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Abstract: With the rapid development of urbanization and global climate change, urban pluvial
floods have occurred more frequently in urban areas. Despite of the increasing urban pluvial flood
risk, there is still a lack of comprehensive understanding of the physical and social influencing factors
on the process. To fill this knowledge gap, this paper proposes a novel approach to calculate the
comprehensive urban pluvial flooding risk index (PFRI) and investigates the interplay impacts from
different components at catchment level. To be more specific, PFRI is determined by two components,
Exposure Index (EI) and Social Vulnerability Index (SoVI). EI is evaluated based on two indicators,
the depression-based Topographic Control Index (TCI) and impervious area ratio. SoVI is measured
based on a set of demographic and socio-economic indicators. Our results demonstrated the spatial
heterogeneity of urban pluvial flood exposure and social vulnerability, as well as the composite
flooding risk across the study area. Our catchment-based urban pluvial flooding risk assessment
method can provide a comprehensive understanding of urban flooding and promote the formulation
of effective flood mitigation strategies from the catchment perspective.
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1. Introduction

During the past few decades, rapid urbanization has led to major transformations in
population size, urban areas, economic development, and social characteristics [1]. With
these profound transformations, extreme urban flood events have occurred more frequently,
resulting in a growing population exposed to flood hazards and increasing flood damages
to human communities [2–7]. There is also spatial heterogeneity in the affected population
and economic losses across nations, regions, and communities [8–10]. Certain groups are
found to be more vulnerable to flood hazards due to a higher exposure, a lack of access to
necessary resources or a lower recovering capacity [11,12]. Hence, it is critical to understand
how flood hazards affect different social groups. Urban flood risk assessment has emerged
and served as a powerful analytic tool to evaluate the impacts from floods, which could be
further applied to guide the reduction of flood risk.

In urban flood risk assessment, flood risk mapping is an important step to the planning
of appropriate flood mitigation measures and preparedness of mitigation strategies for
different stakeholders. Traditional urban flood risk mapping uses hydrologic modeling
to calculate the excess runoff and compute the inundation extent and depth by a 1D-2D
hydrodynamic model such as SWMM [13,14], MIKE FLOOD [15] and HEC-RAS [16,17].
More recently, machine leaning algorithms have been applied into flood risk mapping
and demonstrated a good performance in predicting flood-prone areas [18,19]. However,
traditional physically-based models and machine learning methods lack assessment of
social factors’ impacts on flood risk. On the other hand, the GIS-Based Spatial Multi-
Criteria Analysis (SMCA) approach considers both physical and social factors [20,21].
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In this framework, disaster risk is viewed as a function of hazard (e.g., flood extend,
inundation depth), exposure (e.g., assets and population at risk), and vulnerability (e.g.,
society’s capacity to deal with the potential damage) [7,9,22,23].

As one of the key components in the SMCA framework, the exposure to flooding
at urban areas is increasing, due to the general trend of growing urban area and urban
population [24,25]. The total amount of urban areas exposed to floods increased by six times
during the 20th century and the trend is continuing in the 21st century [26]. In addition,
critical infrastructures in urban areas such as railways, electricity grids, and airports are
prone to flood damage. As a result, increasing exposure to urban flood can lead to serious
consequences including severe economic damages, social disruptions, and loss of lives [27].

Vulnerability is another driver of the increasing flood risk, as it reflects how people ex-
perience hazard differently though they are exposed to the same magnitude of flooding [28].
According to Turner et al. [29], vulnerability refers to the degree to which a system is likely
to experience harm due to exposure to a hazard. Numerous studies have highlighted that
the flood vulnerability is multidimensional [4,5,30–33] and could be classified into several
categories, including physical vulnerability [34–37], social vulnerability [12,28,36,38,39],
economic vulnerability [30,35], and environmental vulnerability [40]. Commonly used vul-
nerability assessment methods include principal component analysis (PCA), which enables
scientists to identify underlying components from a wide range of vulnerability indica-
tors [9,38,41], and multi-criteria analysis method in which several key indicators are selected
and weighted to derive a composite vulnerability index [23,42]. Szewrański et al. [43] de-
veloped a Pluvial Flood Risk Tool (PFRA) incorporating hazard, exposure, and vulnerability,
but their focus was on the physical impacts of urban fluvial flooding and social impacts
were not fully considered. Apel et al. [44] used a complex 2-D hydrodynamic model to
develop flood hazard map combining both fluvial and pluvial flood, but they did not
evaluate the social factors affecting flood risk.

In order to evaluate urban pluvial flood risk with consideration of both physical and
social factors, this work is focused on combining the assessment of physical exposure and
social vulnerability at catchment level. The exposure index incorporates the topographic
control index (TCI) [45] and impervious area ratio. The social vulnerability index measures
how communities are affected differently by urban flood based on their demographic,
socioeconomic, and housing conditions. Furthermore, we also explored the interplay
impacts of physical exposure and social vulnerability and discussed different urban pluvial
flood risk mitigation strategies accordingly. Our catchment-based assessment method can
provide a comprehensive understanding of urban pluvial flooding.

The rest of this paper is organized as follows. Section 2 describes the methodology
of the study, including the study area, physical exposure assessment, social vulnerabil-
ity assessment, and composite framework. Section 3 presents the assessment results of
flood risk indices. Then, the different flood mitigation strategies according to the flood
risk assessment results are discussed in Section 4. In Section 5, general conclusions and
recommendations for future research are presented.

2. Methodology
2.1. Study Area

Cincinnati (39.10◦ N, 84.51◦ W) is a major city in Ohio, U.S. The city is set on the north
bank of the Ohio River and spreads out on hills, with a continental climate producing a
wide range of temperatures from winter to summer and an average elevation 224 m. The
annual average temperature is 11.83 ◦C and average annual precipitation is 1019.6 mm.
The hottest month is July with an average temperature of 29.8 ◦C, and the coldest month
is January with an average temperature of −5 ◦C. There are 2.2 million people living in
Cincinnati metropolitan area. For the consideration of terrain continuity, City of Norwood
and St. Bernard, which are two enclaves, are also included in our study area (Figure 1).
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Cincinnati has an infamous history of flooding [46,47], and associated problems of
combined sewer overflows (CSOs) [48]. A number of major flood events have been recorded
by National Weather Service since 1999. For instance, on 28 August 2016, a once in a
100-year storm caused 76.2 mm rainfall in two hours, causing extensive inundations and
severe damages to the neighborhoods in the Cincinnati area.

2.2. Urban Pluvial Flooding Assessment Framework

Urban pluvial flooding differs from other types of flooding, e.g., riverine flooding,
coastal flooding in that it occurs at smaller spatial and temporal scales [49]. Pluvial floods
can happen anywhere in urban areas and are hard to predict due to its complexity in urban
context [50]. Various physical factors, such as micro-topography, climate, land use, and soil
conditions, will affect the extent to which population and economic assets are exposed to
floods [51–53].

Our conceptual flood risk assessment framework is shown in Figure 2. Heavy rainfall
can lead to potential urban pluvial flood risk which is further affected by geographical
context of the area (e.g., topography, land cover) and social fabric (e.g., people’s living
experiences, risk perceptions, built environment). To measure the two aspects of urban
pluvial flood risk, a physical exposure index (EI) and a social vulnerability index (SoVI)
were developed respectively and then used to compute composite urban pluvial flooding
risk index (PFRI). With the understanding of impacts from the different combinations of EI
and SoVI, different strategies can be developed accordingly to mitigate flood risk.

2.3. Physical Exposure Assessment

In this study, we selected two indicators, topographic control index (TCI) and impervi-
ous area ratio, to measure the exposure to urban pluvial flooding. Topographic elements
such as slope, contributing area, and the volumes of depressions are key factors which
significantly influence the flow direction and velocity of runoff, and therefore determine
the potential places where the pluvial flooding can occur. TCI was initially developed by
Huang et al. [52]. It is a depression-based index that integrates topographic elements to
evaluate flooding risk for each depression. A larger TCI value means a higher risk for the
depression to be inundated in high intensity rainfall events, resulting in a higher exposure
to urban flooding. The TCI has been successfully applied to detect frequently flooded urban
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areas [52], to map the spatial heterogeneity of pluvial flooding’s controlling factors [45], and
to analyze the stability of transmission towers [54]. The TCI in this study was calculated
by using a 1.514-m (5 feet) DEM, which was converted from LiDAR data provided by
Ohio Geographically Reference Information Program. We calculated the area-weighted TCI
values for all the depression catchments in the study area, which includes both depression
and its corresponding contributing area. For more detailed information related to the TCI,
please refer to our previous research [45].
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The relationship between impervious surface conditions and potential flooding risk
has been emphasized by many studies [55,56]. Increased impervious area will lead to a
higher potential flooding risk, as it will lead to poor infiltration, higher runoff peaks, and
larger total runoff volume. In this study, we calculated the ratio of impervious surface
area over the catchment area for each depression catchment. The land cover geodatabase
with impervious area information was downloaded from Cincinnati Area Geographic
Information System (CAGIS).

Furthermore, for the validation purpose, we also collect observed flooded locations
in four major rainfall events, including the event on 28 August 2016, 12 February 2019,
2 May 2019, and 7 July 2020. There is a total of 47 reported records from local news and
social media. We mapped the flooded locations to examine whether they are located in
areas with higher values of exposure index as a proxy of validation. Moreover, to explore
how rainfall intensity may affect the flooded locations and its relationship with exposure
level and social vulnerability, we summarized the normalized rainfall values of the flooded
locations, which were calculated as the ratio of the rainfall depth of the flooded location
over the maximum rainfall depth in that rainfall event.

2.4. Social Vulnerability Assessment

Social vulnerability, which would affect to what extent communities are disturbed
to the natural hazard and how they can cope and adapt to the hazards [28], is related to
demographic, social, cultural, and economic conditions of the communities. This term
helps to explain why some communities experience a hazard differently, even though
they are affected by the same magnitude hazard event. Rufat et al. [57] identified seven
theoretical indicators of social vulnerability through a review of 67 flood disaster case
studies (1997–2013) related to social vulnerability to floods, and they found that demo-
graphic characteristics (e.g., age, race, gender) and socio-economic status (e.g., income,
wealth) were the most frequently used indicators of social vulnerability to flooding. There
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is no consensus on how the social vulnerability should be measured. In general, social
vulnerability is dependent on spatial scale, the local and regional social environment, the
data availability of demographic information, and data resolution.

In this study, the data we used for calculating social vulnerability index were collected
from American Community Survey (ACS) 5-year estimate for 2014–2018. Following the
work by Cutter et al. [19] and previous literature, the social vulnerability index was mea-
sured based on seven social vulnerability indicators: (1) percentage of households below
poverty level; (2) percentage of households with one or more people 60 years old and over;
(3) percentage of households with income lower than $100,000; (4) percentage of female
population; (5) percentage of population living alone; (6) percentage of renter occupied
units; and (7) percentage of buildings built before 1939 or earlier. To briefly explain our
rationale of indicator selection, poverty level and household income level would affect the
ability of a household to cope and adapt to the flooding damage. Female population, older
population, and population living alone measures who might be more prone to flooding
risk. Compared to homeowners who might have a better knowledge of flood history of the
local area as well as a desire to improve their properties by purchasing flooding insurance
or flood protection facilities, renters might be more vulnerable to flood damages. Most
of the variables were collected at block group level, except for the renter information and
household income data which was only available at census track level. Considering that the
data might be sensitive to the area of census block group or census track, all the indicators
used percent variables. The descriptions of vulnerability variables are shown in Table 1.

Table 1. The explanation of urban pluvial flood risk variables.

Risk Component Variables Reference

Exposure
TCI Huang et al. (2019) [52], Qi et al. (2020) [45]

Impervious area ratio Qi et al. (2020) [45]

Social vulnerability

% households below poverty level Cutter et al. (2013) [28]
% households with one or more people 60 years

old and over Cutter et al. (2013) [28]

% households with income lower than $100,000 Cutter et al. (2013) [28]
% female population Cutter et al. (2013) [28]

% population living alone Ka’zmierczak and Cavan (2011) [9]
% renter occupied units Cutter et al. (2013) [28]

% buildings before 1939 or earlier Fedeski and Gwilliam (2007) [58]

For the conformity of the unit with physical exposure indictors, all the social vulnerabil-
ity indicators were aggregated to the catchment level. Moreover, for the validation purpose,
we also collected social vulnerability score provided by National Risk Index dataset, which
is published in 2020 by FEMA (Federal Emergency Management Agency) from the U.S.
government [59]. In the national risk index, social vulnerability score measures the suscep-
tibility of social groups to the adverse impacts of natural hazards. It is calculated based
on 29 socio-economic variables using the methodology from Cutter et al. [32]. It is similar
to the social vulnerability context in our study. Therefore, we use it to validate the social
vulnerability index results in our paper.

2.5. Composite Pluvial Flooding Risk Index
2.5.1. Normalization of Exposure Index and Social Vulnerability Index

All the selected variables (Table 1) were normalized using minimum-maximum nor-
malization method with values ranging from 0 to 1 [60]. The closer to 1, the higher exposure
or social vulnerability to urban pluvial floods, and vice versa. As all variables are positively
correlated with vulnerability, the standard value for each variable was calculated using
Equation (1).
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Xij =
xij − minxi

maxxi − minxi
, i = 1, 2, · · · ; j = 1, 2, · · · , 9, (1)

where Xij are the normalized values of the physical exposure and social vulnerability
indicators, xij is the original value of the indicator.

After normalization, EI and SoVI can be calculated by combining all the exposure/social
vulnerability indices with equal weights, respectively. The EI and SoVI are computed as
the arithmetic mean of the indicators in Equations (2) and (3).

EI =
∑2

j=1 xij

2
, i = 1, 2 (2)

SoVI =
∑7

j=1 xij

7
, i = 1, 2, . . . , 7 (3)

2.5.2. Pluvial Flood Risk Index

Different approaches from other researchers have been applied to integrate different
components of flood risk. The common approaches to integrating different dimensions
or components of flood risk include linear combination [60–62] and multiplication ap-
proach [63,64]. For example, Lyu et al. [65] developed a flood risk model by using linear
combination of hazard, exposure, and vulnerability to evaluate flood risk for metro sys-
tems. Hazarika et al. [66] evaluated comprehensive flood risk by multiplying hazard by
vulnerability and mapped flood hazard zones in Upper Brahmaputra River floodplains.

In this study, a new composite PFRI was computed by multiplying EI with SoVI.
The rationality behind is that the zero exposure to flooding would have overall the low-
est risk no matter how high the social vulnerability is. Similar thoughts can be seen in
Szewrański et al. [43] when they calculated the composite risk score by using multiplica-
tion method, exposure parameter was assigned zero value for areas that are unlikely to be
flooded. The composite PFRI is defined in Equation (4).

PFRI = EI ∗ SoVI (4)

3. Results
3.1. Exposure to Pluvial Flooding

The TCI and impervious area ratio are classified based on standard deviation (SD)
classification method (Figure 3). About 1107 depressions and their corresponding upslope-
contributing areas are identified. Generally, depressions are widely distributed in the study
area. It can be observed that the majority of the catchments have low TC values, indicating
that they have a low exposure to urban pluvial flooding due to unfavorable topographic
impacts. Catchments with higher TCI values are mainly located along the riverside of Mill
Creek and north part of the study area. Regarding the impervious area ratio, high values
are mainly distributed in downtown area and major commercial centers in Cincinnati.
Large amount of imperviousness can slow down the infiltration rate and increase runoff
volume, resulting in a higher level of exposure to urban pluvial flooding.

Based on the values of TCI and impervious area ratio, the exposure index (EI) was
mapped using the SD classification method (Figure 4). Areas with high EIs are mainly
located along the riverside of the Mill Creek and Ohio river as well as the north part of
the city. We classified the EI values into three groups. Those catchments with EI values
higher than 0.5 standard deviations are grouped as high level; −0.5–0.5 standard deviations
indicate medium level; and areas lower than −0.5 standard deviations are in low level [41].
We then summarized the number and area of the depression catchments based on the three
groups of EI values (Table 2). Within the 47 reported flooded locations, 31 flooded locations
belong to medium exposure level (0.15 ≤ EI < 0.28); 14 flooded locations in high exposure
level (0.28 < EI ≤ 0.61); and only 2 flooded locations in low exposure level (EI < 0.15).
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The reason why many flooded locations belong to medium level is that the catchment
areas with medium exposure level is more than two times of the areas with high exposure
level. The majority of the catchments have low exposure level, but only two reported
flooded locations fall in low exposure level. The 47 reported inundations are located in
18 depression catchments. When comparing the EI values of the 18 flooded catchments
with all the depression catchments, we find that the median EI value for flooded catchments
is higher, and the flooded catchments have a narrower interquartile range (Figure 5). These
results show a high consistency between actual flooded areas and areas with high EIs, which
demonstrates the effectiveness of TCI and impervious area ratio in measuring exposure
level to urban pluvial flooding. Furthermore, we also summarized the mean normalized
rainfall of each flooded location (Table 2), it was calculated by the rainfall amount of the
flooded location divided by the maximum rainfall in that rainfall event, so that we can
measure the relative rainfall intensity in the range from 0 to 1 for each flooded location in
the four rainfall events, for more details, please refer to Qi et al. [45]. The results show that
the flooded areas with medium and high exposure levels also have relatively higher levels
of rainfall, indicating that the flood risks in the study area are magnified by the positive
correlation between EI level and rainfall intensity.
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Table 2. Summary of exposure index (EI) of flooded locations based on EI level.

Exposure Level EI Range Area (km2)
(Number of Catchments)

Number of Flooded
Locations

Mean Normalized
Rainfall

Low 0 < EI < 0.15 138.16 (383) 2 0.58
Medium 0.15 ≤ EI < 0.28 87.44 (411) 31 0.71

High 0.28 ≤ EI < 0.61 41.86 (313) 14 0.77
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3.2. Social Vulnerability

Seven social vulnerability indicators were classified based on the SD classification
method (Figure 6). It can be observed that the different aspects of social vulnerability are
not uniform and large spatial differences can be found in the Cincinnati area. Notably,
Cincinnati has a relatively large area with older buildings, which may be adversely affected
when hazardous floods happen. There is a relatively high proportion of population living
alone in urban centers. Furthermore, in the more built-up urban centers, there is also a high
proportion of households that are below poverty level and have a lower income, which may
lead to a low capacity for them to adapt to the potential damage caused by urban pluvial
flooding. In addition, renters also tend to occupy housing units in urban centers, because
there are more job opportunities in commercial districts and living near urban centers can
reduce commuting costs. However, they may have higher social vulnerability due to a lack
of knowledge about the flooding history of their living area and lower willingness to pay
for flood protection costs. On the other hand, older population prefers to live in suburbs in
the north part of the city.
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The results of the composite social vulnerability at catchment level are shown in
Figure 7 and Table 3. We can see the spatial heterogeneity of the catchments’ composite
social vulnerability values. High social vulnerability values can be found in the urban
center and along the riverside of Mill Creek. The high social vulnerability in these areas is
due to a higher proportion of households with lower income and below poverty level, larger
population living alone, and more renter occupied housing units. In terms of the reported
flooded locations (Table 3), 22 out of 47 flood locations are distributed in catchments with
low SoVI values, followed by 16 locations with medium SoVI values, and 9 locations with
high SoVI values. We also compared the SoVI values between 18 flooded catchments and
all the catchments in the boxplot (Figure 8). Interestingly, the flooded catchments have a
slightly lower median SoVI, but there are no significant differences of SoVI values between
flooded catchments and all the catchments.

For validation purposes, we aggregated SoVI scores from National Risk Index to catch-
ment level to make it comparable with our calculations of SoVI. The relationship between
normalized SoVI scores from NRI dataset and our calculations is shown in Figure 7b. A
clear positive correlation can be observed with a relatively good fit (R2 = 0.45, p < 0.05),
indicating that our social vulnerability indicators are reliable in reflecting the social vulner-
ability to urban pluvial flooding in the study area.
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Table 3. Summary of SoVI values of flooded locations based on SoVI level.

SoVI Level SoVI Range Area (km2)
(Number of Catchments)

Number of Flooded
Locations

Low 0 < SoVI < 0.40 66.28 (308) 22
Medium 0.40 ≤ SoVI < 0.48 127.38 (409) 16

High 0.48 ≤ SoVI < 0.70 73.81 (390) 9
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3.3. Urban Pluvial Flood Risk Index

The composite pluvial risk index was calculated and the results are shown in Figure 9.
In this map, we also overlaid the observed flooded locations from four rainfall events
to examine whether the areas with relatively high composite risk values match with the
reality. Generally, the majority of city has a low to medium composite risk to urban pluvial
flooding. High composite risk values can be found in the urban center, the riverside of Mill
Creek, and the north part of the Cincinnati area. As shown in Table 4, 32 out of 47 flooded
locations are in catchments with medium PFRI values (0.07 < PFRI ≤ 0.13), followed by
14 flooded locations in catchments with high PFRI values (0.13 < PFRI ≤ 0.31), and only
one flooded location is in the catchment with low PFRI value (0 < PFRI ≤ 0.07). The flooded
location with low composite risk has a mean normalized rainfall of 0.72, indicating that
the flooding here was largely driven by high rainfall intensity. We also compared the PFRI
values between flooded catchments and all the catchments in a boxplot (Figure 10), the
median value of PFRI for the flooded catchments is higher and the interquartile range is
narrower. Therefore, PFRI values can effectively differentiate depression catchments with
higher flood risks from others.

Table 4. Summary of PFRI values for the flooded locations based on PFRI level.

Risk Level PFRI Range Area (km2)
(Number of Catchments)

Number of Flooded
Locations

Mean Normalized
Rainfall

Low 0 < PFRI ≤ 0.07 137.12 (404) 1 0.72
Medium 0.07 < PFRI ≤ 0.13 88.92 (390) 32 0.70

High 0.13 < PFRI < 0.31 41.44 (313) 14 0.77
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3.4. Case Analysis

To examine how the composite risk is affected by its two components, we selected
seven catchments which included flooded locations to conduct further analysis (Figure 9,
Table 5). We also added the mean normalized rainfall for each catchment into the discussion.
Clearly, the catchments demonstrate interplay of the impacts from two aspects of urban
pluvial flooding risk and rainfall intensity.
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For Catchment A, it has relatively high physical exposure and medium social vul-
nerability, resulting in a relatively high composite risk. Similar patterns can be observed
from Catchment F. Catchment A is characterized by high TCI value due to a very large con-
tributing area and a relatively high proportion of impervious area. Moreover, high rainfall
intensity also contributes to its high pluvial flood risk. This area was reported to be seri-
ously affected by flooding on 28 August 2016, multiple roads and schools were closed due
to high water levels. With regard to Catchment C, its high composite risk to urban pluvial
flooding is driven by high physical exposure and relatively high social vulnerability. Dual
impacts from physical environmental setting such as unfavorable topography and high
imperviousness as well as socioeconomic factors such as lower income and renter occupied
units make the communities even more vulnerable to urban pluvial flooding. By contrast,
Catchment G has both relatively low exposure level and social vulnerability, leading to a
relatively low composite risk. The inundation is largely driven by high intensity rainfall.
Although catchments B, D, and E have similar exposure level and composite risk level, the
pattern of social vulnerability level varies. Catchments D and E have high and relatively
high social vulnerability while Catchment B has relatively low social vulnerability. In other
words, communities in Catchment D and E may be more vulnerable to flood damage when
hazardous flood events happen. From the analysis above, we can conclude that the spatial
heterogeneity of the impacts and the interplay of the two components of pluvial flood risk
can either exacerbate or alleviate the communities’ risk to urban pluvial flooding.

Table 5. Summary of the case analysis of seven flooded catchments.

Catchment EI SoVI PFRI Mean Normalized Rainfall Pattern Description

A 0.28 0.48 0.14 0.77 High EI, Medium SoVI
B 0.23 0.34 0.08 0.75 Medium EI, Low SoVI
C 0.47 0.53 0.25 0.62 High EI, High SoVI
D 0.18 0.57 0.11 0.76 Medium EI, High SoVI
E 0.18 0.50 0.09 0.50 Medium EI, High SoVI
F 0.30 0.46 0.14 0.89 High EI, Medium SoVI
G 0.14 0.38 0.05 0.72 Low EI, Low SoVI

4. Discussion
4.1. Catchment-Based Approach for Urban Pluvial Flooding Risk and Vulnerability Assessment

This study presents an approach to assess the pluvial flooding risk by combining
exposure and social vulnerability at catchment scale. Furthermore, we also validate the
exposure assessment by examining the consistency between EI values and observed flooded
locations. The validation results reported that 95% of the flooded areas are located in the
catchments with medium and high exposure levels. The results can provide useful insights
for pluvial flooding risk management at catchment level. The catchment perspective in
understanding the flooding process was also highlighted by Garner et al. [67], and physical
catchment properties (e.g., area, geology, land use) are closely related to flood generating
process. Small catchments tend to be more vulnerable to human impacts due to a lack of
established flooding defense and enhanced individual exposure [68,69]. Thus, current flood
hazard-related studies call for a catchment perspective in urban flooding risk research. Our
catchment-based approach for urban pluvial flooding risk assessment can help to provide
a whole picture of urban pluvial flooding risk for policymakers in formulating effective
flood mitigation strategies.

Our exposure assessment to urban pluvial flooding can quantify how physical char-
acteristics such slope, area, and land cover affect population’s exposure to urban pluvial
flooding through the two indicators, topographic control index (TCI) and impervious area
ratio. It was demonstrated in our study that the TCI can serve as a useful indicator to
identify the flood prone areas for urban planners, policymakers, and other researchers,
this result is also in accordance with Huang et al. [52], in their case study in Guangzhou,
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China. In addition, our study identified the spatial clustering of exposure to flooding.
Similar spatial clustering patterns of high exposure are also observed by Pricope et al. [41],
which reported that there is a proportion of 27% block groups with high flood exposure
in their study area. Our assessment of social vulnerability is comparable to other studies
as well, which highlighted socioeconomic characteristics such as income, poverty, age,
gender, housing [12,28,31]. These social factors will affect population’s vulnerability to
urban flooding at varying levels, which demonstrates the need to enhance communities’
adaptive capacity to urban flooding, especially for certain vulnerable groups such as poor
communities or older communities.

4.2. Flooding Mitigation Implications Based on Different Combinations of Risk Components

The physical exposure and social vulnerability reflect different aspects of urban pluvial
flooding risk. Physical risk of urban flooding can be mitigated by applying low impact
development techniques such as rainfall gardens, permeable pavement, green roofs, as well
as more efficient urban drainage systems [70–74]. Social vulnerability can be mitigated by
providing affordable flood insurance or loans for certain vulnerable groups and building
flood shelters to help them to adapt and recover from urban flooding [23,75,76]. As shown
in previous analysis, there are four possible combinations of physical exposure and social
vulnerability, namely, high exposure and high social vulnerability, high exposure and low
social vulnerability, low exposure and high social vulnerability and low exposure and
low social vulnerability (Figure 11). In this study, high exposure/high social vulnerability
catchments were defined as the catchments with EI/SoVI values higher than 0.5 standard
deviations respectively. Similarly, catchments with low exposure or low social vulnera-
bility were defined as the catchments with EI/SoVI values below 0.5 standard deviations
respectively. As our results suggest, the interplay of these two components can either
exacerbate or alleviate the communities’ composite risk to urban flooding. Therefore,
the different combinations of physical exposure and social vulnerability to urban pluvial
flooding would have different implications for flood mitigation measures. The areas with
both high exposure and social vulnerability to urban pluvial flooding should be given the
highest priority in flood mitigation management. In these high-risk areas, flood mitigation
measures aimed at both physical side and social side of flood risk should be developed.
For areas with high exposure and low social vulnerability, the focus of flood mitigation
measure should be attenuating the physical risk of urban flooding. In terms of the areas
with low physical exposure and high social vulnerability, the flood mitigation strategy
should be more focused on the community adaptability and readiness to urban floods.
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5. Conclusions

This paper investigates spatial patterns of urban pluvial flooding risk by integrating
the two components of risk including physical exposure and social vulnerability at catch-
ment level in the City of Cincinnati. The exposure index incorporating impervious area
and TCI (topographic control index) can effectively measure to what extent the area is
exposed to urban pluvial flood. Social vulnerability index reflects how communities are
affected by urban pluvial flood based on their demographic, socioeconomic and housing
conditions. The results show that the evaluated composite flood risk has a good match with
the historical flooded records. Our catchment-based-on pluvial flood risk investigation can
provide useful insights for urban pluvial flooding risk management at catchment level. This
method enables us to explore the spatial heterogeneity and interplay impacts of the risk
components and risk indicators. While the physical exposure exerts the primary impact,
the real impacts can be either exacerbated or alleviated by communities’ social vulnerability.
We suggest that design of urban flooding mitigation measures should consider both com-
munities’ physical exposure and social vulnerability to urban pluvial flooding, specifically,
those areas with both high exposure and high social vulnerability are of the highest priority.
The areas with high exposure but low social vulnerability are secondary, and the focus
is on mitigating the exposure to urban pluvial flooding. Our methodology of integrated
assessment of urban pluvial flooding risk and discussions on the interplay impacts of
physical exposure and social vulnerability can provide a comprehensive understanding
of urban pluvial flooding risk and promote the formulation of effective flood mitigation
strategies for the government and policymakers. One of the limitations of our study is that
we only focused on the pluvial flood while ignoring fluvial flood in this study, future work
may combine both pluvial flood and fluvial flood in urban flood risk evaluation.
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