspondence to each recorded disaster (i.e., robustness
and rapidity) so that the developed categorization would capture the resilience of the
exposed community, resulting in five categories (i.e., indices). For the second part of the
framework, the state of Texas was chosen as a test location, given the uniformity of the
meteorological conditions over the state and the uniformity of the built environment (with
few acceptable exceptions). A spatial analysis within the state of Texas was conducted
using the developed indices in Part (a), highlighting the more vulnerable counties within
the state. This spatial analysis concluded that the coastal areas around the Gulf of Mexico
are subjected to flood events that result in a higher index than other counties, resulting
in a larger impact on the robustness of said communities. This highlights the need for an
accurate methodology to predict future impact on said communities to be able to develop
proactive flood risk management strategies and enhance their overall resilience.

The second part of the application utilized numerous ensemble prediction techniques
(i.e., Random Forest (RF) with 300 and 1000 trees, Bagged Decision Trees (DT), and Naïve
Bayes (NB) classification). The output of this stage demonstrated the applicability of the
developed framework, with comparable results across the different models. While the
Bagged DT outperformed the RF models in categories where the data were scarce, they per-
formed similarly in other categories. To objectively assess the performance of all the models,
precision, recall, and F-1 Score were employed across different categories, in training and
testing datasets, resulting in a comprehensive conclusion that the prediction framework is
employable in resilience-guided studies. However, to objectively develop a data-driven
method, a comprehensive enough dataset with variable across different regions and across
the years, with enough variables should be employed. In the current framework demon-
stration study, the authors were limited by the available data; however, the prediction
performance of the framework can be improved given more climate information (i.e., wind
speed, humidity, and air pressure, etc.). These variables would increase the correlation with
the developed resilience indices, resulting in a more robust dataset for the training and
testing of the prediction model. A limitation of the work presented herein is that future
climate projections were not considered in the demonstration application. Provided the
availability of said projections, the trajectory of the resilience of the exposed community
can be determined, and the vulnerability and resilience can be evaluated ahead of projected
extreme events, giving policy makers the opportunity to develop mitigation and resilience
enhancement plans to avoid future disasters. The framework can be adapted to account for
the uncertainty induced by the climate projections’ nature and the probabilistic nature of
the hazard as well as the response of the community and the resulting resilience. This can
be carried out through accumulating probabilities resulting from Monte Carlo simulations
to determine the response to the hazard itself and include it in the prediction framework.

To that end, further research can be implemented to advance this framework through
(1) incorporating more variables within the utilized datasets, (2) combining the results of
the different ensemble ML models used in this study to further enhance the prediction
performance, and (3) applying the framework to future climate projections to predict the
expected change in the resilience of the exposed communities.
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