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Abstract: Sensors deployed within water distribution systems collect consumption data that enable
the application of data analysis techniques to extract essential information. Time series clustering has
been traditionally applied for modeling end-user water consumption profiles to aid water manage-
ment. However, its effectiveness is limited by the diversity and local nature of consumption patterns.
In addition, existing techniques cannot adequately handle changes in household composition, dis-
ruptive events (e.g., vacations), and consumption dynamics at different time scales. In this context,
biclustering approaches provide a natural alternative to detect groups of end-users with coherent
consumption profiles during local time periods while addressing the aforementioned limitations.
This work discusses when, why and how to apply biclustering techniques for water consumption
data analysis, and further proposes a methodology to this end. To the best of our knowledge, this is
the first work introducing biclustering to water consumption data analysis. Results on data from a
real-world water distribution system—Quinta do Lago, Portugal—confirm the potentialities of the
proposed approach for pattern discovery with guarantees of statistical significance and robustness
that entities can rely on for strategic planning.

Keywords: water consumption analysis; biclustering; time series; pattern discovery; clustering;
subspace clustering; water distribution systems

1. Introduction

Sustainable management of water supplies generally depends on the continuous
collection, monitoring, and analysis of sensor data (e.g., pressure, flow, consumption),
which need to be translated into usable information for daily control and strategic planning.
Over the last few years, with the arrival and deployment of smart grid meters within water
distribution systems (WDSs), there has been an increasing collection of data that raises new
opportunities and challenges for the entities responsible for managing these systems [1].
The data produced by smart meters, usually in the form of georeferenced time series
data (measurements sequentially recorded through time), provide essential information
that enables the application of data analytics’ tools to model end-use water consumption
profiles. With this actionable information, water companies and municipalities have
better knowledge of what to expect from customers and thus develop efficient marketing
strategies [2], promote water-saving behavioral changes [3], enhance water infrastructure
planning [4], and manage water demand and detect anomalies [5].

In the literature, a considerable number of clustering approaches have been proposed
for the analysis of water consumption time series. Laspidou et al. [6] applied cluster-
ing on water-billing data to distinguish household from business end-use consumers;
Cheifetz et al. [7] proposed an enhanced clustering methodology to discover consump-
tion profiles from time series data; Ioannou et al. [8] also presented a technique to de-
tect behavioral patterns in water consumption, grouping users by behavioral similarities;
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Candelieri et al. [9] used clustering as a substep to improve the accuracy of water demand
forecasting; and Yang et al. [10] applied clustering as a sub-routine for categorizing end-use
events. Considering water time series consumption data, clustering can (1) group end-users
that present similar consumption behavior across the whole time dimension; (2) segment
time series according to consumption patterns for all end-users. Clustering techniques,
although typically used to explore water consumption data, fail to fully extract hidden
patterns. It is known that in real-world scenarios, the correlation of a subset of objects
is frequently only significant and meaningful for a subset of the overall conditions, and
vice versa [11]. Factors such as days of the week, holidays, and seasons can cause users
to change or drift consumption profiles over time. This means that clustering, by simply
grouping end-users across the whole time dimension, is unable to identify users that have
coherent consumption profiles during a specific time period (e.g., similar consumption
profiles during the Winter but distinct profiles during the Summer). Moreover, clustering
techniques are usually sensitive to noise, shifts, and scaling of the data, thus being unable
to discover (without data transformations) non-constant, yet potentially relevant, consump-
tion patterns, i.e., end-users with non-trivial but coherent consumption profiles caused by
shifts or scaling factors within the consumption values.

In contrast, Biclustering approaches are capable of analyzing two dimensions simul-
taneously, thus being able to unravel local patterns of water consumption, in addition
to the global patterns unveiled by clustering approaches [12]. This way, when applied
to water consumption data, biclustering detects groups of end-users that have coherent
consumption profiles during time periods with arbitrary duration. Simultaneously, biclus-
tering techniques produce statistically significant and interpretable results that are robust
to noise and missing data, therefore being positioned as a promising candidate for water
consumption profiling.

In this context, this work aims to explore the application of biclustering techniques to
water consumption time series to discover frequent, statistically significant, and actionable
patterns, providing four major contributions:

1. overview of notorious contributions in the literature contemplating the opportunities
and limitations of clustering water time series data;

2. taxonomy for a structured view, principled application, and critical assessment of
biclustering water consumption data;

3. novel methodology for the correct application of coclustering and biclustering meth-
ods to water consumption data analysis;

4. empirical validation and comprehensive discussion using a real-world case study
from a WDS corresponding to a large tourist and residential resort.

Accordingly, the remainder of this paper is organized as follows. First, we highlight
the state-of-the-art contributions in the water pattern mining field. Section 2 provides
essential background on the target task. Section 3 details the potentialities of biclustering
water consumption time series, describing the principles to correctly perform the task.
Section 4 describes the experimental setup and provides the results for the introduced case
study. Finally, concluding remarks and future directions are drawn.

Related Work

In the literature, most of the research in the water pattern mining field is focused on
demand forecasting [13–16]. To the best of our knowledge, this is the first work introducing
subspace clustering techniques to perform analysis on water consumption time series
data. Given this, below, we present the most notorious contributions that focus on using
traditional clustering techniques in water distribution networks.

Cheifetz et al. [7] presented a new methodology for discovering meaningful profiles
from water consumption data. Their methodology consists in extracting seasonal patterns
from raw time series data with a Fourier-based time series decomposition. In their work,
instead of traditional time series clustering algorithms, the authors use the extracted
seasonal patterns as input for functional clustering techniques (Functional k-means and
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Fourier regression mixture model), which assume data to be a composition of signals.
Real-world data from smart meters deployed on a large water distribution network is
used to perform a qualitative interpretation of the resulting clusters considering realistic
consumption habits.

Candelieri [9] proposed a two-phased approach that uses time series clustering (k-
means with cosine similarity) and support vector machine (SVM) regression to perform
demand forecasting. The approach consists in using clustering to identify representative
daily consumption patterns, which are then used as input to generate SVM models. The
methodology was evaluated on real-world data from both urban water demand and
26 individual households. The results suggest that the approach can be used to perform
demand forecasting and detect anomalies at the individual consumer level that might be
associated with metering faults or frauds.

Recently, Ioannou et al. [8] proposed a clustering-based methodology to detect be-
havioral patterns in water consumption, dividing customers into user clusters based on
the behavioral similarities. To this end, they first extract potentially relevant consumption
features (e.g., mean daily consumption, standard deviation of water consumption, mean
daily consumption of weekends) to feed a self-organizing map (SOM) algorithm. After that,
a clustering algorithm (k-means or hierarchical agglomerative clustering—HAC) is used to
group the resulting nodes, and a water consumption profile (curve) is constructed for each
cluster. The authors suggest that these cluster-based curves (profiles) can aid estimates
of water demand in the network. Estimates using cluster-based curves against a curve
computed for all households (without clustering) suggest that clustering improves water
consumption prediction.

In a slightly different direction, Yang et al. [10] apply clustering techniques as a
sub-process for residential water end-use classification, categorizing events from water
consumption data into end-use classes (i.e., shower, dishwasher). In their work, the authors
study incorporating a new clustering procedure to enhance the accuracy of their end-use
classification model. The clustering procedure consists of a hybrid clustering technique
(combining SOM and k-means) that serves as a pre-grouping process of discrete events into
the most likely water end-use category. To assess the effectiveness of this hybrid approach,
the authors compared it against an earlier version of the classification model—using
dynamic time warping (DTW) for clustering instead of the hybrid technique—observing a
significant improvement in event categorization accuracy.

Laspidou et al. [6] further used clustering (SOM) on water-billing data yet, to solve
predictive tasks. In their work, the authors study the possibility of using clustering to detect
patterns to distinguish between household and business consumers, as well as assess if
the number of individuals living in a household can be inferred from the clustered water
consumption profiles.

Despite still not having been proposed in the water systems literature, biclustering
analysis is already prevalent in other domains, especially in bioinformatics [12]. For
example, in the field of electric energy consumption data, Divina et al. [17] proposed the
first biclustering-based way to analyze energy consumption data from smart buildings.
The authors use a time series biclustering algorithm (SMOB [18]) to find biclusters with
coherent patterns, allowing a controlled amount of noise. After running the biclustering
algorithm in energy consumption data from households, the authors closely inspect the
found biclusters and identify abnormal behaviors, such as detecting consumption peaks
during a specific period of time that could not be found using classic clustering approaches.

2. Background
2.1. Time Clustering

Clustering, or cluster analysis, is the process of grouping a set of data objects into
multiple groups or clusters so that objects within a cluster have high similarity (high intra-
cluster similarity) yet are dissimilar to objects in other clusters (low inter-cluster similarity).
These (dis)similarities are estimated based on the features that describe the objects [19]
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irrespectively of the underlying data structure, whether simple multivariate or tempo-
ral. Clustering is considered an unsupervised task, as it looks for previously undetected
patterns in a dataset with no pre-existing labels/outcomes. Hence, clustering can lead
to discovering previously unknown groups of objects inherent in the data. Clustering
can also be used for outlier detection, as it permits identifying values that significantly
deviate from any of the discovered clusters. Clustering has been widely used in countless
applications from different fields (e.g., bioinformatics, social science, business marketing,
fraud detection) [19].

Clustering, when applied to time series data, can lead to the discovery of coherent
behaviors along the time dimension. Complementary, some clusters can discover unusual
and unexpected patterns which happen surprisingly in the datasets. Time series clustering
has been applied in Biology [20], Finance [21], Energy [22], User analysis [23], and other
domains [24].

Definition 1. Considering a set of n time series, D = {t1, . . . , tn}, and a similarity measure
sim(ti, tj), the time series clustering task aims to find groups (clusters) Ck = {ti|i ∈ 1..n},
maximizing intra-cluster similarity and inter-cluster dissimilarity.

In the literature, the classic and most popular time series clustering category is known
as whole time series clustering, which, given a set of individual time series data, the
objective is to group similar time series into the same cluster. In order to perform whole
time series clustering, most of the approaches follow one of three major mechanisms:
(1) Convert time series to static multivariate data using feature extraction and perform
traditional clustering [25]; (2) Adapt traditional clustering algorithms to work with time
series (e.g., distance-based approaches with elastic measures) [25]; and (3) Use a multi-step
hybrid approach combining different methodologies [24]. Figure 1 summarizes the main
mechanisms of time series clustering approaches.

Raw time series

Clustering

Clusters

Raw time series

Feature extraction

Clustering

Clusters

Raw time series

Modeling

Model parameters

Clusters

Shape-based Featured-based Model-based

Multi-approach

Raw time series

Multi-resolutions of
time series

Hybrid Clustering

Clusters

Convert time series Adapt clustering 
algorithm

Hybrid

Figure 1. Time series clustering approaches (adapted from [24]).

Considering approaches that convert time series to static data, those are usually
divided into shape-based or featured-based. In the shape-based approach, also referred
to as raw-data-based, shapes of two time series are matched as well as possible by a non-
linear stretching and contracting of the time axes [26]. Shape-based algorithms usually
employ conventional clustering methods, which are compatible with static data, while
their distance/similarity measure has been modified with an appropriate one for time
series. In the feature-based approach, the raw time series are converted into a feature vector,
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generally, of lower dimension [27]. Later, a conventional clustering algorithm is applied to
the extracted feature vectors.

Regarding approaches that adapt clustering algorithms to work directly with time
series data, those approaches are usually model-based. In model-based methods, a raw time
series is transformed into model parameters (a parametric model or each time series), and
then a suitable model distance and a clustering algorithm (usually conventional clustering
algorithms) are chosen and applied to the extracted model parameters.

Finally, multi-step clustering approaches can use multi resolutions of time series as
input and usually enhance clustering algorithms with hybrid stances.

Complementarily, time series clustering approaches can be essentially decomposed
into four major components: (1) Data representation. Despite the ability of some clustering
algorithms to handle raw-time series data, dimension reduction techniques (e.g., DWT, PAA,
PLA, SAX) are a usual solution to transform the time series into a lower dimensional space
or to extract relevant features [28]. Dimensional reduction is especially important due to the
computationally expensive requirements (memory space and processing power) needed by
the algorithms to calculate distances between series. (2) Similarity/distance measure. Time
series clustering solutions are highly dependent on the similarity measure used. Some of
the most popular measures to calculate distance between time series are elastic distances,
including Euclidean distance, DTW, Longest Common Sub-Sequence (LCSS), Modified
Hausdorff (MODH), and Hidden Markov Model-based (HMM) [26]. (3) Cluster prototypes.
Finding the cluster representative or prototype is essential, especially for partitioning
algorithms, as the quality of clusters is highly dependent on the quality of prototypes. A
common cluster prototype is to use the cluster medoid (the sequence which minimizes the
sum of squared distances to other objects within the cluster) [29]. (4) Clustering algorithm.
Similarly to the classic multivariate clustering, time series clustering algorithms can be
classified into six groups: Partitioning (e.g., k-Medoids, Fuzzy c-Means), Hierarchical
(e.g., Agglomerative, Divisive), Density-based (e.g., DBSCAN), Grid-based (e.g., STING,
Wave Cluster), Model-based (e.g., SOMs, Neural Network approaches), and Multi-step
clustering algorithms [24].

In the presence of labeled data, evaluating time series clustering is a well-defined
task, with various measures proposed and well accepted in the literature. External validity
indices such as Cluster Purity, Jaccard Score, and F-measure are some popular measures to
evaluate how good the clustering solution is when compared to available ground truth. On
the other hand, in the absence of ground truth, there is the need to measure the goodness
of clustering solutions without respect to external information. To achieve this, internal
indices such as Sum of Squared Error (SSE), Silhouette index, Distance between two clusters
index (CD), and others can be used. However, evaluation of clustering solutions in the
absence of ground truth is still an open problem, as the definition of structural concepts
(clusters, outliers) varies according to the data, domain, and target task [24].

2.2. Subspace Clustering
2.2.1. Biclustering

Traditional clustering methods exhibit some limitations when applied to specific
problems. Some of these limitations result from traditional clustering algorithms mislaying
some valuable information because they can only be applied either to the rows or the
columns of a data matrix, separately, disregarding the other dimension. To deal with
this limitation, an advanced clustering technique, called biclustering (also referred as
bidimensional or subspace clustering), was developed.

Definition 2. Given a matrix A = (X, Y), with a set of rows X = {x1, . . . , xn} and a set of
columns Y = {y1, . . . , ym}, where the element aij relates row xi and column yj, the biclustering
task aims to identify a biclustering solution which is a set of biclusters B = {B1, . . . , Bp} so that
each bicluster Bk = (Ik, Jk) satisfies a particular criteria of homogeneity and significance, where
Ik ⊆ X, Jk ⊆ Y, and k ∈ N+.
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As opposed to one-way clustering techniques, applicable to either the rows or the columns
of the data matrix, separately, biclustering is a technique that clusters rows and columns simul-
taneously. Consequently, biclustering produces local models, instead of a global model, and
as a result, can identify subgroups of objects that are similar only under a specific subgroup of
variables or time points [12]. Figure 2 illustrates the main differences between clustering and
biclustering methods. In contrast with clustering, the biclustering technique (Figure 2c), can dis-
cover different sub-matrices (biclusters) in the matrix that show similar or coherent behaviour,
highlighting four different subspaces: ({x1, x5}, {y1, y2, y3, y4, y5}); ({x2, x4}, {y1, y3, y5});
({x1, x2, x3, x4, x5}, {y3, y5}); ({x1, x3, x5}, {y3, y4, y5}).

1 
 

 
Figure 2. Clustering (a,b) vs. biclustering (c) solutions over an illustrative data matrix.

The placed homogeneity criteria determines the structure, coherence and quality of
a biclustering solution [30]. The structure is described by the number, size, shape, and
position of biclusters. Flexible structures of biclusters are characterized by an arbitrary
number of (possibly overlapping) biclusters. The coherence of a bicluster is defined by the
observed correlation of values (coherence assumption) and the allowed deviation from
expectations (coherence strength). Commonly pursued forms of coherence are constant
values across the subspace, rows, or columns. When considering numerical and ordinal data
forms, biclusters can further accommodate additive and multiplicative factors (coherent
values) or order-preserving factors (coherent evolutions). Figure 3 illustrates these different
types of biclusters. Finally, the quality of a bicluster is defined by the type and amount
of tolerated noise. Noise accommodation is important to handle the inherent variability
of preferences assigned to identical items by a given user. Moreover, biclustering has
also been addressed for dealing with time series data [18,31–38]. When compared to
time series clustering, time series biclustering are able to find groups of similar objects
that are similar during a partial sequence of time points, instead of the whole time span.
Temporal misalignment between observations can be further accommodated in time series
biclustering [39,40].

A bicluster is statistically significant if its probability to occur deviates from expec-
tations (i.e., is unexpectedly low against a null data model) [41]. Ensuring statistical
significance is important to guarantee that local preference patterns do not occur by chance.

Let B be the set of biclusters that satisfy a given homogeneity and statistical signifi-
cance criteria, (I, J) ∈ B is a maximal bicluster iff there is no other bicluster (I′, J′) such
that I⊆I′ ∧ J⊆J′ satisfying the given criteria. Although an optimal biclustering solution is one
containing all maximal biclusters satisfying placed homogeneity and statistical significance
criteria, the high number of (possibly redundant) maximal biclusters is often undesirable
and thus the formulation of the biclustering task can be augmented to satisfy dissimilarity
criteria [42].
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Figure 3. Illustrative forms e of subspace coherence: (a) constant values, (b) constant values on rows
(pattern on columns), (c) constant values on columns (pattern on rows), (d) coherent values (additive
model), (e) coherent values (multiplicative model), (f) overall coherent evolution (order-preserving
model), (g) coherent evolution on the rows, (h) coherent evolution on the columns [12].

Biclustering of unary and binary data is a well-established NP-hard task, a property
that can be proven by mapping the biclustering task into the problem of finding maximal
bicliques in bipartite graphs [12]. The combinatorial complexity grows when consider-
ing ordinal and numerical data, non-trivial forms of coherence, flexible structures, and
tolerance to noise. As a result, many biclustering algorithms use heuristic mechanisms
(producing sub-optimal solutions) and generally place restrictions on the allowed struc-
ture, coherence, and quality of biclusters [30]. While most versions of the biclustering
the biclustering problem being NP-hard [43], in the case of time series biclustering, we
can force the groups/biclusters to be temporally contiguous, which correspond to coher-
ent patterns shared by a group of rows/users in consecutive time points, reporting all
maximal contiguous column coherent biclusters in linear time on the number and size of
biclusters [34].

The evaluation of biclustering solutions is usually performed with one of four ap-
proaches: (1) Interpretations by human experts (relying on visualizations and previous
domain knowledge); (2) Assessing statistical significance of the biclusters (considering
p-values validating relevance and absence of spurious relations of the patterns found);
(3) Usage of internal evaluation indices that measure the quality of the patterns found
(making assumptions on the patterns the bicluster should have); (4) Usage of external
evaluation by comparing the found solutions against a ground truth [44].

In the literature, most of the biclustering-based methods have been applied in bioin-
formatics, in the context of gene expression matrices (Genes × Conditions/Time points)
obtained using microarray technologies [45–48]. Nevertheless, biclustering has been suc-
cessfully extended to other domains such as information retrieval [49], recommendation
systems [50], and targeted marketing [51]. Time series biclustering is particularly interest-
ing in bioinformatics for revealing co-regulated genes, as biological processes start and
finish in a contiguous but unknown period of time [31]. Time series biclustering has further
been applied to various domains such as social sciences [52], epidemiology [53], and energy
consumption [17].

2.2.2. Coclustering and Subspace Clustering Variants

Despite biclustering being the most popular subspace clustering task, other subspace
clustering techniques can be found in the literature. Coclustering [54,55] , also referred to
as block clustering, is one of these variants. Coclustering is a restrictive form of biclustering
requiring that all rows and columns belong to a subspace (exhaustive condition) but
allowing rows and columns to belong to more than one subspace (non-exclusive condition),
producing, visually a checkerboard structure [12].
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Definition 3. Given matrix A = (X, Y), the coclustering task aims to partition rows and columns,
(X ′= {X1, . . . , Xr}, Y ′={Y1, . . . , Ys}), so that subspaces resulting from the intersecting partitions,
X ′ ×Y ′, optimize some homogeneity criteria.

Although coclustering restricts the inherent flexibility of the biclustering task [42], it
guarantees that all row-column pairs are included in a single subspace.

Biclustering and coclustering variants are specializations of the more general subspace
clustering task. Biclustering can be extended for spaces with arbitrary N dimensionality
order, often called N-way clustering or simply N-clustering. For instance, triclustering
(3-way clustering) is now a largely researched technique since it allows the discovery
of coherent subspaces within three-dimensional data such as user-appliance-time water
consumption data [56].

3. Solution: Biclustering for Water Consumption Pattern Mining

As surveyed in the previous section, time series biclustering provides a unique oppor-
tunity to discover meaningful, non-trivial, and actionable patterns that cannot be unraveled
using traditional clustering approaches. Despite biclustering being a well-established tech-
nique with many proposed algorithms and applications in the literature, to our knowledge,
the usage of biclustering for water demand data analysis remains unexplored. Given this,
this section focuses not on proposing a novel algorithm but rather on providing a struc-
tured view on when and how to perform biclustering on water demand time series data,
exploring principles for effective discovery of water consumption patterns irrespectively of
the underlying biclustering algorithmic choice.

In Figure 4, we introduce a taxonomy on Biclustering water consumption data. This
taxonomy is proposed to provide a structural and comprehensive understanding of the
diverse aspects and decisions that can impact the application and assessment of subspace
clustering-based approaches to mine water consumption data. The following sections detail
each of the segments that compose the taxonomy, including:

• biclustering-based paradigms on water consumption data (Section 3.1);
• biclustering settings (coherence, structure, quality, statistical significance) and their

impact (Section 3.2);
• principles for guiding the development of biclustering-based pattern mining on time

series water consumption data (Section 3.3).

3.1. Major Subspace-Clustering Paradigms

The first variable of our taxonomy focuses on the selected clustering paradigm whether
given by clustering, coclustering, biclustering, or hybrid approaches.

The classic clustering paradigm relies on classic time series or multivariate clustering
algorithms to discover partitions of users (time points) that are considered similar against
the overall time (user) space. Previously, in Section 1, we saw how traditional clustering
techniques can be used on water consumption time series data as a tool to discover hidden
global consumption patterns on data, or as a subroutine to perform subsequent descrip-
tive of predictive tasks. Despite its role, significant limitations are observed in practice
(Section 4.4). In this context, coclustering and biclustering paradigms emerge, moved by
the need to consider the locality of the consumption patterns.

In Section 2.2.2, coclustering is presented as a tool to exhaustively partition the user and
time space, resulting in a collection of subspaces in which each user or time point belongs
to exactly K partitions, forming a checkerboard structure. However, despite its relevance
to discover subspaces of users with homogeneous consumption values at specific time
points, coclustering presents drawbacks that highly impact its applicability to mine relevant
water consumption profiles. First, coclustering disregards the possibility of associating
multiple patterns with an user’s consumption profile. Moreover, the structure imposition
and the need for specifying the number of subspaces can easily lead to the discovery of
solutions with loose homogeneity. Furthermore, the available coclustering algorithms were
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not designed to deal with time series data. Thus, do not consider the temporal contiguity
of the time dimension, which causes the coclustering stance to discover users with similar
consumption values under non-sequential time points.

Biclustering in 
Water Consumption

Data

Biclustering
properties 

(Section 3.2)

Paradigm 
(Section 3.1)

Biclustering

Coclustering

Clustering

Hybrid

Principles 
(Section 3.3)

Homogeneity

Statistical
significance

Coherence

Structure

Noise

Sparsity

Positioning

Assumption

Size and shape

Orientation

Time

Sensor

Constant

Additive

Time-Lagged

PostProcessing

PreProcessing

Normalization

Discretization

Granularity

Data Cleaning

Sorting

Filtering

Tasks

Predictive

Descriptive

Quality

Space

Time

Mode

Figure 4. Taxonomy of Biclustering-based data analysis on water demand data: structured view on
the major biclustering paradigms, biclustering aspects affecting the analysis, and principles to design
and assess biclustering-based approaches.

To address the previous constraints of clustering and coclustering stances, we now in-
troduce the unique opportunities brought forth by the application of time series biclustering
to water consumption data analysis. Biclustering’s inherent flexibility allows the discovery
of subspaces with arbitrary shape, size, and positioning that satisfy a well-defined homo-
geneity criteria. When working with time series consumption data, biclustering approaches
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are generally enhanced with two principles: (1) contiguity on the columns, corresponding
to samples taken in consecutive instants of time, which identify coherent consumption
patterns shared by a group of users; and (2) meaningful time lags between users to capture
misaligned water consumption profiles.

3.2. Biclustering Properties and Their Impact on the Pattern Mining Water Consumption Data

Biclustering-based searches are highly dependent on properties that establish the char-
acteristics of the found biclusters and the following strategies adopted to take advantage
of the biclustering solutions to tackle water consumption tasks. This section provides a
comprehensive view of how the biclustering search settings impact the discovered pat-
terns and places principles for the adequate parameterization in accordance with the
targeted problem.

3.2.1. Biclustering Coherence

The coherence of consumption values within each bicluster can yield different forms,
leading to the discovery of different patterns.

Definition 4. Given user-time consumption data A, with a set of users X = {x1, . . . , xn} and
time points Y = {y1, . . . , ym}, a subspace B = (I, J) (where I ⊆ X, J ⊆ Y) is a bicluster with
constant patterns on users iff ∀xi∈I,yj∈J aij = cj + ηij where cj, ηij ∈ R for numerical consumption
values and ∀xi∈I,yj∈J aij = ci where cj ∈ L for discrete consumption data.

Let r be the amplitude of consumption values of the input data. The coherence strength of
a bicluster is determined by allowed deviations from expectations, i.e., ηij ∈ [−δ/2, δ/2] where
δ ∈ [0, r]. In the context of nominal or ordinal consumption from a set of options L, aij = cj where
cj ∈ L.

A bicluster with constant patterns on rows, also referred as bicluster with constant
patterns on columns, is a subspace where the users have identical consumption across a
subset of sequential time points. The strength of coherence defines the tolerated deviations
from the expected constant values between the users. These subspaces are useful for
identifying meaningful water consumption profiles during time periods.

Definition 5. Given user-time consumption data A, with a set of users X = {x1, . . . , xn} and
time points Y = {y1, . . . , ym}, a subspace B = (I, J) (where I ⊆ X, J ⊆ Y) is an additive bicluster
with patterns on users iff ∀i∈I,j∈J aij = cj + γi + ηij where cj, ηij ∈ R and γi ∈ R is the shifting
factor for user i ∈ I.

Additive biclusters, as defined in Definition 5, are a relaxed variation of the biclusters
with constant values on rows, as they accommodate shifting patterns. An illustrative
example is provided in Figure 3. Factors such as the number of household members
can influence the amount of water consumption, despite the possibility of having similar
consumption dynamics, making it impossible to reveal under a strict constant assumption.
This type of coherence is advisable when the goal is to identify comparable consumption
dynamics, while allowing for consumption shifts.

Definition 6. Given user-time consumption data A, with a set of users X = {x1, . . . , xn} and
time points Y = {y1, . . . , ym}, a subspace B = (I, J) (where I ⊆ X , J is a collection of contiguous
time points ⊆ Y per row i ∈ I) is a time-lagged bicluster iff ∀i∈I ai,Ji = P where P is the pattern
of the bicluster.

Finally, time-lagged biclusters, as introduced in Definition 6, enable the discovery
of the same consumption pattern amongst households which might not necessarily be
temporally aligned. Time-lagged consumption patterns are particularly interesting to
consider in cases where time misalignments are expected, such as holiday accommodations
due to people checking in and out on different days. When working with finer time scales,
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the lags can further accommodate coherently misaligned daily schedules. An illustrative
example of a time-lagged bicluster is provided in Figure 5.

Figure 5. A bicluster with time-misaligned consumption patterns (time-lagged bicluster).

3.2.2. Biclustering Structure

Biclustering algorithms allow placing constraints that influence the biclustering struc-
ture, conditioning the number, size, shape, and positioning.

Coherence assumptions and quality thresholds play a significant role in the biclusters’
structure. Relaxed coherence assumptions naturally tend to lead to larger biclusters as the
probability of finding less restrictive patterns increases. Furthermore, some biclustering
algorithms allow the user to specify additional constraints, such as bounding the maximum
number of subspaces discovered and their minimum and maximum size.

The amount of noise tolerated per pattern is also a property that affects the restrictive-
ness of the search and thus the biclustering structure. The desired number and shape of the
discovered water consumption patterns depends on the subsequent task. When performing
biclustering to support water consumption profiling, it makes sense to focus on a smaller
number of larger patterns that are the households’ principal representative water consump-
tion patterns. However, suppose biclustering is used as a subroutine for other analytic
tasks (e.g., predictive tasks). In that case, it may be essential to use a complete biclustering
solution with comprehensive number of consumption patterns for all/most users.

Similarly, the positioning constraints on the algorithms can heavily impact the struc-
ture of subspaces. For instance, as seen in Section 2.2.2, the main difference between
coclustering and biclustering approaches relies on the rigid positioning of the patterns
placed by coclustering algorithms. Coclustering algorithms obey two major positioning
constraints: (1) exhaustive constraint on both the user and time-spaces (i.e., no user or
time point is left out of a subspace); and (2) no overlapping between subspaces (i.e., each
consumption data point does not belong to more than one subspace). The strict checker-
board/block coclustering structure, despite restrictive, yields inherent properties of interest,
such as guaranteeing each user is associated with a pattern. On the other hand, biclustering
solutions generally assume more flexible positioning, eventually allowing for arbitrarily
high overlaps between subspaces (e.g., Figure 2). In the context of water consumption
time series, allowing overlap means that a consumption data point may belong to more
than one subspace, which is reasonable since one user may share a similar consumption
behavior with a group of other users during a sequence of time points, but sharing a
different consumption profile with other users in a different time period.

3.2.3. Biclustering Quality

The tolerance to noise and missing values is an additional relevant homogeneity aspect
to consider when selecting a biclustering algorithm.

The existence of missing values and incorrect/noisy values is common in water con-
sumption data produced by telemetry systems and can be caused by multiple factors, such
as interference and sensor malfunctioning. Biclustering algorithms may permit a confined
amount of missing elements within the biclusters, allowing a user to be grouped with
others with similar consumption patterns, even with missing values. Similarly, tolerating
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an established amount of noise allows discovery groups of users who do not follow the
water consumption pattern perfectly.

In this context, allowing biclustering solutions to accommodate noisy and missing
values is valuable to discover patterns of interest that could be caused by data collection
issues and would not be found otherwise.

Definition 7. The quality of a bicluster is defined by the tolerated type and amount of noisy and
missing elements. Given a user-time consumption data A and a bicluster (I, J) with elements aij,
then: (1) deviations on the expected consumption, ηij, can be bounded, |ηij|<ε− δ

2 ; and (2) the

average error of a single bicluster can be bounded,
(

1
|I||J| ∑u∈U ∑i∈I |ηij|

)
< ε− δ

2 .

As introduced in Definition 7, the level of tolerated noise and missingness can be es-
tablished. The allowance naturally impacts the size and amount of the recovered biclusters.
The looser the allowance (high ε), the larger the discovered consumption patterns, and the
stricter the allowance (low ε), the smaller the retrieved patterns.

3.2.4. Biclustering Statistical Significance

Subspaces with good homogeneity levels can appear by chance in the water consump-
tion input data. Given the high dimensionality of the data, a similar consumption profile
between some users can occur by chance, especially when considering small biclusters with
few users during a short time sequence.

To address this problem, some biclustering searches impose that the retrieved biclus-
ters deviate from expectations to guarantee that the locally found shared consumption pat-
terns are statistically significant. In other words, they ensure that the probability of a given
subspace of consumption to occur against a null rating data model is unexpectedly low.

For instance, as proposed by Madeira et al. [34], the statistical significance of a bicluster
B = (I, J) with constant consumption values on rows can be obtained by computing the tail
of the binomial distribution P, which gives the probability of an event with probability p
occurring k or more times in n independent trials: P = ∑n

j=k pj
B(1− pB)

n−j. The statisti-
cal significance of the bicluster B is the p-value(B), which is computed by obtaining the
probability of a random occurrence under H0 of the consumption pattern pB, k = |I| − 1
times in n = |R| − 1 independent trials, where I is the number of users in B, and |R| is
the total number of users in the input data. Under simplified assumptions, the probability
of a consumption pattern pB, is adequately modeled by a first-order Markov Chain, with
state transition probabilities obtained from the values in the corresponding time points in
the matrix.

Under non-constant coherence assumptions and noise robustness, the previous statisti-
cal significance should be extended as the probability of the consumption patterns changes
(see [40,41] for details).

Statistical assessments are essential to measure and minimize the risk of discovering
consumption patterns by chance (false negatives) without increasing the possibility of
excluding relevant biclusters (false positives).

3.3. Principles for Biclustering-Based Time Series Analysis on Water Consumption Data

This section introduces principles to perform practical biclustering-based analysis on
water consumption time series data. We start by presenting data preprocessing options
and discussing how it affects the discovered patterns. After that, we focus on the role of
postprocessing techniques and disclose principles to perform subsequent tasks with the
biclusters. We conclude by discussing specific examples of how water management entities
can take advantage of the biclustering analysis for practical scenarios.

Data preprocessing is crucial to clean and prepare data for practical biclustering
analysis. Popular preprocessing techniques include filtering users, treating missing values,
smoothing (removing noise), normalizing, discretizing, and aggregating/individualizing
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consumption data to perform subsequent descriptive and predictive analysis at coarser
and finer granularity level.

Occasional errors may occur when collecting the water consumption data, leading to
noise, missing values, and outliers. In order to perform data cleaning, filtering time series
containing missing values or outliers may be considered a good strategy, especially in the
presence of a high number of time series. However, removing time series may compromise
the analysis with a smaller dataset. Usually, to deal with this tradeoff, a valid option is to
establish a threshold of consecutive missing values, fill the missing values in the time series
below the threshold, and remove the remaining ones [57].

When the dataset contains users that consistently present consumption values signifi-
cantly higher/lower than other users (e.g., households with different sizes), normalization
can be used to compensate for these systematical differences and highlight the similarities
and differences in the consumption profiles. Additionally, in the presence of outliers, a
smoothing algorithm can act as a low-pass filter to mitigate the impact of outliers. It may
be necessary to discretize data, narrowing the range of expression values to a set of discrete
values, depending on the biclustering algorithm [35].

Biclustering may be applied to discover patterns in various granularity levels, consider-
ing the space and time dimensions. Focusing on the spatial dimension, water consumption
telemetry can be analyzed at a finer level, with individual time series for each end-user,
or at a more high-level perspective, aggregating the data to analyze, for instance, water
consumption in each household, building, or neighborhood. It is also possible to individu-
alize/aggregate time series data using the time dimensions, creating different perspectives
of the water consumption (e.g., hour, day, week records).

After applying biclustering to water consumption data, depending on the restrictive-
ness of its search and parameterization, the solution can yield many consumption patterns,
making its analysis challenging. Given this, postprocessing techniques may need to be
applied to reduce the solution into a suitable size for analysis. Postprocessing methodolo-
gies for biclustering usually comprise the usage of numerical and statistical criteria to filter
and sort biclusters. For instance, the statistical significance of the discovered consumption
profiles may be used as a filter, ensuring their quality and validity.

Besides the role of biclustering solutions in promoting detailed descriptive analysis,
they can also be used for other subsequent tasks, including effective predictive analysis
of water consumption profiles, for instance, to predict the size of a household. When
labels/ground truth about the users are available, biclusters aid in transforming time-series
data into tabular, multivariate datasets to train predictors [58–60]. This can be done, for
instance, by using a similarity metric that measures how well each bicluster represents the
user’s consumption profile and, as a result, obtain a similarity matrix to serve as input for
predictive models. In Figure 6 we illustrate the process of transforming water consumption
time series into multivariate tabular data.

Transform

1 ... ... 0
1 ... ... 1
1 ... ... 0

0.23 ... ... 1
0.31 ... ... 1

x1
x2
x3
x4
x5

p1 p2 p3 c
1 2 3 4 3 0
5 3 3 4 3 1
5 5 3 4 3 0
5 1 2 1 2 1
1 2 1 4 2 1

x1
x2
x3
x4
x5

y1 y2 y3 y4 y5 c

Figure 6. Pattern-centric transformation to map time series data onto multivariate data, obtained by
comparing end-users against the found biclusters.

The consumption patterns unveiled by the principled application of biclustering
provides relevant information to water management entities, supporting data-driven oper-
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ational, tactic, and strategic planning. Bellow we comment how biclusters can be used for
practical scenarios, in particular, focusing on two main questions:

How can these results contribute to reduce water consumption in a locality?
Biclusters provide comprehensive information about statistically significant water

consumption dynamics of end-users. This means that entities can take advantage of this
information to reduce water consumption. First, there is the possibility to focus on patterns
satisfying specific properties of interest to reveal users with both inefficient and efficient
consumption patterns, therefore providing detailed and informed consumption feedback to
consumers for promoting behavioral changes. Second, the consumption patterns provide
an effective way of grouping users on the basis of their consumption profiles for tailored
initiatives, while addressing clustering limitations. Third, consumption patterns that highly
deviate from the expected consumption profile can be further investigated to potentially
unravel background leakages and sensor faults. Moreover, biclusters can also guide
predictive domain tasks, as previously highlighted in this section. Such predictive stance
can aid consumption forecasts per household to dynamically adjust water prices, as well as
other predictive tasks (e.g., predicting active appliances).

How can these patterns be used to optimize the water infrastructure?
Although this work focuses on end-user consumption data, a similar analysis could be

performed with data from (heterogeneous) sensors deployed throughout the water supply
network. The discovered patterns would allow to evaluate the dynamics of water demand
in different locations of the network that entities can take advantage to automate the
management of the network (e.g., opening and closing of valves). Moreover, an integrative
analysis of water consumption patterns with pressure signals within the network can be
used to detect burst leakage dynamics and additional deviant phenomena [61].

4. Case Study: Water Distribution Network of Quinta Do Lago

Using a water distribution network from a tourist and residential resort located in the
south of Portugal, this section experimentally assesses the role of the biclustering task in
aiding the descriptive and predictive analysis of water consumption profiles. To this end,
we perform exploratory analysis of water consumption profiles using both clustering and
sub-space clustering approaches, identifying the benefits and limitations of each approach.
In particular, this section tackles the following research questions:

• RQ1. Are clustering approaches adequate for water consumption profiling from
time series data? What are their major limitations?

• RQ2. Does coclustering, as a more flexible clustering approach, aid the clustering
analysis of water consumption data?

• RQ3. Is biclustering able to retrieve novel actionable water consumption patterns? Can
biclustering address the established shortcoming of clustering and co-clustering tasks?

• RQ4. Which principles should be placed on the design and application of biclus-
tering approaches for an effective descriptive and predictive analysis of water con-
sumption profiles?

4.1. Dataset

The data used in this work corresponds to water consumption time series from the
water distribution network of Quinta do Lago, located in south Portugal. Quinta do Lago
is a tourist and residential resort, with around 6,500,000 m2 of land, varying from 2000 to
14,000 inhabitants in winter and summer, respectively, creating a relevant water demand
seasonal variation. The WDN, managed by InfraQuinta, supplies 1.7 mm3/year of water
mainly to domestic consumers and hotels. The consumption data was measured by a
telemetry system every hour at each of the around 2170 end-users., during the entire year
of 2017. Figure 7 shows and overview of Quinta do Lago’s WDN.
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Figure 7. Water Distribution System of Quinta do Lago. (Adapted from [61]).

4.2. Experimental Setting

The CCC-Biclustering algorithm (http://homepage.tudelft.nl/c7g5f/software/
biggests2/ [35], accessed on 11 May 2022) [34,62], the state-of-art algorithm to discover all
maximal contiguous column coherent biclusters (CCC-Biclusters) in linear time, is selected.
CCC performs an exhaustive yet efficient space search of temporal patterns with param-
eterizable quality. e-CCC and LateBiclustering extension [33,40] further accommodates
misalignments in both amplitude (i.e., value shifts) and time (i.e., lags). To determine
the statistical significance of each discovered bicluster, statistical tests proposed in [41]
were adopted.

For comparison purposes, we also cluster the data using traditional clustering ap-
proaches, namely hierarchical clustering and DBA K-means. For the hierarchical clustering,
we consider agglomerative searches with average linkage and Dynamic Time Warping
(DTW) (https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html [63], accessed
on 11 May 2022) [26] as the target elastic distance metric. As for the K-means, we used
the variant with DTW Barycenter Averaging (DBA) (https://tslearn.readthedocs.io/ [64],
accessed on 11 May 2022) [29] where the centroid (barycenter) is the one that minimizes the
sum of squared DTW distance to the series in the cluster. The usage of DTW as a distance
metric is used to decrease the penalization of water consumption differences caused by
inherent temporal misalignment.

4.3. Data Preprocessing

Before proceeding with the target water consumption data analysis, essential prepro-
cessing steps are undertaken: (1) retrieval of descriptive statistics (e.g., minimum, median,
standard deviation, and maximum of the values for each time period and overall dataset) to
support subsequent decisions; (2) identification of erroneous data (including missing values,
negative flows, outliers, duplicates); (3) cleaning and treatment of the erroneous data (e.g.,
linear interpolation for missing values); and (4) scaling, aggregation and dimensionality
reduction procedures to support the target task.

In this context, negative consumption entries related to sensor faults and water back-
flows were removed (1.4% of data). Other gross errors were detected: (1) exact duplicated
series; (2) different consumption values for the same sensor_id-datetime pair. For the
exact duplicates, we kept one of time series and removed its duplicates. The latter case
corresponds to incomplete consumptions of the same data, so we opted for summing the

http://homepage.tudelft.nl/c7g5f/software/biggests2/
http://homepage.tudelft.nl/c7g5f/software/biggests2/
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://tslearn.readthedocs.io/
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reading values, creating a single time series for each sensor_id-datetime pair. We found
that around 3% of the reading values were missing, probably caused by sensor faults and
changes in the network dynamics caused, for instance, by interventions. We categorized
the missing data into two types, considering the amount of sequential time points missing:
(1) short duration (≤3 h); (2) long duration (>3 h). For the short duration missing values,
we used a linear interpolation technique to fill the missing entries. Regarding the long
duration cases, we decided to discard those time series from the dataset.

After performing the previously mentioned data cleaning procedures, the final dataset
encompasses hourly water consumption from 728 sensors from 1 Juanuary 2017 until 31
December 2017, totalling 6,377,280 data points. Figure 8 shows the distribution of the water
flow values. It is clear the existence of sensors that consistently measure higher water flows.
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Figure 8. Distribution of the flow rate values at InfraQuinta, 2017.

To study the consumption pattern dynamics independently of the absolute consump-
tion values, we further scaled the data for each sensor,

zi =
xi −min(x)

IQR× 1.5−min(x)
,

where x is the sensor measurements, and zi the ith scaled value. This way, the data is
transformed into values between 0 and 1, with measurements superior to 1.5× interquartile
range (IQR) considered periods of maximum consumption. Figure 9 describes the data
before and after the transformation. Since the data was collected in a touristic resort,
periods without end-user consumption are expected as residents can have long periods
of absence (peak for near-zero flow rates). After normalization, there is a clear peak for
maximum consumption values, as high absolute values that considerably deviate from the
remaining consumption values were transformed to 1.
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Figure 9. Frequency of the flow rate measurements at InfraQuinta, 2017. (a) Absolute consumption
values. (b) Normalized consumption values.



Water 2022, 14, 1954 17 of 35

Moreover, using Piecewise Aggregate Approximation (PAA) as a dimensionality
reduction technique [65], we built daily, weekly and monthly consumption of the dataset to
scale up the similarity computation of the clustering algorithms. The different perspectives
of the same data (in the presence and absence of scaling and undervarying time scales) allow
us to have a broader view and possibly to discover unique insights in each perspective.

4.4. Clustering Analysis (RQ1)

We first report the analysis of the dataset using traditional clustering algorithms,
identifying important insights and highlighting major limitations.

Agglomerative Clustering. When performing agglomerative clustering in the unscaled
time series data, the results are heavily influenced by considerable differences in water flow
values measured by different sensors. Given this, agglomerative clustering of the unscaled
data allows us to possibly identify outliers of either sensors (households) or time periods.
When clustering the scaled data, the results are no longer dominated by the existence of
significant differences in the flow rate values between sensors, allowing a greater sensitivity
to discover ongoing temporal variations. We do not present the hierarchical clustering
results for the hourly data due to the quadratic computational complexity that makes it
incapable to deal with large time series. In Figure 10, we present the dendrogram obtained
when clustering sensors of the daily consumption dataset. Clustering the unscaled data
highlights sensors such as {976, 2133, 2054} that measure water demand for large end-users
(e.g., hotels, water irrigation systems). The dendrogram for the scaled data shows the
sensors can be naturally grouped into three clusters (orange, green, and red). Inspecting
the sensors in each cluster, we discovered: (1) the orange cluster corresponds to sensors
that generally did not register flow rates for the entire year; (2) the green cluster contains
sensors that mainly register relatively high and stable flow rate values during all days of
the year; (3) the red cluster contains the remaining sensors that predominately register
higher flow rate values during the Summer season. These natural clusters are consistent to
what is expected for a residential and tourist resort that is popular during Summer.

Figure 11 presents the dendrograms obtained when clustering the time dimension
of the daily consumption dataset. Upon clustering the unscaled data, we can visually
identify two clusters of days that naturally structure the data (orange and green), and a
day differing significantly from the remaining days in the green cluster. When inspecting
the days grouped in each cluster, we discover that days are (with rare exceptions) grouped
according to their ordinal position in the year, with the orange cluster mainly corresponding
to days between April 7 and September 27 (Spring and Summer seasons). When clustering
the scaled data, the visualization of the dendrogram does not expose natural partitions of
the days, as the distance between nodes is not significant.
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Figure 10. Hierarchical Clustering (Sensors Dimension) Dendrogram of daily consumption at In-
fraQuinta, 2017.
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Figure 11. Hierarchical Clustering (Time Dimension) Dendrogram of scaled daily consumption at
InfraQuinta, 2017.

K-Means. Clustering scaled water consumption time series with K-means(DBA) allows
to group consumption profiles that may be similar even distortions in the time axis. We
focus on the scaled consumption values, as the results for the absolute consumption value,
similarly to the hierarchical clustering results, are biased by heightened scale differences
in the consumption profiles. To perform K-means, the K value has to be pre-assigned,
affecting the clustering results. To define the optimal number of clusters to our data, we fit
49 models for a range of K values from 2 to 50 and calculated the Within-Cluster-Sum of
Squared Errors and Silhouette Scores [66] (Figure 12). From the obtained results, visually
deciding the K value from the Squares errors and Shilhoutte is not trivial, however, using
the knee point algorithm [67] in addition to a preference towards a trackable number of
clusters (to promote interpretability), K is fixed as 14.

Figure 13 shows the time series in each of the 14 clusters (in grey) and the barycenter
of each group computed with DBA (in blue). The daily consumption time series are, to
some extent, evenly distributed across the clusters with the smallest and largest cluster
having 10 and 153 time series, respectively. However, inspecting each cluster individually,
it is noticeable from the visualization that the cluster barycenters do not fully represent the
average consumption profile within the clusters. Moreover, the analysis of barycenters is
not informative as it is a hard task to make sense of the obtained consumption profiles.

Focusing, for instance, in the last cluster from the previous figure, Figure 14 indicates
the barycenter is not a good fit to represent the time series in the cluster. The calculated
barycenter shows four consumption peaks, with special relevance from April 7 to April 17
(Easter season), and from June 27 to September 1 (Summer season). Despite the barycenter
indicating a plausible group of end-users—users who only live in Quinta do Lago during
the Easter and Summer seasons—the cluster contains time series that clearly deviate from
this profile. It is clear the lack of cohesion and coherence between the time series in the
cluster, that can not be explained by time-axis distortions accommodated by the DTW
similarity measure, and thus, the obtained barycentre cannot be seen as a representative
consumption profile for the end-users within the cluster.

In summary, despite the relevance of the clustering stance, the following limitations
are observed:

1. Consumption behaviour is grouped across the entire time axis, neglecting local patterns;
2. Sensitive to noise and outliers requiring data transformations and cleaning procedures

which are frequently not sufficient;
3. Method-specific parameterization needs that considerably impact the clustering anal-

ysis, e.g., manually specifying the number of clusters in the case of K-means;
4. Limited to constant relationships between time series, not considering other meaning-

ful coherent consumption profiles explained by shifting, scaling and lagged factors.
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Figure 12. Optimal K for K-means clustering of scaled daily consumption at InfraQuinta, 2017.
(a) Distortions for each K (Elbow Method). (b) Average silhouettes scores for each K.
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Figure 13. K-means clusters and barycenters for the scaled daily consumption at InfraQuinta, 2017.
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Figure 14. K-means 13th cluster and barycenter for the scaled daily consumption at InfraQuinta, 2017.

4.5. Coclustering Analysis (RQ2)

To get deep insights into the usage of subspace clustering approaches, we study
how coclustering algorithms can be used to surpass traditional clustering limitations
regarding the clustering analysis of water consumption data. For this experiment, we use
the Spectral Coclustering algorithm [49] on the discretized water consumption time series
data. Discretizing the data allows for reducing the noise of the time series data, as we are
primarily interested in capturing patterns of general consumption trends. Moreover, as
subspace clustering algorithms allow to tolerate a predefined amount of noise, any possible
discretization problems resulting from inaccurately bounding the values close to the border
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of the predefined range may not impact the discovery of the patterns. Considering the
water flow distribution values of the scaled hourly dataset (Figure 9b), the consumption
data was discretized in accordance. To this end, five non-overlapping ranges are considered:
0, ]0,0.1], ]0.1,0.3], ]0.3,1[, 1, corresponding to Null, Low, Medium, High, and Very High
water flows, respectively, representing ordered consumption levels. Figure 15 illustrates
the daily consumption matrix after the discretized process.

Figure 15. Discretized daily flow rates at InfraQuinta, 2017.

The Spectral algorithm, simultaneously clusters both dimensions of a data matrix,
using singular value decomposition to decompose the original data matrix into a block
diagonal structure of N coclusters in the data. This means that the spectral coclustering algo-
rithm follows the classic coclustering assumption that every row and column in the matrix
belongs exclusively to one of the N coclusters. To decide the optimal value for the parame-
ter N we created 9 models varying the number of coclusters N = {2, 3, 4, 5, 10, 15, 20, 25, 30}
and evaluated the homogeneity of the resulting solutions. We use the Virtual Error (VE) [68]
as the target homogeneity measure, a popular measure that assesses how the rows of a
cocluster/bicluster follow the overall tendency within the bicluster as:

VE(B) =
1

|I| × |J|

|l|

∑
i=1

|J|

∑
j=1

∣∣âij − ρ̂j
∣∣,

where âij refers to the element in the ith row (sensor) and jth column (time period) after
standardization, and ρ̂ is the standardized pattern obtained by the mean of each column in
the subspace.

Figure 16 shows how the quality of the coclustering solutions is affected by the
parameter N for the daily, weekly and monthly discretized time series datasets.
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Figure 16. Homogeneity and number of coclusters (N) for the spectral Coclustering of scaled daily,
weekly, and monthly consumption at InfraQuinta, 2017.

The box plots from the previous figure, visually indicate that there is general tendency
for the average homogeneity of the coclusters to increase (smaller virtual errors) as the
number of coclusters increases. This result is expected since the more coclusters are found,
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the smaller their size and, as a result, more homogeneous. In Figure 17, we present how
the area (number of rows × number of columns) of the found coclusters evolves as the
number of coclusters N increases. Considering the homogeneity/size trade-off from this
visual analysis, we fixed the number of coclusters as 5, 10, and 10 for the daily, weekly, and
monthly datasets, respectively.
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Figure 17. Size of coclusters and number of coclusters (N) for the spectral Coclustering of scaled
daily, weekly, and monthly consumption at InfraQuinta, 2017.

Since the coclustering algorithm assumes a block-diagonal cocluster structure, with
each row and each column belonging to only one cocluster, the original datasets can be
rearranged according to the corresponding cocluster and visually reveal the coclusters
found as in Figure 18.
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Figure 18. Rearranged daily, weekly, and monthly consumption data matrices to reveal the coclus-
tering solutions (N = 5, N = 10, N = 10) at InfraQuinta, 2017. Each of the identified coclusters
are highlighted in red. Note that for the weekly and monthly datasets, we only highlight the valid
coclusters, as the algorithm did not find coclusters for all the users.

In Table 1 and Figure 19, we focus on the largest cocluster retrieved from each co-
clustering solution (daily, weekly and monthly granularities). Cocluster 0 in the daily
consumption dataset highlights 161 users with predominant coherent consumption along
the first 88 days of the year. Cocluster 2 of the weekly dataset groups 141 end-users from
the fifteenth week of the year (April 10) to the twenty-eighth week (July 16). Cocluster
1 of the monthly dataset groups 142 users within 3 months (May, June, and September).
One can observe that the coclustering algorithm does not consider the temporal contiguity
nature of the time series, as the algorithm does not restrict the search for patterns on
adjacent columns.

Table 1. Selected coclusters for each of the scaled datasets at InfraQuinta, 2017.

Dataset ID #Users #Time Points (First, Last)

Daily 0 161 88 (0, 87)
Weekly 2 147 15 (14, 28)

Monthly 1 142 3 (4, 8)
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Figure 19. Illustration of the selected coclusters (Cocluster 0, Cocluster 2, and Cocluster 1) found on
the daily, weekly, and monthly datasets at InfraQuinta, 2017.

Figure 20 shows the time series grouped in each of the selected coclusters (in grey).
When computing the DBA barycenters of the grouped time series (in blue), it becomes
clear the lack of coherency between the time series, as the clusters present time-series
that highly deviate from the barycenter. These preliminary results suggest the difficulty
of mining water consumption patterns using coclustering approaches as they generally
discard temporal contiguity, producing sub-spaced clusters lacking meaningfulness on the
time dimension.
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Figure 20. Coclusters and barycenters for the daily, weekly, and monthly dataset at InfraQuinta, 2017.

The major limitations of coclustering approaches for the analysis of water consumption
profiles can be summarized as follows:

• Coclustering approaches generally disregard temporal dependencies within and across
consumption signals, thus penalizing misalignments between coherent profiles as
well as the inherent consumption variability along time. It further discards tempo-
ral contiguity, and as a result, water consumption patterns are generally grouped
under non-sequential periods, limiting the interpretability and actionability of the
gathered patterns;

• Coclustering guarantees the discovery of subspaces that can be evaluated according
to a homogeneity measure, meaning that coclusters with low homogeneity can be
filtered before analysis. Nevertheless, there is the need to manually specify the number
of coclusters;

• Coclustering can discover groups of users with coherent consumption behavior under
some periods, not limiting the search for global consumption patterns. However,
coclustering assumes that each user is only associated with one consumption pattern,
disregarding the possibility of associating multiple patterns with an user’s consump-
tion profile. In addition, the partitioning of the time axis is restricting, preventing the
discovery of flexibly positioned subspaces with arbitrarily-high overlaps along the
time dimensions.

4.6. Biclustering Analysis (RQ3)

To answer the third research question, we now present a comprehensive biclustering
analysis applying the CCC-Biclustering algorithm to the water consumption data. Similarly
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to the Coclustering algorithm in RQ2, CCC-Biclustering learns from discrete time series
data, so the datasets used for this research question were also preprocessed in accordance.

Constant consumption patterns
Table 2 shows the results produced by biclustering water consumption data with

CCC assuming a constant relationship between series. CCC-Biclustering found, in linear
time, a considerable number of biclusters corresponding to constant consumption profiles
shared by a group of users in consecutive time points. For the daily, weekly, and monthly
dataset, we set a minimum of 20 users and 7, 4, and 3 time points per bicluster, respectively,
which we considered to be adequate minimum sizes for the patterns of interest, taking into
account the volume of each dataset (e.g., at least 20 users with coherent profiles during
a minimum of 7 days/4 weeks/3 months). Moreover, a minimum threshold of 20 users
allows the discovery of statistically significant biclusters despite having low support ( 3%
of the total number of users).

For the most part, CCC-biclustering found statistically significant biclusters (at 1%
significance level), with a large number of rows/users and columns/time points. Despite
being valid consumption profiles, we only consider as statistically significant the biclusters
whose probability of occurrence sufficiently deviates from the expectations against a null
data model.

Table 2. Properties of the biclustering solutions found assuming constant patterns at InfraQuinta, 2017.

Solution Post-Processed

Dataset (min #Users,
min #Time Points) #bics µ|I| ± σ|I| µ|J| ± σ|J| #bics p-Value

< 0.05
p-Value
< 1× 10−2

Daily (20, 7) 18,666 65.2 ± 43.5 26.0 ± 20.7 655 655 655
Weekly (20, 4) 1310 69.8 ± 65.9 9.4 ± 5.8 263 168 133

Monthly (20, 3) 221 50.7 ± 51.5 4.5 ± 1.5 94 23 10

To perform a closer analysis, we post-processed the biclustering solution by filtering
highly overlapping biclusters (>70%), avoiding redundancy of the patterns found. After
that, we kept only the biclusters with high statistical significance (p-value < 0.01) and sorted
them in descending order according to the length of the pattern (number of time points).
Finally, we selected one bicluster for each dataset and analyzed them in more detail. Table 3
describes the selected biclusters (with IDs 9964, 245, and 210) for each of the three dataset
after the post-processing process.

Bicluster 9966 reveals a group of 20 end-users who coherently changed from a moder-
ate water consumption to a low water consumption between November 28 and December
4. Bicluster 245 unveils a group of 27 users that, from July 31 until October 15, present a
high weekly consumption behavior and change for a moderate consumption from October
15 to October 29. Finally, Bicluster 210 presents a highly statistically significant pattern of
21 users that, for nine months, coherently display a pattern of not consuming any water in
February but gradually increasing consumption until April. Then, from April to October,
the 21 users present high consumption levels. Figure 21 visually depicts each of selected
constant biclusters.

Table 3. Constant biclusters picked for each of the datasets.

Dataset ID #Users #Time Points (First, Last) p-Value
Daily 9964 20 7 (331, 337) 0.0029

Weekly 245 27 13 (31, 43) 1.09 × 10−8

Monthly 210 21 9 (1, 9) 5.17 × 10−5

These results provide initial motivation on the role of constant biclustering to under-
stand water consumption behaviors between end-users by unveiling non-trivial coherent
patterns of water consumption supported by statistical significance.



Water 2022, 14, 1954 24 of 35

28 01
Dec
2017

0429 30 02 03

Time (day)

Null

Low

Medium

High

Very High

Co
ns

um
pt

io
n

Aug
2017

Sep Oct

2913 20 27 10 17 24 08 15 22

Time (week)

Null

Low

Medium

High

Very High

Co
ns

um
pt

io
n

Feb Mar
2017

Apr May Jun Jul Aug Sep Oct

Time (month)

Null

Low

Medium

High

Very High

Co
ns

um
pt

io
n

28 01
Dec
2017

0429 30 02 03

Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

um
pt

io
n

Aug
2017

Sep Oct

2913 20 27 10 17 24 08 15 22

Time (week)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

um
pt

io
n

Feb Mar
2017

Apr May Jun Jul Aug Sep Oct

Time (month)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

um
pt

io
n

Time (day)

En
d-

Us
er

0.0

0.2

0.4

0.6

0.8

1.0

(a) Bicluster 9964.

Time (week)

En
d-

Us
er

0.0

0.2

0.4

0.6

0.8

1.0

(b) Bicluster 245.

Time (month)

En
d-

Us
er

0.0

0.2

0.4

0.6

0.8

1.0

(c) Bicluster 210.

Figure 21. Illustration of the selected constant biclusters (Bicluster 9964, Bicluster 245, and Bicluster
210) found on the daily, weekly and monthly dataset. Consumption patterns on the first row, the user
consumption scaled time series on the second row, and the scaled data heatmap on the third row.

To access the coverage of the biclustering solutions, we analyzed the number of biclus-
ters found for each of the end-users. Figure 22 shows that, despite the CCC-biclustering
having found patterns for most users, there are still end-users for which the algorithm
did not find any pattern with the established settings due to deviant water consumption
behavior. Biclustering does not force all the objects and time points to be present in at
least one bicluster. This can be seen as a possible drawback of this type of analysis if water
consumption profiles that exhaustively cover all end-users are expected. Nevertheless, this
disadvantage can be tackled by performing a more flexible search using less restrictive
settings (e.g., allowing an acceptable amount of noise in the pattern) or multiple biclus-
tering searches with different coherence assumptions (e.g., presence of lags) and settings
(e.g., different temporal granularities, scaled and unscaled consumption data).
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Figure 22. Number of patterns found for each user assuming constant patterns at InfraQuinta, 2017.

Noise robustness
Users with concordant consumption profiles might fail to be included in the same

bicluster due to noise, e.g., sporadic deviations to regular water consumption. Noise may be
further associated with discretization needs, introduced by a poor choice of discretization
thresholds or an inadequate number of discretization symbols. Given this, we study the
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discovery of CCC-Biclusters with approximate consumption patterns, biclusters where
a certain number of errors is allowed in the consumption pattern. Table 4 describes the
obtained biclustering solutions when allowing one pattern error per end-user. As expected,
since we are performing a less restrictive search, one can check that the number of biclusters
(as well as its size) per solution has increased compared to the solutions not allowing errors.

Table 4. Properties of e-CCC biclustering solutions with tolerance to noise under a constant pattern
assumption at InfraQuinta, 2017.

Solution Post-Processed

Dataset (min #Users,
min #Time Points) #bics µ|I| ± σ|I| µ|J| ± σ|J| #bics p-Value

< 0.05
p-Value
1 × 10−2

Daily (20, 7) 786,232 72.3 ± 44.8 28.9 ± 21.7 2347 839 744
Weekly (20, 4) 55,073 70.1 ± 63.3 11.7 ± 6.6 4304 279 160

Monthly (20, 3) 6441 57.5 ± 59.8 5.6 ± 1.8 942 18 6

After performing the post-processing procedure, we chose one statistically significant
bicluster from each of obtained solutions for illustrative purposes. In Table 5 we describe
the selected noise-allowing biclusters. Bicluster 197684 grouped a set of 20 users that mainly
did not consume water for 65 consecutive days (July 25 to September 27). Visually depicting
this bicluster in Figure 23, we can confirm the existence of consumption time series from
a user that does not fully respect the consumption pattern that represents the bicluster.
Regarding the bicluster 33405 found on the weekly dataset, from May 8 to October 23,
27 users showed a coherent high consumption until October 15 and shift for a medium
consumption until October 23. Comparing Bicluster 33405 with the Bicluster 245 obtained
when not allowing any noise, bicluster 33405 represents the same consumption profile but
for a longer period of time. Finally, Bicluster 412 reveals 22 users with an unexpectedly
complex consumption profile with periods of Null, Low, Medium, and High consumption
for 10 months (from February to November).

Table 5. Constant biclusters tolerating noise picked for each of the temporal granularities.

Dataset ID #Users #Time Points (First, Last) p-Value

Daily 197,684 20 65 (206, 270) 2.86 × 10−125

Weekly 33,405 47 25 (19, 43) 1.83 × 10−9

Monthly 412 22 10 (1, 10) 8.40 × 10−6

Coherent patterns with consumption shifts
Non-constant patterns are advised when the goal is to identify comparable consump-

tion dynamics yet with the allowance of consumption shifts. For example, shifting factors
on coherent consumption patterns can be explained by differences on the size of the house-
hold in spite of identical habits. In this experiment, using e-CCC, we allow for shifting
patterns up to L levels to potentially find maximal biclusters that would not be found under
constant assumption due to different consumption values. The value of L is an integer
between 1 and 4 to accommodate all five consumption symbols/levels.

Table 6 summarizes the biclustering solutions obtained for each search setting. The
number of biclusters found does not necessarily increase as the value of L increases, but
the average number of columns tends to increase.
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Figure 23. Illustration of the selected constant biclusters allowing noise (Bicluster 197684, Bicluster
33405, and Bicluster 412) found on the daily, weekly and monthly dataset. This figure shows the
consumption patterns on the first row, the user consumption scaled time series on the second row,
and the scaled data heatmap on the third row.

Table 6. Properties of the biclustering solutions found assuming shifted factors at InfraQuinta, 2017.

Solution Post-Processed

Dataset (min #Users,
min #Time Points) L-Shift #bics µ|I| ± σ|I| µ|J| ± σ|J| #bics p-Value

< 0.05
p-Value
< 1× 10−2

Daily (20, 7)

1 38,933 87.0 ± 51.8 23.6 ± 16.4 625 593 588
2 46,308 111.4 ± 64.6 25.4 ± 17.1 383 340 330
3 32,669 124.6 ± 63.8 29.6 ± 21.9 367 332 323
4 16,033 114.8 ± 66.6 37.6 ± 26.5 345 310 301

Weekly (20, 4)

1 2828 76.7 ± 74.0 8.2 ± 4.8 404 193 178
2 2743 96.2 ± 90.6 8.3 ± 5.0 369 153 131
3 1677 109.4 ± 97.5 10.0 ± 6.7 360 144 123
4 1391 84.5 ± 82.13 10.9 ± 7.0 357 141 121

Monthly (20, 3)

1 372 56.3 ± 57.0 4.1 ± 1.4 113 33 21
2 318 65.2 ± 69.4 4.2 ± 1.4 108 27 18
3 251 60.3 ± 65.7 4.5 ± 1.5 108 30 21
4 245 55.4 ± 55.8 4.5 ± 1.6 108 30 21

For this experiment, we focused on the biclustering solutions obtained when allowing
the maximum shifts in the pattern (L = 4) and selected one statistically significant bicluster
per solution. Table 7 presents the biclusters selected for each of the datasets. For example,
Bicluster 141 reveals 23 users that, from December 24 to December 30, coherently had a
consumption pattern of decreasing their consumption on December 25. In Figure 24, we
can see the users in the biclusters do not necessarily have the same absolute consumption
values but instead share the consumption profile shifted by up to L symbols. Bicluster 478
reveals that 26 users that start on July 24 have a constant consumption until October 9 and
then decrease their consumption until October 29. Finally, Bicluster 239 corresponds to the
same bicluster 210 found under the constant assumption for the monthly dataset, showing
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that allowing shifting factors is a more flexible type of search that can also accommodate
constant biclusters.

Table 7. Biclusters accommodating shifting factors (L = 4) picked for each of the datasets.

Dataset ID #Users #Time Points (First, Last) p-Value

Daily 141 23 8 (358, 364) 0.002
Weekly 478 26 14 (30, 43) 2.27 × 10−9

Monthly 239 21 9 (1, 9) 5.17× 10−5

10
Dec
2017

1711 12 13 14 15 16

Time (day)

Null

Low

Medium

High

Very High

Co
ns

um
pt

io
n

Aug
2017

Sep Oct

Time (week)

Null

Low

Medium

High

Very High

Co
ns

um
pt

io
n

Feb Mar
2017

Apr May Jun Jul Aug Sep Oct

Time (month)

Null

Low

Medium

High

Very High

Co
ns

um
pt

io
n

10
Dec
2017

1711 12 13 14 15 16

Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

um
pt

io
n

Aug
2017

Sep Oct

Time (week)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

um
pt

io
n

Feb Mar
2017

Apr May Jun Jul Aug Sep Oct

Time (month)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

um
pt

io
n

Time (day)

En
d-

Us
er

0.0

0.2

0.4

0.6

0.8

1.0

(a) Bicluster 141.

Time (week)

En
d-

Us
er

0.0

0.2

0.4

0.6

0.8

1.0

(b) Bicluster 478.

Time (month)

En
d-

Us
er

0.0

0.2

0.4

0.6

0.8

1.0

(c) Bicluster 239.

Figure 24. Illustration of the selected biclusters assuming shifting factors (Bicluster 141, Bicluster
478, and Bicluster 239) found on the daily, weekly and monthly dataset. This figure shows the
consumption patterns on the first row, the user consumption scaled time series on the second row,
and the scaled data heatmap on the third row.

Time-lagged consumption patterns
Delays in water consumption profiles are expected in this type of data. We are

analyzing data from a tourist resort with possibly different consumers checking in and
out during different times of the year. The time-lagged biclustering approach identifies
end-users with similar consumption patterns starting at different time points. In Table 8 we
describe the biclustering solutions collected using a biclustering search to detect unbounded
time-lagged patterns.

Table 8. Properties of the biclustering solutions found assuming unbounded time lagged patterns at
InfraQuinta, 2017.

Solution Post-Processed

Dataset (min #Users,
min #TimePoints) #bics µ|I| ± σ|I| µ|J| ± σ|J| #bics p-Value

< 0.05
p-Value
< 1× 10−2

Daily (20, 7) 15,844 56.1 ± 51.3 26.5 ± 21.8 1471 1471 1471
Weekly (20, 4) 1738 60.6 ± 61.9 10.2 ± 6.3 393 393 393

Monthly (20, 3) 243 61.3 ± 66.2 4.8 ± 1.6 99 98 98
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Table 9 selects illustrative time-lagged biclusters for the daily, weekly, and monthly
dataset. Bicluster 8476 reveals 32 users that for 112 days show a time-lagged consumption,
increasing from moderate to high levels after the first day. Visually depicting this bicluster
in Figure 25a), we can see the consumption time series in the bicluster do not necessarily
coincide in the same time period. Bicluster 965 unveils 44 users that, for 29 weeks, present
a coherently time-lagged consumption pattern. Finally, Bicluster 120 shows 25 users that
coherently increased the consumption from medium to high after one month for 9 months
(dispersed for the entire year due to time-lags).

Table 9. Time lagged biclusters picked for each of the datasets.

Dataset ID #Users #Time Points (First, Last) p-Value

Daily 8476 32 112 0 *
Weekly 965 44 29 1.26 × 10−121

Monthly 120 25 9 1.65 × 10−9

* The value is too small.
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Figure 25. Illustration of the selected biclusters allowing time-lagged patterns (Bicluster 8476, Biclus-
ter 965, and Bicluster 120) found on the daily, weekly and monthly dataset. This figure shows the
consumption patterns on the first row, the user consumption scaled time series on the second row,
and the scaled data heatmap on the third row.

Depending on the considered time scale, time lags can be meaningfully considered
to accommodate: (i) coherent hourly misalignments on the use of water appliances; (ii)
daily differences explained by job shifts or daily preferences on the use specific appliances
(e.g., washing machine); and (iii) long-term on-site/vacation periods.

Statistically significance consumption patterns
Figure 26 shows the biclustering ability to find statistically significant relations in

consumption time series data. We present the distribution of the p-values for the found
biclusters on the daily, weekly, and monthly dataset with respect to the size of the biclusters.
Visually, we can see a clear tendency for larger biclusters to be more statistically significant.
Moreover, the biclusters discovered for the weekly and monthly dataset tend to be less
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significant than daily consumption biclusters, which is expected since the probability
of the biclusters occurring randomly is higher due to the less number of time points in
those datasets.

This analysis shows disparities on the statistical significance of the found consumption
patterns, motivates its assessment when performing biclustering analysis in consumption
data to support the results and prevent biased conclusions.
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Figure 26. Statistical significance vs. size of biclusters found assuming constant patterns at In-
fraQuinta, 2017.

4.7. Guiding Biclustering Principles for Water Consumption Tasks (RQ4)

From the previous experiments, we can enumerate the following potentialities of
biclustering water consumption data to categorize consumption profiles:

• Detection of local consumption profiles, surpassing the limitation of traditional time
clustering methods that only unveil global patterns;

• Efficient search for patterns with multiple coherence assumptions and quality, instead
of only assuming constant relationships between time series;

• Retrieval of well-defined consumption patterns with solid guarantees of coherence
and quality, in contrast with high variability of clustering consumption profiles;

• Flexible pattern-based search that can be customized to guide and restrict the search,
preventing redundant consumption patterns and ensuring efficient searches.

Besides the previously listed benefits, pattern-based biclustering can also be further
explored to aid water consumption data analysis in the following directions: (1) Biclustering
for imputing missing values and denoising water consumption data. Biclustering can be
applied in the presence of missing/erroneous data as it can tolerate a parameterizable
bound of missings/noise [69], a typical need in the presence of sensors subject to failures.
In addition, biclustering can be used to detect and correct potential noisy data values [70].
(2) Handling spatio-temporal heterogeneous WDN data. Biclustering and triclustering
techniques can be used not only with univariate and multivariate time-series consumption
data, respectly, but also with spatio-temporal data [56]. Moreover, subspace clustering
can integrate heterogeneous data, for instance, context meteorological information that
can allow the extraction of context-sensitive patterns [71]. (3) Biclustering for feature
extraction. Biclustering can be used to improve classification and regression models of
water consumption by using it as a subroutine technique for the selective nature of the
biclusters to evidence relevant and informative information [58,72].

Biclustering can in fact be used as a subroutine to transform the time series data space
into a multivariate data space that can be used to improve the predictive performance and
interpretability of clustering, regression and classification models on water consumption-
related tasks. As previously suggested in this work, subspace clustering solutions can
be aggregated with the goal of creating more diverse and complete solutions of patterns.
Having this idea in mind, biclustering solutions produced from different settings can
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be integrated, including: (i) biclustering solutions with different pattern assumptions
(Constant, Noise, Shifts, and Time-Lagged); (ii) biclustering solutions with in raw and
scaled water consumption data; and (iii) union of biclustering solutions produced under
different time granularities (Daily, Weekly, and Monthly). In Figures 27 and 28 we show
how the idea of aggregating biclustering solutions can allow to attain more patterns for
each user, surpassing the previously identified limitation of biclustering not ensuring the
discovery of at least one pattern for each user.
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Figure 27. Number of patterns found for each user when combining the biclustering solutions with
different pattern assumption at InfraQuinta, 2017.
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(b) Constant with Noise.
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(c) Coherent with Shifts.
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Figure 28. Number of patterns found for each user when combining the biclustering solutions
obtained from datasets of different granularity at InfraQuinta, 2017.

Focusing on the aggregated solution obtained by combining the solutions with differ-
ent pattern assumptions for the daily dataset (Figure 27a), Different entities responsible
for water management could use this time series data to predict the number of people that
compose the households. The daily time series data can be transformed into a subset of
features corresponding to the patterns revealed by the biclustering algorithm, and this new
tabular dataset can be used as input for the predictors. In Figure 29, for demonstration
purposes, we transformed the daily time series data into a smaller multivariate dataset by
taking advantage of the aggregated biclustering solution. Each variable in the produced
multivariate data space corresponds to a water pattern consumption and the observed
values capture how well a given sensor/end-user is described by a given pattern using
a distance or similarity measure. In this example, we compared the users and biclusters
by calculating an euclidean-based similarity between the bicluster pattern and the user’s
consumption value for the respective time periods. The usage of biclusters to improve
the predictive capability of models has been showing promising results, particularly in
clinical domains [59], motivating its application in other domains, including for water
consumption tasks.
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Figure 29. Tabular data obtained by comparing end-users with discovered bicluster.

5. Conclusions

In this study, we motivate the relevance of biclustering approaches for the analysis
of water consumption profiles using WDN sensor data and further establish a principled
view on how biclustering approaches can be parameterized to different ends. Biclustering
approaches are suggested to find statistically significant, actionable, and interpretable
consumption patterns, as they offer unique advantages, surpassing the limitations of tradi-
tional clustering techniques. To our knowledge, this is the first work applying biclustering
on water consumption data.

We performed a comprehensive time series clustering analysis on a real WDN case
study, comparing the actionability of the results obtained using both clustering and sub-
space (coclustering and biclustering) approaches. Experimental results on water consump-
tion data, acquired from real-world 2170 different households located in a resort, evidence
the potentialities of biclustering in finding statistically significant consumption profiles.
Biclustering detects local consumption patterns (i.e., users with coherent consumption
during a particular time period), which are inaccessible for peer clustering techniques.
Moreover, biclustering efficiently searches for consumption patterns that are not restricted
to constant relationships between time series. In particular, it allows for the presence of
additive factors that can explain changes in consumption habits motivated by household
size or the efficiency of water appliances; parameterizable quality levels (noise tolerance)
to bound deviations from consumption pattern expectations; and arbitrarily high time-lags
to handle misaligned consumption profiles through the day, week or year.

Results confirm the potentialities of biclustering for the analysis of consumption
time series data, with guarantees of statistical significance and robustness, which water
management entities can take advantage of to model water consumption profiles, raising
new opportunities in this sector. We also show that the found consumption pattern can be
used to transform raw signal data into a multivariate data space to support subsequent
descriptive and predictive analytics.
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WDS Water distribution system
WDN Water distribution network
SVM Support vector machine
SOM Self-organizing map
HAC Hierarchical agglomerative clustering
DTW Dynamic time warping
DBA Dynamic time warping barycenter averaging
DWT Discrete wavelet transform
PAA Piecewise aggregate approximation
PLA Piecewise linear approximation
SAX Symbolic aggregate approximation
LCSS Longest common sub-sequence
MODH Modified hausdorff
HMM Hidden markov model
SSE Sum of squared error
CD Distance between clusters index
IQR Interquartile range
CCC Contiguous column coherent biclustering
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