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Abstract: This study aimed at estimating peat adsorption properties for copper ion removal from
aqueous solutions during peat modification. Two peat modifications have been studied using batch
tests and quantitatively reproduced with instrumental analysis by using spectrometric, potentiomet-
ric, and thermodynamic modeling methods. The first variation—mechanical activation—was carried
out in a planetary mill; for the second one—mechanochemical activation—dry sodium percarbonate
(Na2CO3·1.5H2O2) was added. The adsorption of copper ions was studied in the concentration range
from 10–150 mg/L with an interaction time from 0.25–12 h. Both modifications led to significant
changes in the interaction energy in the adsorption layer; thus, the acceptor properties of macro-
molecules were enhanced from natural peat to mechanically activated peat and mechanochemically
activated peat. FTIR spectra, specific surface area characteristics, and sorption experiments show the
predominantly chemical nature of copper sorption. Maximum adsorption capacity was determined
to be 24.1, 42.1, and 16.0 mg/g for natural peat, mechanically activated peat, and mechanochemically
activated peat, respectively. The example of peat mechanochemically oxidized with Na2CO3·1.5H2O2

shows that the improvement in the physicochemical properties (CBET and specific surface area) plays
a smaller role in the sorption capacity in relation to copper ions than the presence of phenolic and
carboxyl groups, the content of which decreases during oxidation.

Keywords: peat; mechanical activation; mechanochemical oxidation; copper ions; sorption; adsorption
isotherm; thermodynamic modeling

1. Introduction

Despite the intention to switch to waste-free and environmentally friendly produc-
tion, many industries still produce wastes containing toxic and carcinogenic organic and
inorganic compounds. Wastewater often contains high concentrations of heavy metals,
exceeding permissible standards. In such concentrations, heavy metals exhibit toxic prop-
erties and are not biodegradable. On the other hand, environmental regulations now
require the treatment of contaminated waters before they can be discharged into receiving
waters. The toughening of environmental laws and increased control in the field of nature
management has propelled the search for reliable methods of wastewater treatment.

It is suggested that adsorption is one of the best methods, not only because of its
simplicity and potential for regeneration but also because it is a cost-effective and environ-
mentally friendly technology for removing heavy metals from wastewater [1–10]. Various
materials have been suggested for use as a sorbent for contaminated water, including
clay minerals, zeolites, zero-valent iron, polymers, activated carbon, adsorption resin, and
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natural organic materials. Recently, great attention has been paid to the sorbents based on
natural materials as the cheapest and most effective due to their wide distribution in nature
and availability. Among organic materials, peat is a common sorbent due to its availability,
low cost, and high sorption effectiveness for the removal of different substances from
solutions, including organic compounds and heavy metals [11–17]. There are numerous
studies regarding peat sorption capacity towards dissolved metals, nutrients, suspended
solids, oils, etc. [5,13,15,16,18–21]. Various mechanisms including ion exchange, complexa-
tion, chemisorption, and surface adsorption have been proposed by researchers [18,21,22].
It is established that the sorption properties of peat depend on the highly developed
porosity and a presence of various functional groups. The polar characteristics imparted
by the presence of these functional groups are responsible for binding metal to the peat
surface [6,18,23,24]. Humic acids (HA) are the most active components of peat since they
comprise the most important component of organic matter for ion exchange, complexation,
and other sorption interactions [25,26]. Humic substances in peat form the strong bonds
with heavy metals and can be used as an effective geochemical barrier [19,27–29].

The development of new cheaper adsorbents with high efficiency based on natural
materials become a must for many industries [5,8–11]. Many papers have been pub-
lished on the use of modified materials for the removal of heavy metal ions from aqueous
media [17,30–32]. It is known that mechanochemical treatment in the presence of different
reagents (acid–base, redox, and ferments) leads to the change in the contents of physic-
ochemical properties and reactivity of the main components of peats and, in particular,
HA [33–36]. Chemical treatment of biosorbents is normally used to enhance their physico-
chemical properties and to improve their sorption capacity. Furthermore, this kind of
treatment can improve the properties of sorbents such as wettability and homogeneity
and help to address the challenge of treating wastewater, which existing conventional
treatment methods are unable to do [6]. There is available data on the possible solid-state
mechanochemical reactions in peats leading to particle size reduction and microcomposite
formation. They allow for a five-to-seven-time enhancement of water-soluble component
extraction, as well as humic acid yield intensification, due to the break of chemical bonds
(for example, C-O glycosidic), air oxidation in the process of the mechanical treatment,
and increase in the hydrophilic group content in HA [37]. The direction and extent of
mechanochemical transformations depend on the physicochemical properties of peat and
the nature of chemical reagents in a reaction mixture.

The study aimed at estimating peat adsorption properties for copper ion removal
from aqueous solutions during its modification, identifying physical and chemical changes
that occur during the mechanochemical treatment of peat with a solid-phase oxidizer—
sodium percarbonate and determining the characteristics of peat, the most critical for the
sorption. Adsorption isotherm study and thermodynamic modeling have been under-
taken to extrapolate and use these properties without significant costs for industrial and
scientific needs.

2. Materials and Methods
2.1. Materials

In this study, Ubinskoe peat moss (NP) collected from the forest steppe area in Western
Siberia, Russia (55◦18.211′ N, 79◦42.711′ E) was used as absorbent material. The site
consisted of an oligotrophic and acidic Sphagnum peatland (bog). The samples were
extracted from a depth of 60 cm, stored in slider bags, and delivered immediately to
the laboratory.

2.2. Mechanical and Mechanochemical Treatment

The mechanical activation of peat (sample MAP) was carried out in an AGO-2 lab-
oratory planetary mill with water-cooling. The mass of the ball charge was 200 g, the
acceleration of the grinding bodies at the moment of separation from the walls of the
grinding chamber was 200 m/s2, the exposure time was 2 min. The mechanochemical
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activation of peat (sample MCAP) was carried out under the same conditions with the
addition to the reaction mixture of 5 wt% dry Na2CO3·1.5H2O2, which had previously
shown its effectiveness in the mechanochemical oxidation of HA of brown coal [38–41].

2.3. Technical, Structural and Morphological Analysis

The moisture content of the analyzed samples was measured gravimetrically by drying
at 130 ◦C to constant weight (weight difference <0.1% for 3 min) on a moisture meter WPS
50 SX (RADWAG, Radom, Poland) using a halogen lamp as a heating element.

The ash content was measured using a muffle furnace at 550 ◦C according to the TAPPI
T 211 om-02 test method.

The structural properties of natural peat (NP), mechanically activated peat (MAP),
and mechanochemical activated peat (MCAP) were characterized by X-ray diffraction
(XRD) analysis on a D8 Advance powder diffractometer (Bruker, Karlsruhe, Germany) with
monochromatic CuKα (wavelength, 1.5406 Å) in the Bragg–Brentano geometry. Step size
was 0.0195◦. The analysis was conducted in a range of 2θ angles (5–60◦) at a voltage of 40 kV
and current of 40 mA. The XRD patterns were analyzed using the ICDD PDF-2 database.

The particle morphology of samples (NP, MAP, and MCAP) were studied by scanning
electron microscopy (SEM) on a ТМ-1000 microscope (Hitachi, Tokyo, Japan) at an acceler-
ating voltage of 15 kV. A gold coating was deposited on the sample surface to remove the
accumulated charge (ion current—30 mA; spray time—40 s).

Determination of the content of functional groups was achieved by means of in-
verse potentiometric titration using a laboratory pH-meter Anion 4100 (Infraspak-Analyte,
Novosibirsk, Russia) combined with a glass pH-electrode (Mettler Toledo, Greifensee,
Switzerland), according to the method described [40]. The method was modified and
adapted for peat HA.

FTIR-spectra were recorded with a Vector-22 IR-Fourier spectrometer (Bruker, Karl-
sruhe, Germany) in KBr tablets at a ratio of 150:1 from 400 cm−1 to 4000 cm−1.

The contents of alkali-soluble and water-soluble acids (HA and fulvic acids (FA),
respectively) were determined according to GOST (State Standard 9517-94 (ISO 5073:2013).

After the water content measurement, the peat samples were dried at room tempera-
ture, homogenized, and passed through a 250-µm mesh sieve. The biomass was then stored
in a dry box for future use.

2.4. X-ray Fluorescence Analysis

Analysis of Si, Ca, Al, S, Mg, Fe, and Na was performed by X-ray fluorescence analysis
on an X-ray fluorescence spectrometer ARL 9900 XL (Thermo Fisher Scientific, Waltham,
MA, USA) at the Institute of Geology and Mineralogy, Siberian Branch, Russian Academy
of Sciences (IGM SB RAS).

The copper content in solid samples before and after the experiments was measured by
synchrotron radiation X-ray fluorescence mapping with a Si(Li)-detector INCAPentaFET-x3
(Oxford Instruments plc, Abingdon, UK) on Beamline “Local and scanning X-ray fluores-
cent element analysis” at VERR-3 at the Budker Institute of Nuclear Physics of the Siberian
Branch of the Russian Academy of Sciences (BINP SB RAS).

2.5. Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)

Solutions before and after interaction with sorbents were analyzed by ICP-AES on an
iCAP ProXP Duo spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) at the IGM
SB RAS.

2.6. Surface Properties

The specific surface area of the samples (Sspec) was determined according to thermal
desorption of nitrogen on a Sorbtometer M analyzer (ZAO Catacon, Novosibirsk, Russia)
using the Brunauer–Emmett–Teller (BET) method [42] and the approximations proposed
by Gregg and Sing [43].
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2.7. Adsorption Experiments and Calculations

Weighed 0.5 ± 0.001 g of peat were mixed with 50 ± 0.01 mL aliquots of the Cu(NO3)2
model solutions that contained 10, 25, 50, 100, and 150 mg/L of copper. The 250-mL batches
were placed on a magnetic stirrer for a different period of time (15 min, 30 min, 2 h, 4 h, 8 h,
12 h) at ambient conditions. Following the reaction time, the solid residue was separated
from the solution by centrifugation at 7800 rpm for 10 min. The pH, redox potential (ORP),
conductivity, and temperature were immediately measured after the experiment. After
that, the sorbent was dried in the open air, the suspensions were filtered through 0.45 µm
cellulose filters, then acidified with nitric acid, and analyzed.

The results are given in terms of removal percent (R, %) and distribution ratio, and KD
(mL/g), which were calculated from the Equations (1) and (2) [44,45]:

%R = 100 ∗ (C0 − Ce)/C0, (1)

KD = qe/Ce, (2)

where

C0 is initial concentration of copper ions in solution (mmol/L);
Ce is the equilibration concentration of copper in solution (mmol/L);
qe is the amount of copper sorbed by peat at equilibrium time (mg/g).

The Langmuir equation is theoretically derived from simple mass-action kinetics,
assuming chemisorption [46]. The linearized form of the Langmuir equation has been used
to analyze the obtained adsorption results [45,47]:

Ce/qe = 1/KL · Q + Ce/Q, (3)

where

Ce and qe have the same definition as mentioned above;
Q is the adsorption maximum (mmol/g);
KL is a constant related to the intensity of adsorption (L/kg of peat).

The Freundlich isotherm is empirical and has been derived by assuming a heteroge-
neous surface with a nonuniform distribution of the heat of adsorption over the surface [48].
The linear expression of this isotherm can be written as [45,49]:

log qe = log Kf + (1/n) log Ce, (4)

where

qe and Ce have the same definition mentioned before;
Kf and 1/n are positive valued adjustable parameters.

The parameter 1/n is varied between zero and one and it is a measure of the hetero-
geneity of adsorption sites on the surface of the adsorbent.

2.8. Thermodynamic Calculations

Calculations were performed in the heterophas 5-component system H–O–Cu–N–Ark-
COOH at 25 ◦C and a total pressure of 1 atm by the GIBBS algorithm and UNITHERM
database of the “HCh” software [50]. Here, Ark-COOH is a quasi-element with a Gibbs free
energy of formation equal to zero. This quasi-element simulated the condensed ring of the
corresponding acids (Ark) and peripheral acid groups of different types, mainly carboxyl
(–COOH). These elemental structures are assumed to determine total acidity and to provide
the formation of complexed compounds of peat HA with the main ions of natural water
and heavy metals in particular.

A discrete site-specific nonelectrostatic model of the interactions of a Cu ion with FA
and HA, is applied to the experimental data modeling. Copper binding is described with a
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site density (mmol/g) and two intrinsic equilibrium constants: dissociation of the carboxyl
groups (–COOH) and association of the Cu2+ with –COOH.

3. Results and Discussion
3.1. Characterization of Sorbents

Peat is a very heterogeneous material composed with a majority of organic compounds
and detrital minerals. Metal(oid) concentrations, pH, and electrical conductivity (EC)
detected in natural peat prior to the experiments are presented in Table 1. It is considered
that the humidity and the saturated soil water content in Sphagnum peat are the highest.
The moisture content of the peat moss is 92.7%, the ash content is 2.2%. At the same
time, the bog water pH is 4.0 (slightly acidic). Peat properties reflect the peat-forming
environment and the types of peat-forming plant. Among the elemental compositions of
peat ash, the major elements Si, Ca, Al, S, Mg, Fe, and Na account for approximately 90%
of the total elements of the ash. The content of Cu does not exceed 14 ppb. The content of
organic substances in dry matter was observed at 97.8%.

Table 1. Physical and chemical properties of peat, pH, and EC of the water of the Ubinskoe peat bog.

Organic Matter Content Ash pH EC SiO2 CaO Al2O3 SO3 MgO Fe2O3 Na2O Cu

% % µS/cm % ppb

97.8 2.2 4.0 127.1 0.76 0.45 0.29 0.27 0.25 0.24 0.02 13.6

The results of elemental composition (C, H, N, and S), shown in Table 2, indicate sig-
nificant similarity between the peat with those presented in the literature. The composition
of peat varies depending on botanical composition, age, climate, and other environmental
factors. Composition of C, H, and N revealed the H/C ratio of 1.5. The H/C ratio is
associated with the degree of aromaticity; the lower the ratio, the greater the presence of
aromatic compounds. C/N ratio correlates with the humification degree of peat, where
a low C/N ratio usually indicates a high humification degree, and vice versa [51]. In our
case, the ratio was 91.1.

Table 2. CHNS analysis for the peat.

%C %H %N %S H/C C/N

43.76 5.53 0.57 - 1.50 91.1

The surface morphology of the natural peat (NP) and the sorbents obtained after
modification (MAP and MCAP) were characterized by scanning electron microscopy
(Figure 1). The morphology of the natural peat is represented by the remnants of plant
tissues with a large number of conducting vessels and pores (Figure 1a) [30]. X-ray energy
dispersive spectroscopy (EDS) data (TM1000 EDS detector (Hitachi, Tokyo, Japan), data not
shown) indicate the following elements inherent in the peat composition: Al up to 1.5%, Si
up to 1%, and Ca up to 0.51%. A microphotograph of the MAP sample (Figure 1b) shows
a characteristic pattern of mechanically processed plant materials with signs of plastic
grinding, the structure of the material stratifies, and the particles greatly decrease in size.
Small amounts of iron chafing (Fe up to 0.36% (EDS, data not shown)) may occur during
mechanical activation. For the MCAP sample (Figure 1c) under mechanochemical activation
with Na2CO3·1.5H2O2, the formation of a large number of small particles capable of
aggregation on the larger crushed particles of the original peat is observed. The appearance
of Na up to 1% in the MCAP sample composition is observed (EDS, data not shown).
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Figure 1. SEM images of natural peat (a), mechanically activated peat (b), mechanochemically
activated peat (c).

Figure 2 shows the X-ray diffraction patterns of NP, MAP, and MCAP. It is shown
that peat has an amorphous-crystalline structure characteristic of plant polymers [32].
Mechanical and mechanochemical influence leads to the amorphization of the peat crystal
structure. XRD patterns of MAP and MCAP identified the hexagonal quartz phase in the
composition, which may be present in peat samples up to 1%.

As follows from the data presented in Table 3, both modifications of the peat sample
led to significant changes in the interaction energy in the adsorption layer from 6.3 to
27.8. Differences in the values of the monolayer capacity and specific surface area indicate
variations in the effects of mechanical and mechanochemical treatment of peat. The lowest
specific surface area (BET method and Greg and Sing approximation) is a characteristic for
the mechanically activated sample. The mechanochemical activation of peat in the presence
of an alkaline oxidizing reagent results in increasing specific surface area and monolayer
capacity, which may have an effect on the sorption capacity of the obtained sorbent.



Water 2022, 14, 2114 7 of 19
Water 2022, 14, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 2. XRD patterns of NP, MAP, and MCAP. * shows the reflections of quartz SiO2 (PDF-2 no. 
01-070-3755). 

As follows from the data presented in Table 3, both modifications of the peat sample 
led to significant changes in the interaction energy in the adsorption layer from 6.3 to 27.8. 
Differences in the values of the monolayer capacity and specific surface area indicate var-
iations in the effects of mechanical and mechanochemical treatment of peat. The lowest 
specific surface area (BET method and Greg and Sing approximation) is a characteristic 
for the mechanically activated sample. The mechanochemical activation of peat in the 
presence of an alkaline oxidizing reagent results in increasing specific surface area and 
monolayer capacity, which may have an effect on the sorption capacity of the obtained 
sorbent. 

Table 3. Surface properties of natural peat (NP), mechanically activated peat (MAP), mechanochem-
ically activated peat (MCAP). 

Sample CBET * am, mol/g  Sspec, m2/g 
(BET Method) 

Sspec, m2/g 
(Greg and Sing Approximation [43]) 

NP 6.3 0.96 4.2 ± 0.3 6.9 ± 0.5 
MAP 18.2 0.86 3.7 ± 0.3 5.9 ± 0.4 

MCAP 27.8 1.10 4.8 ± 0.3 7.0 ± 0.5 
* CBET is the BET energetic parameter (a dimensionless quantity); am—monolayer capacity (mol/g). 

The curves of inverse potentiometric titration of the studied peat samples by 0.1 M 
HCl solution, as well as the similar curve for a blank sample presented by 0.1 M NaOH 
are given in Figure 3. In the regions of рН 10–11, рН 6.9–9.5, and рН 2.5–6.0, three titrated 
groups—phenolic hydroxyls Ph-OH, carboxyl groups at aromatic rings Ar-СОOН, and 
carboxyl groups in hydrocarbon chains Alk-COOН—were established. By various 
amounts of acid groups in the study samples, a curve is shifted in the region of the lower 
values of titrant addition. By the inflection points of the curves, related to the electrode 
potential drop, neutral points are found corresponding to all the three aforementioned 
groups. Calculated contents of functional groups are given in Table 4. 

Figure 2. XRD patterns of NP, MAP, and MCAP. * shows the reflections of quartz SiO2 (PDF-2
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Table 3. Surface properties of natural peat (NP), mechanically activated peat (MAP), mechanochemi-
cally activated peat (MCAP).

Sample CBET * am, mol/g Sspec, m2/g
(BET Method)

Sspec, m2/g
(Greg and Sing

Approximation [43])

NP 6.3 0.96 4.2 ± 0.3 6.9 ± 0.5

MAP 18.2 0.86 3.7 ± 0.3 5.9 ± 0.4

MCAP 27.8 1.10 4.8 ± 0.3 7.0 ± 0.5
* CBET is the BET energetic parameter (a dimensionless quantity); am—monolayer capacity (mol/g).

The curves of inverse potentiometric titration of the studied peat samples by 0.1 M
HCl solution, as well as the similar curve for a blank sample presented by 0.1 M NaOH
are given in Figure 3. In the regions of рН 10–11, рН 6.9–9.5, and рН 2.5–6.0, three titrated
groups—phenolic hydroxyls Ph-OH, carboxyl groups at aromatic rings Ar-CОOН, and
carboxyl groups in hydrocarbon chains Alk-COOH—were established. By various amounts
of acid groups in the study samples, a curve is shifted in the region of the lower values of
titrant addition. By the inflection points of the curves, related to the electrode potential drop,
neutral points are found corresponding to all the three aforementioned groups. Calculated
contents of functional groups are given in Table 4.
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Table 4. The content of phenolic and carboxyl groups in the peat samples according to reverse
potentiometric titration, mmol/g.

Sample Ph-OH Ar-COOH Alk-COOH

NP 7.7 ± 0.6 5.3 ± 0.5 2.0 ± 0.3

MAP 7.0 ± 0.7 3.5 ± 0.6 1.7 ± 0.4

MCAP 5.5 ± 0.4 2.4 ± 0.5 0.5 ± 0.2

According to the potentiometric titration, similar ratios of phenolic and carboxyl
groups are determined in all three samples, however, with a decrease in their number from
NP to MCAP samples. Therefore, the number of acid groups decreases in the peat compo-
sition. Peat becomes more hydrophobic, i.e., acceptor properties of macromolecules are
enhanced (reaction capacity with ions), which is consistent with data on the determination
of energy characteristics (CBET and am) from Table 3. The solution pH and presence of
different background electrolytes effectively influence the adsorption efficacy towards ion
adsorption and sorbent zeta-potential [52]. Cations of the inorganic salts can bind with
the peat surface and the surface becomes positive (Cu2+). The polarizability of the counter
anions, such as NO3

−, play a role in the variation of the surface charge of peat samples.
The change in the surface charge of peat depending on the concentration of solution ions
will be described in our following works.

FTIR analysis revealed main functional groups in the composition of peat samples
and indicated qualitative changes during the modification of natural peat (Figure 4). A
broad absorption band with a maximum area from 3420–3400 cm−1 was assigned to the
stretching vibrations of hydroxyl groups involved in intramolecular and intermolecular
hydrogen bonds. The bands at 2925 and 2855 cm−1 are ascribed to the asymmetric and
symmetric C–H stretching of methylene and methyl (CH2 and CH3) groups.
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The band from 1710–1725 cm−1, corresponding to the C=O-stretching vibrations of
mainly carboxyl groups and other oxygenated functionalities, usually has high intensity in
HA spectra. The band from 1610–1625 cm−1, which refers to the stretching vibrations of
the C=C conjugated groups in aromatic structures, including oxygen-containing groups
such as quinones, hydroxylquinones, etc., as well as nitrogen-containing heterocycles. This
region (1630 cm–1) is also responsible for bending vibrations of the O–H group of adsorbed
water. The bands at 1515 cm−1 and 1420 cm−1 are attributed to skeletal vibrations of the
lignin aromatic ring. Additionally, the bands at 1420 cm−1 and 1380 cm−1 are attributed
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to the asymmetric and symmetric bending vibrations of the C–H bond in methoxyl and
methyl groups [53].

The band at 1270 cm−1, together with the band at 1235 cm−1, corresponds to skeletal
vibrations of the aromatic ring and asymmetric stretching vibrations of the C–O bond in
phenolic groups and aromatic ethers. The adsorption band in the area of 1156 cm−1 refers
to the hydroxylic groups of alcohols, the bands of 1065 and 1036 cm−1 refer to the stretching
vibrations of the C–O bond in the stretching of polysaccharidic structures [54]. For the
MAP sample, the absorption bands of the O–H groups are shifted to the area of lower
frequencies indicating a distinct intramolecular nature of hydrogen bonds and ordered
structure. For the MCAP sample, the band in the area of 1724 cm−1, corresponding to
the carboxyl group vibrations, is not separately detected, merging with the band from
1610–1612 cm−1 and presenting on it in the form of a shoulder, which may be partly due
to the oxidation during the mechanochemical treatment [55]. Such samples are usually
humate, not humic acid. A decrease in absorption in the regions of 1725 and 1260 cm−1,
with a simultaneous increase in the area of 1613 and 1418 cm−1, indicates the passage
of a chemical reaction of neutralization of acidic groups of HA and their conversion into
the form of sodium humate as a result of the mechanochemical treatment of peat with
Na2CO3·1.5H2O2.

3.2. Adsorption Experiments
3.2.1. Adsorption Studies of Cu(II) on Natural and Modified Peat

The degree of Cu2+ sorption on the sorbents depends on initial solution concentration
(Figure 5). The effect of contact time on the copper ions adsorption on NP is low. The
adsorption occurred rapidly within the first 30 min (gray circulars). These results indicated
that chemical adsorption rather than intraparticle diffusion was the rate-controlling step [56].
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With increasing initial concentration, the removal percent of copper ions decreases
from 99% to ~75% due to the reduction in available adsorption sites. To be more precise, a
large number of vacant surface sites are available for adsorption at a low concentration,
whereas all the active sites are saturated with sorbate ions at a certain point. The increased
concentration of metal ions is accompanied by a corresponding decrease in binding such
that the total binding is constant when it is at its maximum value [57,58]. This is reflected
in the model, which assumes competition of all ions for the same binding sites.

At the initial copper concentration of 150 mg/L (2.36 mmol/L), there is a slight increase
in R,% to 84 ± 2%, that can be associated with the formation of a complex with another
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stoichiometry, for example, according to Equation (5). Precipitation of a solid phase of a
CuO type at pH~3.5 according to the thermodynamic calculations should not occur [45,59]:

4(-COOH) + 2Cu2+ = (-COO)4 − Cu2
0 + 4H+. (5)

Distribution ratio involves the water-peat ratio in an explicit way according to Equation (2).
Figure 6a shows that sorption is most efficient at the lowest Cu concentration (log KD = 3.9),
when the metal concentration increases, the ratio drops to log KD = 2.5. Thus, at the constant
temperature and water-peat ratio of 100:1, the experimental distribution ratio does not
reach constant values in the region up to C0 = 2.36 mmol/L. If the distribution ratio at
constant temperature varies, the distribution of components between the solution and
peat is not subjected to a linear isotherm. At each point of the experiment, we can only
talk about reaching the empirical equilibrium described by reaction Equation (5) and the
relative equilibrium constant Kemp (Equation (6)) [45,59]:

log Kemp =

[
–COOCu+

][
Cu2+

][
–COO−

] . (6)
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Based upon the location of a point set of the same color in Figure 6, this empirical
equilibrium is quickly attained, even at the highest concentrations; the time does not exceed
30 min.

Another important parameter affecting the sorption is the solution acidity: the logKD
shows an inverse relationship with pH compared with a dependence on increasing concen-
tration (Figure 6b). The equilibrium pH is slightly lower than the initial pH, indicating that
H+/Na+ release from carboxylic and phenolic groups during the adsorption process, and
negatively charged macromolecules repel each other, making a greater number of active
sites available for the adsorption of metal ions [60–62]. Distribution ratio increases with
increasing pH, while the lower Cu-concentration solutions have pH from 3.7 to 4.2 (blue
squares), and higher ones have pH from 3.2 to 3.6 (yellow and red squares). It is known,
that the biosorption process is strongly pH-dependent and the level of metal binding is
influenced by both H+ ion competition and speciation effects [63,64]. Regular changes of
copper concentrations in solution indicate a predominance of sorption affecting the visible
change in the solution pH. A graph view (Figure 6b) allows to assume that the reaction
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Equation (7) is valid. The pH dependence of the metal ions adsorption can be explained by
a competitive adsorption of copper and H+ ions [45,59]:

Alk-COOH + Cu2+ = Alk-COOCu+ + H+. (7)

The adsorption of Cu2+ on sorbents is shown in Figure 7. All three peat modifications
(NP, MAP, and MCAP) remove copper ions from solutions with approximately the same
efficiency. The confidence intervals for the initial and MA peat overlap in most values.
Therefore, to analyze the differences in sorption efficiency, we further consider sorption
isotherms. The amount of adsorbed Cu ion on MCAP decreased with the increase in Cu2+

concentration. In sum, as confirmed by the sorption constants below, the MCA peat sample
shows a worse ability to remove copper ions from solutions.
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It was expected that the mechanochemical oxidation of peat using Na2CO3·1.5H2O2
would proceed similarly to the examples described for brown coal. It has long been known
that on the surface of brown coal many radicals are formed as a result of mechanical acti-
vation [65,66]. In [38] it was shown that the mechanochemical oxidation of brown coal by
Na2CO3·1.5H2O2 occurs with the participation of a free radical mechanism and produces
new oxygen-containing groups. By potentiometric titration (Table 4), a decrease in the num-
ber of Alk-COOH groups from 2.0 to 0.5 mmol/g for mechanochemically oxidized peat was
proven. One can conclude that in the case of the mechanochemical treatment of peat with
Na2CO3·1.5H2O2, the oxidation of carboxyl groups is more extensive and accompanied by
their removal from the structure of organic matter. A similar effect was observed during the
mechanochemical oxidation with Na2CO3·1.5H2O2 of chitosan, which is accompanied by
deacetylation [67]. In addition, the alkaline component of Na2CO3·1.5H2O2 is also involved
in the reaction, so the neutralization of acidic groups of HA occurs, which is reflected in
the IR spectra (Figure 4). In the IR spectra of MCAP, the band from 1710–1725 cm−1 is
not separately detected, merging with the band from 1610–1612 cm−1. Such samples are
sodium humates, not HA. In addition to the data, obtained using potentiometric titration,
that account for carboxyl groups in both the salt and acid states, we can conclude that the
mechanochemical oxidation of peat with Na2CO3·1.5H2O2 is accompanied by decarboxyla-
tion. According to Tables 3 and 4, physicochemical properties for the MCAP sample were
improved (CBET and Sspec), but they did not improve the sorption capacity of this sample
with respect to copper ions.

3.2.2. Adsorption Isotherm

The equilibrium adsorption isotherms of copper ions on peat were built to establish the
relationship between the physicochemical parameters of the sorbent and sorption ability.
Figure 8 shows the graph obtained for the adsorption of Cu2+ onto NP. This graph indicates
an L-type adsorption isotherm, which is characterized by a decreasing slope as the adsorbate
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concentration increases due to increased coverage of vacant adsorption sites [18,47,68,69].
These results were then analyzed using Langmuir and Freundlich sorption parameters.
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Figure 8. Equilibrium adsorption isotherms of Cu2+ on natural peat (NP), mechanically activated
peat (MAP), mechanochemically activated peat (MCAP).

From the slope and intercept of the lines in Figure 9a, the values of Q and KL were
estimated and are listed in Table 5. The correlation factor (r2) shows that the linear fit of
Ce/qe vs. Ce is the highest for the MAP sample (0.997) over the concentration range from
3–50 mg/L. The Langmuir model assumes that the uptake of ions occurs on a homogenous
surface by monolayer adsorption without any interaction between adsorbed molecules;
hence, the mechanical treatment of peat moss (MAP) led to the formation of the more
uniform sorbent. Maximum Cu2+ adsorption capacity (Q) was determined to be 24.1, 42.1,
and 16.0 mg/g for NP, MAP, and MCAP, respectively. The data obtained are well correlated
with published data from different previous studies [70–74]. KL is a constant related to the
intensity of adsorption and is the highest for the NP (0.3).
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Table 5. Isotherm parameters Langmuir and Freundlich sorption for natural peat (NP), mechanically
activated peat (MAP), mechanochemically activated peat (MCAP).

Isotherm Sample Parameters

Langmuir Q (mg/g) KL r2

NP 24.1 0.30 0.878
MAP 42.1 0.23 0.970

MCAP 16.0 0.07 0.889

Freundlich n Kf r2

NP 2.31 30.0 0.977
MAP 2.16 28.2 0.930

MCAP 1.76 22.2 0.998

From the slope and the intercept of the straight line of log qe vs. log Ce (Figure 9b),
the values of Kf and n have been determined and are given in Table 4. The correlation
coefficient (r2) demonstrates that the Freundlich model is more suitable than the Langmuir
model for the natural peat sample (NP). Therefore, it can be assumed that the process has a
surface character [34]. This finding may imply that all groups (Table 4) are responsible for
Cu2+ adsorption behavior. The positive contribution of the carboxyl and phenolic groups
and the aromatic compounds for adsorbing Cu2+ has been previously reported [57].

3.3. FTIR Spectroscopy Data before and after Experiments

FTIR spectra of two modifications of peat (MAP and MCAP) before and after sorption
are shown in Figure 10a,b. A number of adsorption bands exhibited relative intensities,
typical to peat-like materials, containing HA. For example, stretching vibrations of hydroxyl
groups from 3420–3400 cm−1 and stretching vibrations of aliphatic CH2 and CH3 groups
at the 2925 and 2855 cm−1 regions of HA were typical functional groups of the peat.
FTIR spectroscopy data did not show HA structure conversion and the occurrence of
solid-phase chemical reactions. After Cu2+ adsorption, a peak shift from approximately
3374–3418 cm−1 in HA was observed, and the intensity of the peaks decreased (Figure 10b).
The narrowing of the peaks from approximately 1374–1386 cm−1 in HA was observed,
which may arise from the formation of hydrogen bonds after Cu2+ adsorption. The peaks
from approximately 1599–1633 cm−1 in HA shifted approximately to 7–24 cm−1; the peaks
from approximately 1252–1268 cm−1 in HA almost disappeared after the adsorption of
Cu2+. The above findings suggested that carboxyl and hydroxyl groups on humic substance
(HS) surfaces were involved in Cu2+ adsorption. The crucial role of carboxyl and hydroxyl
groups in metal ion binding with HS has also been reported previously [75].

However, for the studied samples, no significant changes in the FTIR spectra before
and after the sorption of copper ions were observed. A slight decrease in absorption in
the 1430–1375 cm−1 area may indicate a decrease in C–H bonds in peat after the copper
sorption. For MCAP, there is an increase in adsorption in the area of 1725 cm−1, which is
explained by the transition of a part of sodium humate to the form of HA due the presence
of peat in an aqueous solution with pH 3.2–4.6.
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3.4. Thermodynamic Modeling

Based on the above-mentioned data set, a mechanism of chemical adsorption with
the formation of surface complexes was selected for thermodynamic modeling. Physico-
chemical modeling of the biosorption process makes it possible to choose such a working
technological scheme, at which the minimum consumption of the adsorbent or modifier
can be used and the most satisfactory results obtained. In the context of development, a
model applied to environmental conditions (wetlands, tailing impoundments), we have to
propose a model able to reproduce the copper sorption on native peat, in a pH range from
3–4, which is typical for the specified environments. Between pH 3.2 and 4.1 (Figure 6),
despite a high dispersion of points depending on the initial Cu concentration, the totality
of log KD values obtained by sorption were comprised between 2.0 and 4.0 mL/g, attesting
to a high sorption capacity of native peat.

It has been shown in Table 4 that the total content of sorption positions in natural peat
is 15 mmol/g. However, the number of Alk-COOH carboxyl groups easily eliminating the
proton at pH 3.5 (dissociating) is only 2 mmol/g. It is most likely that adsorption occurs
particularly with the formation of surface complexes by reactions [45,59]:

Alk-COOH = Alk-COO− + H+, (8)

Alk-COO− + Cu2+ = Alk-COOCu+. (9)

Thermodynamic data are presented in Table 6. Further details have been provided
in our previous studies [76–78]. Some of the parameters were determined experimen-
tally, others were adopted from [59,79]. It should be said that the weighed average log
Kdiss (Equation (10)) [45,59] of carboxyl, phenolic, and other groups vary considerably
for different samples of HA and FA, while the aqueous samples differ in more positive
logarithm values:

log K(diss) =
[–COOCu+]

[Cu2+][–COO−]
·

γ(–COOCu+)

γ(Cu2+)γ(–COO−)
, (10)

where
γ(Cu

2+) is the activity coefficient of the Cu aqueous species calculated with the
Davies equation.
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Table 6. Retention parameters of the organic component of peat towards Cu2+.

Natural Peat log K Species Gibbs Free Energy, kCal/mol

Carboxyl sites 2 mmol/g Cu2+ +15.675

Cu2+ 10 ÷ 150 mg/L Alk-COOH 0

Alk-COOH = Alk-COO− + H+ −3.5 Alk-COO− 4.77

Alk-COO− + Cu2+ = Alk-COOCu+ 3.0 Alk-COOCu+ 16.6

The activity coefficients of the adsorbed species are unknown, but their ratio is ex-
pected to be constant and fixed at 1.

A provident explanation can be made on the reaction dissociation constant (Equation (10)).
At pH < 3.5, the presence of HA has a slight impact on copper adsorption, since in this
region HA molecules are semi-protonated (Alk-COOH) and cannot bond the metal ion.

Figure 11 shows the comparison of copper sorption on peat according to the exper-
imental and calculated data depending on the initial content of Cu2+ in the solution. In
general, the accepted constants adequately describe the sorption process with an increase
in its initial concentrations. Certainly, the sorption curve trend is smoother, and no such
strong deflection has been detected in the region of 100 mg/L Cu2+. It is not necessary to
optimize the process in the region of low concentrations (1 g of peat/100 mL of solution)
due to the sufficient number of sorption positions (dissociated carboxyl groups). At 50, 100,
and 150 mg/L of copper, a calculation was made at 2.5 g peat/50 mL solution. It turned
out that the sorption of 96% can be attained even in the region of high concentrations. Thus,
a nonlinear increase in the removal percent of Cu ions with an increase in the adsorbent
concentration is observed.
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4. Conclusions

Kinetic and equilibrium studies on copper ion adsorption on three peat modifications—
natural peat (NP), mechanically activated (MAP), and mechanochemical activated (MCAP)—
were carried out.

The activation of peat enhanced its physicochemical properties (CBET and specific
surface area (Sspec)) but led to a decrease in the content of phenolic and carboxyl groups.

The studies showed that equilibrium of copper adsorption was established after
30 min. The thermodynamic modeling showed that under optimized conditions, the
removal performance was found to be efficient enough, reaching 96%. A slight increase in
the pH of the solution was observed following cooper adsorption. This could be interpreted
by reverse hydrolysis reactions, which consume H+, thus, raising the pH.
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Freundlich and Langmuir equations were followed and the corresponding constants
were established. From these constants, empirical rate equations were derived for the
prediction of the adsorption capacity of copper ions at a given time. Adsorption on NP and
MCAP was successfully simulated with the Freundlich isotherm equation. The Langmuir
model has been shown to fit well for mechanically activated peat. The adsorption capacity
increased in the order MCAP–NP–MAP and was found to be 16–24–42 mg/g.

The obtained experimental data provide a prediction of similar sorption capacity of
peats in relation to copper ions, but the mechanical modification of peat could be efficiently
used for the enhanced removal of cooper from wastewater.

By the example of peat mechanochemically oxidized with Na2CO3·1.5H2O2, it is
shown that the improvement of the physicochemical properties (CBET and specific surface
area), plays a smaller role in the sorption capacity in relation to copper ions than the
presence of phenolic and carboxyl groups, the content of which decreases during oxidation
under the studied conditions.

Only one peat type (Sphagnum peat) was tested in the present study. Peat is an
extremely heterogeneous material whose structure ranges from fibric to sapric while the
relative composition (C, H, N, O) and features depend upon the botanical composition and
degree of decomposition [54]; therefore, further studies are needed. In addition, further
research will include the development of the present study to address the competition
effects of metal co-ions on the biosorption process and extension of the mathematical
modeling to polymetallic systems.
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