
Citation: Jang, O.-J.; Moon, H.-T.;

Moon, Y.-I. Drought Forecasting for

Decision Makers Using Water

Balance Analysis and Deep Neural

Network. Water 2022, 14, 1922.

https://doi.org/10.3390/w14121922

Academic Editor: Ilyas Masih

Received: 5 May 2022

Accepted: 13 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Drought Forecasting for Decision Makers Using Water Balance
Analysis and Deep Neural Network
Ock-Jae Jang , Hyeon-Tae Moon and Young-Il Moon *

Department of Civil Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu,
Seoul 02504, Korea; 10trials@gmail.com (O.-J.J.); hmoon@uos.ac.kr (H.-T.M.)
* Correspondence: ymoon@uos.ac.kr

Abstract: Reliable damage forecasting from droughts, which mainly stem from a spatiotemporal
imbalance in rainfall, is critical for decision makers to formulate adaptive measures. The requirements
of drought forecasting for decision makers are as follows: (1) the forecast should be useful for identi-
fying both the afflicted areas and their severity, (2) the severity should be expressed quantitatively
rather than statistically, and (3) the forecast should be conducted within a short time and with limited
information. To satisfy these requirements, this study developed a drought forecasting method that
sequentially involves the water balance model and a deep neural network (DNN). The annual water
shortage in the study area was estimated with the former, and meteorological data and the annual
water shortage data were used as independent and dependent variables, respectively, for the latter
model’s training. The results from the water balance analysis were more reliable for identifying
the four severely impacted areas based on the amount of water shortage, while the meteorological
drought index indicated that the 20 sub-basins were severely influenced in the worst year of the
drought. For the DNN model’s training, representative concentration pathway scenarios (RCP sce-
narios) were adopted as future events to extend the available data for the model training. Compared
to the model trained with a limited number of past observed data (correlation coefficient = 0.52~0.63),
the model trained with the RCP scenarios exhibited a significant increase in the correlation coefficient
of 0.82~0.83. Additionally, the trained model afforded reliable drought damage forecasting with
various meteorological conditions for the next several months. The trained short-term forecasting
model can help decision makers promptly and reliably estimate the damage from droughts and
commence relief measures well before their onset.

Keywords: decision makers; deep neural network; drought forecasting; RCP scenarios; water bal-
ance analysis

1. Introduction

Droughts result from a decrease or deficiency in precipitation on a certain scale of the
area during a short-term period, while aridity is a long-term (climatic) phenomenon [1].
Compared to other natural disasters (such as floods, storms, and earthquakes), detecting the
occurrence of droughts is more difficult owing to their features (such as slow onset and non-
structural impacts), the absence of a universally accepted definition, and the difficulty in
determining their start and end [2,3]. Therefore, previous studies have specifically defined
the types of drought (i.e., meteorological, hydrological, agricultural, and socioeconomic)
and evaluated their features (duration, severity, frequency, spatial extent, etc.). To assess
the features of droughts, a drought index, which is a single value combined with several
observation data such as precipitation and evaporation, has been typically employed in
previous studies; about 150 drought indices have been developed and applied worldwide
for different purposes [4]. Among them, Standardized Precipitation Index (SPI) [5], Palmer
Drought Severity Index [6], Standardized Precipitation Evapotranspiration Index (SPEI) [7],
and Reconnaissance Drought Index (RDI) [8] are widely adopted. While drought indices can
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help decision makers quickly predict drought occurrence in certain regions from recorded
weather data, they are of limited use for predicting water shortages and formulating
adaptive measures. A statistical approach, involving the joint distribution of drought
duration and severity, can also be used to assess features of drought; however, it is not
easily understood by decision makers and stakeholders, who prefer to use very simplistic
approaches to characterize drought events. Therefore, statistical approaches are of little use
for formulating drought management plans [9].

Another methodology of assessment and management is defining drought as a risk
with potential adverse consequences for human activities and socio-ecological systems [10]
and developing a drought risk map to identify risk-prone areas [11–15]. A risk map can be
developed as a function of three components, namely hazard, exposure, and vulnerability,
and their mathematical relation can be expressed as

Risk = Hazard × (Exposure + Vulnerability) (1)

Advantageously, in a risk map, relatively vulnerable areas can be easily identified
and long-term countermeasures can be formulated for the potential damage. On the other
hand, a place with high population density or high water demand is likely to be identified
as an area with high drought risk. Particularly, estimating the amount of risk to which
each region or district is exposed is difficult, as the values of individual components are
normalized between the maximum and minimum values in the study area.

Risk-based drought management, proposed for decision makers, comprises three
stages: monitoring and issuance of early warning, risk assessment, and mitigation and
response [16]. However, it has a limitation: the response level is determined by assessing
the existing drought conditions. Therefore, an improved process of decision support was
developed for drought management, which comprises four major steps: drought monitor-
ing and evaluation, drought risk prediction considering weather forecasting information
(weeks or months), development of countermeasures for the expected damage, and drought
record management [17]. The most essential step for drought management is predicting
the severity of future droughts, mainly using physical/conceptual models or data-driven
models. In previous studies on physical-/conceptual-model-based drought severity predic-
tion, a correlation between crop yield models, such as the Environmental Policy Integrated
Climate model, and the drought risk index has been established to simulate the expected
decrease in crop production because of future climate change [18,19]. Furthermore, a
conceptual model for predicting the decrease in crop production and power generation
in the event of insufficient precipitation has been developed through an analysis across
21 European countries to assess the vulnerability to drought [20]. A physical/conceptual
model is advantageously capable of examining the direct damage spatially and temporally
caused by drought (including water shortage and reduction in agricultural yield and power
generation) throughout the study area, but considerable data and time are required to
develop models for each simulation case. In another study predicting drought severity
using data-driven models, a groundwater level was simulated via long short-term memory
(LSTM) to predict the abrupt changes in the groundwater conditions [21]. Additionally,
Blauhut et al. analyzed the vulnerability of agricultural and energy production, public
water supply, and water quality in each region of Europe under a drought condition by per-
forming a correlation analysis between previously reported drought impacts and SPEI [22].
Beneficially, this data-driven model requires fewer data compared to physical/conceptual
models and enables faster analysis. Unlike a physical model, the prediction results are
mainly expressed as drought indices, which makes it difficult for decision makers to
estimate the drought severity.

This study mainly aims to propose a reliable drought forecasting method for deci-
sion makers. Based on the strengths and limitations of previous studies, several require-
ments for the drought forecasting method are summarized as follows: forecasts should be
(1) supportive for identifying both afflicted areas and their severity, (2) expressed as nonsta-
tistical values (e.g., amount of water shortage) rather than statistical values (e.g., duration
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and frequency), and (3) performed frequently with the available information, which might
be limited, and provided to decision makers well before the drought’s onset. To satisfy
these requirements, this study develops a drought forecasting method by sequentially in-
volving conceptual (water balance model) and data-driven (deep neural network) models.
As previously described, each model has its advantages and disadvantages. Although
conceptual models can spatially and temporally examine the direct damage caused by
drought, the considerable data and time required can hinder the realization of prompt re-
sults. In contrast, data-driven models can generate results faster with fewer data compared
to conceptual models, but the result is not expressed as the direct damage from droughts.
Herein, the advantages of both models are utilized for drought forecasting by sequentially
linking both the models. First, the existing method of water balance analysis is improved
to make it applicable to drought forecasting in the sub-basin areas. Furthermore, under
the condition that the past 50 years of the recorded data are insufficient for training the
deep neural network (DNN) model, the RCP scenarios, regarded as potential future events,
are used to handle this shortcoming. Finally, the trained DNN model with a sufficient
number of data is adopted to reliably forecast the amount of water shortage under various
meteorological conditions for the next several months.

2. Study Area and Available Data

The study area is the Geumgang river (Figure 1), which covers the region 35.5–37.125◦ N
and 126.0–128.0◦ E. The basin area is 17,925 km2, and the total river length is 36,142 km [23].
The study area comprises 21 sub-basins, and the basin areas of individual sub-basins
range from 127.7 to 1843.7 km2. Additionally, the study area includes four multipurpose
dams (Yongdam dam, Daecheong dam, Boryeong dam, and Buan dam) and 27 large-scale
reservoirs with an effective reservoir capacity exceeding 5 million m3 for supplying water
for agriculture as well as 2300 small reservoirs. In large cities with a population exceeding
500,000, such as Daejeon, Cheongju, Jeonju, and Cheonan, the household water demands
are high, and several water-demanding places are present in national industrial complexes
such as Gunsan and Asan. Furthermore, agricultural water demand stems from paddy
fields and farm fields, accounting for about a quarter of the total basin area. Since the water
demand for large cities, industrial complexes, and agricultural areas can be simultaneously
simulated in the water balance model with various water supply facilities, the Geumgang
river was selected as the study area.
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The available data for this study are summarized in Table 1. The meteorological
data recorded by weather stations from 1967 to 2015 were collected through the Water
Resources Management Information System. RCP scenario data projected from 2011 to
2100 were collected from the Korea Metropolitan Administration. The acquired data
were obtained from HadGEM3-RA, which is a regional climate model based on the atmo-
spheric component of the Earth system model developed by the Met Office Hadley Centre,
i.e., HadGEM3. To simulate the data with a spatial resolution of 0.125◦ in the Korean
Peninsula area, the dynamic downscaling method was adopted for the four RCP scenarios
(RCP 2.6, 4.5, 6.0, and 8.5), which are labeled as a possible range of radiative forcing values
in the year 2100 (2.6, 4.5, 6.0, and 8.5 W/m2, respectively).

Table 1. Available data for the study.

Category Available Data Sources

Observed Meteorological Data

Rainfall, evapotranspiration

- 38 weather observation stations
- available year: 1967–2015 (49 years)

Water Resources Management
Information System [23]

RCP Scenario

RCP 2.6, 4.5, 6.0, and 8.5
Rainfall, maximum and minimum temperature,
relative humidity, and wind velocity

- available year: 2011–2100 (90 years)
- spatial resolution: 0.125◦

Korea Meteorological
Administration [24]

Population Population Census in 2015 (37 districts) Korea National Statistical Office [25]

Land-use GIS format (1:25,000, 37 districts) National Spatial Data Infrastructure
Portal [26]

3. Methods
3.1. Conceptual Model (Water Balance Analysis)

To assess water shortages in the study area, the water system, including all sub-systems
in the basin, needs to be analyzed. A water system can be defined as an entity extending
over a geographical area, including all watersheds and groundwater recharge areas together
with all water consumption centers and ecosystems associated with the processes occurring
in natural (abiotic or biotic) and human sub-systems [27]. In the water system analysis,
details of each sub-basin, e.g., rainfall-runoff characteristics, reservoir operation, and the lag
time required for groundwater recharge after rainfall, can be included. Consequently, the
analysis results can predict the affected areas and their amount of water shortage in each
sub-basin. Herein, the water balance analysis conducted on the National Water Resources
Plan (2001–2020) in Korea (hereafter referred to as the “National Plan”) [28] is first briefly
explained and then the improvements for water supply and demand analysis are suggested
for drought forecasting.

A National Plan is frequently prepared for developing detailed plans for water supply
facilities. Figure 2 displays the water balance analysis process in the National Plan. For the
117 sub-basins in Korea, existing supply water sources (dams, reservoirs, groundwater, etc.),
including natural flows, are compared with future water demand (household, industrial,
agricultural, and ecological) to predict the probable water shortage. The amount of supply
from natural flow is simulated using the Tank model with four serially connected tanks.
The future water demand is estimated for each municipal-level district for low, baseline,
and high demand cases for the year 2025, and the baseline demand is adopted herein.
Since the National Plan aims to roughly determine the water shortage that can occur in the
event of the worst drought for each major river basin, several assumptions are made in the
analysis for convenience. However, these assumptions should be improved for drought
forecasting in each sub-basin.
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3.1.1. Improvement of Water Demand Analysis

In the National Plan, the water demand in each sub-basin is calculated as the district
area ratio between the total area of each district and the area of the district included
in the sub-basin, given by Equation (2), under the assumption that the water demands
for household, industry, and agriculture are evenly distributed within an administrative
district. However, mountainous, agricultural, industrial, and residential areas tend to be
densely located in specific areas because of suitable natural conditions for agricultural and
urban developments. Thus, the calculated demand for each sub-basin may differ from the
actual amount of water demand.

Di = ∑n
j=1 Dcity j ×

Ai
city j

Acity j
(2)

Here, Di represents the total water demand in each sub-basin i, Dcity j is the total
water demand (for household, industrial, and agricultural) in the administrative district j,
Acity j is the total area of j, and Ai

city j is the area of j included in sub-basin i.
To improve the water demand estimation in each sub-basin, this study adopts the

2015 Population Census data (Eup/Myeon/Dong level, which is the lowest level of ad-
ministrative divisions in Korea) and the GIS format of land use data (1:25,000) shown in
Table 1. The population of the administrative districts and the areas of agricultural and
industrial land in each sub-basin were used as weights to calculate the water demand for
each sub-basin as follows.

Di = ∑n
j=1 Dcity j ×

Wi
city j

Wcity j
(3)

Here, Wcity j is the total area of a specific region (agricultural or industrial) or total
population in the administrative district j, and Wi

city j is the area of a specific region (agricul-
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tural or industrial) included in sub-basin i out of the total area in the administrative district
j or the population in sub-basin i out of the total population in the administrative district j.

In the water demand calculation for all 21 sub-basins via both the existing method
and the improved method, the water demand in five sub-basins is at a level of significant
difference (the estimation in the improved method is more than 20% higher or lower than
that in the existing method) and that in six sub-basins is at a level of moderate difference
(the estimation in the improved method is more than 10–20% higher or lower than that in
the existing method). Figure 3 describes the case of sub-basin 3008, exhibiting the maximum
difference in demand estimation; a big portion of the watershed area is located upstream of
the Daecheong dam, including mountainous and inundated areas. However, metropolitan
cities such as Daejeon and Cheongju cover a large part of the watershed area, and therefore,
the National Plan estimated an annual water demand of 153 million m3. However, the
improved method estimated a sharply reduced value of 80 million m3.
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Figure 3. Comparison of the demand estimation between the National Plan and this study (unit:
mil. m3/year): (a) water demand estimated by the district area included in each watershed; (b) water
demand calculated by the areas demanding water (such as farm field, paddy field, and industrial
area) based on the GIS analysis.

Furthermore, the improved method separately simulates the water demand of house-
hold and industrial areas for each administrative district in the sub-basin to overcome the
difficulty in calculating the water shortage for each district in the National Plan. Moreover,
it includes the water demand in rainfed areas in the water shortage estimation with all
water supply sources and the demand in the actual conditions, which is not included in the
analysis of the National Plan.

3.1.2. Improvement of Water Supply Analysis

As shown in Figure 2, the National Plan does not include the regional water supplies
from agricultural reservoirs and groundwater in the water balance analysis model, which
can cause an underestimation of the water shortage amount [29,30]. Therefore, herein,
groundwater for different consumers (household, agricultural, and industrial) is separately
included in the analysis model. Furthermore, the integrated agricultural reservoir whose
effective capacity is the same as the capacity of all reservoirs in each sub-basin is included
in the analysis. Additionally, the improved method considers the location and capacity of
intakes and sewage treatment plants in the water balance analysis. Therefore, the water
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intake and return within a sub-basin boundary and the water conveyance to neighboring
sub-basins can be simulated using the improved model, whereas such processes cannot be
simulated using the method in the National Plan.

Table 2 summarizes the improvements in water demand and supply analysis, and
Figure 4 displays the flow networks in a watershed for the National Plan and the
improved method.

Table 2. Summary of the improvements of the water balance analysis.

National Plan Improvements of This Study

Flow Network
Agricultural demand One node in the sub-basin One node in the sub-basin

Household and
Industrial demand One node in the sub-basin Separate nodes for each district in

the sub-basin

Water Demand

Demand estimation
Equation (2) adopted
- household, agricultural, industrial
: district area ratio

Equation (3) adopted
- household
: population living in the sub-basin
- agricultural, industrial
: related area in the sub-basin

Demand for the rainfed
farming Not included Included

Water Supply

Agricultural reservoir
and confined aquifer

After the K-WEAP simulation, the
water shortage is reduced as much as
the supplies from both sources

Both supplies are included in
the simulation

Intake and sewage
treatment plant

Location and capacity are
not considered

Location and capacity are considered in
the simulation

Simulation result Annual water shortage Water shortage in each simulation step
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Figure 4. Comparison of the flow network between the National Plan and the improved method of
this study: (a) each node for agricultural demand and household and industrial demand is included
in the water balance simulation of the National Plan; (b) one node for agricultural demand and
separate nodes for household and industrial demand, aquifers, and reservoirs are included in the
simulation of this study.
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3.1.3. MODSIM-DSS Model

Herein, the MODified SIMyld-Decision Support System (MODSIM-DSS) model is used
for water balance analysis. This model was developed by Prof. Labadie of the Colorado
State University by modifying SIMYLD, a network model developed by the Department of
Water Resources Development (in 1972) in Texas, USA [31]. The model can reproduce the
actual hydrological characteristics of the water system of the study area through the links
and arcs connecting nodes (storage node, nonstorage node, demand node, and flowthru
node) provided by the MODSIM-DSS model. The MODSIM-DSS model optimizes the
flow rate in the links such that the cost incurred at all links during the calculation time
(t = 1, 2, · · · , T) is minimized, which can be expressed as

minimize ∑k∈A ck·qk (4)

Here, ck represents the cost, weight, or priority in link k, qk represents the flow rate in
link k, and A represents all links contained in the network.

The calculation constraints in each node can be expressed as follows:

∑k∈Oi
qk −∑l∈Ii

ql = bit(q) for all nodes i ∈ N (5)

llt(q) ≤ ql ≤ ult(q) for all links l ∈ A (6)

Here, Oi is the outgoing link from node i, Ii is the inflow link to node i, bit is the
demand of node i at time t, and llt and ult are the lower and upper limits, respectively, in
link l at time t. Equation (5) is identical to the water balance equation (the total amounts of
inflow and outflow at any node are the same), and Equation (6) is a physical condition that
constrains the upper and lower limits of the flow in all the links.

In the optimization process involving Equations (4)–(6), the initial value of the flow
vector q is assumed and the dependent variables bit, llt, and ult are calculated based on
the initial values. Then, the Lagrangian relaxation algorithm, which exhibits very fast
convergence compared to existing linear programming, is used to iteratively calculate the
priority or cost in each node and link until the values of the dependent variables converge.
Subsequently, the optimal distribution of the water resources can be determined.

3.2. Data-Driven Model (Deep Neural Networks)

The first part of the methodology highlights the improvements in the water balance
analysis, which is suitable for drought forecasting in the target watershed, and a method
to quantitatively assess the risk of drought based on the water shortage amount. Ad-
vantageously, this method can spatially and temporally determine the drought risk, but
considerable input data are required for each sub-basin for the assessment. Particularly, the
water supply varies depending on the annual hydrologic and meteorological conditions.
The amount of water available in the future can be estimated when the daily rainfall and
evapotranspiration data over the next 1–3 months are obtained from the weather fore-
casting model. Considering the estimation uncertainty in the weather forecasting model,
the water shortage with the natural flow needs to be determined from various scenarios
(wet–normal–dry). This process can hinder prompt decision-making since it is complex
and computationally intensive.

To promptly afford drought forecasts under various weather conditions, a DNN model
based on the quantitative drought risk assessment is adopted herein. For the training and
validation processes of the data-driven model, more than hundreds of data are required.
According to Lee and Kim [32], when droughts that occurred in Korea from 1976 to 2010
were analyzed by SPI, the duration of each drought ranged from 2 to10 months, and
in very few cases, two droughts occurred in a year. Only 49 years of data from 1967
to 2015 are available, and this is insufficient for training the drought forecasting model
to derive a reliable outcome. Previous studies have developed alternative methods to
extend the number of available data for the drought assessment. One study analyzed a
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tree-ring chronology network and converted it into the Palmer Severity Drought Index [33].
Furthermore, another study used rainfall data officially recorded by government agencies
from the 18th to the 20th century in Korea to compare the drought risks in the past and
present [34]. Herein, RCP scenarios are regarded as an event that may occur in the future,
and a total of 360 years of data (4 scenarios × 90 years (2011–2100)) are additionally applied
to extend the range of severe drought cases in the model training. Thus, we overcome the
reliability issue stemming from the limited number of data in the past observation series.

The procedure for constructing an optimal DNN model for each sub-basin with past
observation data and RCP scenarios (RCP 2.6, 4.5, 6.0, and 8.5) is as follows. First, the
observation data and RCP scenario data are used in a previously constructed water balance
analysis model, and the annual water shortage in the study area is calculated for each sub-
basin. Second, to include the estimated water shortage as a dependent variable in the deep
learning model, the water shortage data are rescaled to a range between zero and one by
either normalization between the maximum and minimum values of the available data or a
standardization with the average and standard deviation. This rescaling process limits the
influence of large-scale variables in the training process of the DNN model and prevents the
model from falling to a local minimum. However, the annual water shortage calculated in
the water balance analysis tends to be a right-skewed distribution, indicating that moderate
droughts frequently occur and extreme droughts rarely occur. Therefore, the calculated
water shortage data need to be appropriately rescaled. Otherwise, the rescaled data cannot
be evenly distributed in the range between zero and one. Herein, the generalized extreme
value distribution in Equation (7) is adopted to rescale the amount of water shortage (x) to
afford a non-exceedance probability (FX(x), 0–1).

FX(x) = exp

[
−
{

1− k
(

x− u
α

)}1/k
]

(7)

Here, x is the annual water shortage (in thousand cubic meters), k is the shape param-
eter, α is the scale parameter, and u is the location parameter.

The independent variable of the DNN model is the 12 values of SPEI 1 (from October
of the previous year to September of the present year), as shown in Figure 5. The input
variable (SPEI 1) is rescaled to a range between zero and one by the non-exceedance
probability of the normalized standard distribution to maintain the same scale in the input
and output of the DNN model. A total of 45 models are trained by varying the number of
hidden layers (three, four, and five layers; three cases), the number of nodes (30, 40, and
50 nodes; three cases), and the number of epochs (30, 60, 90, 120, and 150 epochs; five cases).
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The training process involves a back-proposition algorithm where the weight is ad-
justed according to Equations (8) and (9) to minimize the cost functions of the predicted
value (ŷ) and observed value (y) in the output layer using the activation function [35].

E = ∑n
k=1(yk − ŷk)

2 (8)

wt+1
ij = wt

ij − η
∂E

∂wt
ij

(9)

Here, yk and ŷk represent the observed and predicted values at the k-th node of the
output layer, wt

ij denotes the weight between the i-th node of the previous layer and the
j-th node of the next layer in the t-th model learning, and η denotes the learning rate.

Finally, past observation data (1967–2015, 49 years), which are not used in the training
process, are input into the 45 trained DNN models. Between the predicted water shortage
through the trained model and the estimated water shortage through water balance analysis,
the model displaying the best performance is selected as the optimal DNN for drought
forecasting in each sub-basin. The mean squared error (MSE) and correlation coefficient
are used as indicators to determine the model performances. Figure 6 describes the entire
process to develop an optimal DNN model for drought forecasting in each sub-basin.

Water 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 5. DNN model structure for training and validation. 

Finally, past observation data (1967–2015, 49 years), which are not used in the train-

ing process, are input into the 45 trained DNN models. Between the predicted water short-

age through the trained model and the estimated water shortage through water balance 

analysis, the model displaying the best performance is selected as the optimal DNN for 

drought forecasting in each sub-basin. The mean squared error (MSE) and correlation co-

efficient are used as indicators to determine the model performances. Figure 6 describes 

the entire process to develop an optimal DNN model for drought forecasting in each sub-

basin.  

 

Figure 6. Flow chart for developing an optimal DNN model for drought forecasting (AWS denotes 

the Annual Water Shortage). 
Figure 6. Flow chart for developing an optimal DNN model for drought forecasting (AWS denotes
the Annual Water Shortage).



Water 2022, 14, 1922 11 of 19

4. Results
4.1. Drought Assessment

In the drought assessment with observation data for 49 years (1967–2015), the worst
water shortage was estimated in the year 2015. For the worst year, the annual water
shortage determined from the National Plan and the improved method proposed herein
were compared in terms of a meteorological drought index (SPEI 6), as described in
Figure 7. For the meteorological drought index (SPEI 6) for September 2015, it was difficult
to ascertain which area should be first considered; apart from the sub-basin 3003, the
entire study area exhibited severe or extreme levels of drought. However, the hydrological
drought cases from the water balance analysis model provide information about the affected
location and the expected water shortage amount. Table 3 shows the criteria for classifying
drought severity based on water shortage; the criteria were determined by applying the
severity of an event in SPI to the water shortage performed with the observation data for
49 years for each sub-basin.
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Figure 7. Comparison of drought assessment between the National Plan and the improved method
proposed herein: (a) meteorological drought assessment based on the SPEI6 index in Sep. 2015;
(b) water shortage assessment adopting the National Plan’s methodology; (c) water shortage assess-
ment adopting the improved method of this study.

Table 3. Drought warning criteria for meteorological drought and this study.

Category
Mckee et al. (1993) [5] This Study

(Water Shortage)SPI Severity of Event

Mild dryness 0 to −0.99 1 in 3 years 0–5 mil. m3/year

Moderate dryness −1.00 to −1.49 1 in 10 years 5–10 mil. m3/year

Severe dryness −1.50 to −1.99 1 in 20 years 10–30 mil. m3/year

Extreme dryness over −2.00 1 in 50 years over 30 mil. m3/year

Comparison of the drought assessment results between the National Plan and the
improved model showed that a severe or extreme level of water shortage was predicted in
four areas by the improved model and in only three areas by the National Plan. Particularly,
in sub-basins 3101 and 3202, no shortage was expected according to the National Plan,
while the analysis with improvements indicated a severe or extreme level of drought.
Such difference in the impacted areas stemmed from the water demand in the rainfed
farm field, which was not considered in the National Plan. Furthermore, in sub-basin
3203, the National Plan predicted a water shortage of 54 million m3 while the improved
method predicted a significantly reduced a water shortage of 31 million m3. Such a
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reduction resulted from the improvement in the demand estimation method; 35 million m3

of agricultural water demand was decreased in the sub-basin 3203.
The differences in the afflicted areas and their severity between the two methods show

that the improved method of this study more accurately simulates the drought damage than
the National Plan. The improved method requires calibration through comparison with the
recorded drought damage. However, the calibration was not performed herein owing to
insufficient detailed data on the water shortage in the affected areas in the drought damage
investigation reports published by the Korean government [36–38]. When sufficient data
are available, additional studies need to be performed for model calibration.

The annual water shortages in the case of the past observation data and RCP scenarios
are shown in Figure 8. In the observation data for the past 49 years, the worst drought
was recorded in 2015 with water shortage of 143 million m3, but the maximum water
shortage reached 310–458 million m3 in each scenario. In each of the RCP scenarios, the
water shortage exceeded the value in the year 2015 by 7–10 times, and 32 extreme drought
cases were additionally included in the training of the DNN model for drought forecasting.
This can contribute to the reliable prediction of the expected damage in the drought events,
exceeding the recorded range of past observation data. This is similar to the improvement
of the reliability of the peak discharge estimate for extreme flood events by adding extreme
values from the regional frequency analysis.
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4.2. Drought Forecasting

As previously described, the rescaled values of SPEI 1 and annual water shortage
from the water balance analysis were used as the independent and dependent vari-
ables, respectively, in the DLL model’s training. For each of the sub-basins, models with
45 hyperparameter combinations were constructed, and training and validation processes
were sequentially performed for each model to minimize the cost function between the
target and predicted values. As the number of epochs was increased from 30 to 150, for
each epoch, nine models were trained and validated with different values of hidden layers
and nodes for each hidden layer. Figure 9 presents the cases with the best validation results
for each epoch after the training and validation processes in sub-basins 3101 and 3202. The
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figure displays the performance of the trained models along with the MSE and the correla-
tion between the value estimated from the DNN model and the target value (results from
the MODSIM-DSS model). Both the values indicate that the model constructed through
training and validation is a solid representation of the drought situations: the correlation
coefficient was higher than 0.8 in all cases, and the MSE had an accuracy of 0.02–0.03.
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Figure 9. Validation result after DLL model training for predicting the amount of water shortage.
The model training performance for each epoch is presented with MSE and correlation coefficient in
(a) sub-basin 3101 and (b) sub-basin 3202.

Then, the optimal DNN for each sub-basin was determined using the meteorological
data from 1967 to 2015 (49 years), which were not employed in the previous stage. Of
the 45 models, the model exhibiting the minimum MSE value between the inferred and
target values (the annual water shortage from the MODSIM-DSS model) was selected as the
optimal model. In the sub-basins 3101 and 3202, the model with 150 epochs, four hidden
layers, and 40 nodes for each hidden layer and that with 60 epochs, five hidden layers, and
50 nodes for each hidden layer were selected as the optimal model, respectively. Figure 10
describes the water shortage estimated from the past observation data in the optimal model,
which are displayed with the values predicted by the water balance analysis as a time
series. The estimated water shortage agrees with the target value in the two sub-basins,
and the occurrences of severe water shortages were correctly predicted (e.g., in 1988, 1995,
and 2015).

Table 4 displays the contribution of the RCP scenarios to the DNN model reliability
in comparison with Case 1, where the past data from 1967 to 2005 were repeatedly used
for training and validation of the DNN models. For Case 2, the optimal DNN model
previously selected was adopted. Apart from the available data for model training and
validation, model training with several hyperparameter cases and the selection of the
optimal DNN model among the trained models were identical to those for the RCP scenario
case. Furthermore, to compare the training performance on the same basis, the past
observation data from 2006 to 2015 were used in the two models and the inference results of
both the models were compared with the water shortage amounts derived from the water
balance analysis. Table 4 shows that the results of the training and validation process did
not significantly differ between Case 1 and Case 2. However, in the inference results with
data from 2006 to 2015, for the model trained with a limited number of past observation
data, MSE significantly increased and the correlation coefficient decreased, which was not
observed for the model trained with the RCP scenarios. This comparison result shows that
the construction of a model with considerably more data can afford more reliable drought
forecasting results.
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Figure 10. Inference results of the optimal DNN models for predicting the water shortage amount.
The target indicates the water shortage predicted from the water balance analysis model and the
inferred indicates the value estimated from the optimal DNN model. The performance of the optimal
DNN model is presented in (a) sub-basin 3101 and (b) sub-basin 3202.

Table 4. Comparison of the inference results between the models trained by the past data and
RCP scenarios.

Sub-Basin Case Process (Adopted Data) MSE Correlation Coefficient

3101

1
Training (Past, 1967–2005) 0.019 0.791

Inference (Past, 2006–2015) 0.034 0.529

2
Training (RCP, 2011–2100) 0.017 0.837

Inference (Past, 2006–2015) 0.018 0.826

3202

1
Training (Past, 1967–2005) 0.033 0.749

Inference (Past, 2006–2015) 0.033 0.630

2
Training (RCP, 2011–2100) 0.032 0.830

Inference (Past, 2006–2015) 0.019 0.818
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Through the aforementioned process, an optimal DNN model was constructed for
each sub-basin. Thus, if the weather data observed from October of the previous year
and the weather forecasting data in the near future are prepared in the form of monthly
SPEI indices, water shortages for the following period can be predicted. Currently, the
National Drought Information Portal of Korea declares the drought index of the past six
months and forecasts future droughts in units of month (1 month) or season (3 months) [39].
Therefore, the past observation and three-month weather forecast data can be used for
drought forecasting. The results of the application of various meteorological conditions
to the optimal DNN model for sub-basins 3101 and 3202 in the year 2015 are shown in
Figure 11. In the drought situation occurring from October 2014 to May 2015, highlighting
the lack of rainfall in March and May associated with seasonal rainfall fluctuations, is
notable. The monthly rainfall that occurred in March and May was just 42% and 32%,
respectively, of the average monthly rainfall in the observation data. Specifically, since
the high demand period for agricultural water usually starts from May because of rice
seeding in paddy fields, water needs to be supplied from agricultural reservoirs to meet
the demand. However, the precipitation during these periods was not sufficient to refill the
reservoirs. Therefore, this was the main reason for the most severe drought from June to
August (the crop growth period) in the past observation cases.

Water 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

11. In the drought situation occurring from October 2014 to May 2015, highlighting the 

lack of rainfall in March and May associated with seasonal rainfall fluctuations, is notable. 

The monthly rainfall that occurred in March and May was just 42% and 32%, respectively, 

of the average monthly rainfall in the observation data. Specifically, since the high de-

mand period for agricultural water usually starts from May because of rice seeding in 

paddy fields, water needs to be supplied from agricultural reservoirs to meet the demand. 

However, the precipitation during these periods was not sufficient to refill the reservoirs. 

Therefore, this was the main reason for the most severe drought from June to August (the 

crop growth period) in the past observation cases.  

In the annual water shortage forecasting in sub-basins 3101 and 3202, various SPEI 

indices in the range from −1 to 1 were used in the optimal DNN model for three months 

from June to August. The optimal DNN model showed that water shortages may occur in 

the range of 3–16 and 8–27 million m3 in sub-basins 3101 and 3202, respectively. In sub-

basin 3101, an SPEI index between −0.6 and −0.9 was recorded during the period, and the 

water balance analysis model predicted a water shortage of 13 million m3. In sub-basin 

3202, an SPEI index between −0.9 and −1.4 was recorded, and the water balance model 

predicted a water shortage of 30 million m3. These results are clearly in good agreement, 

further demonstrating the reliability of the optimal DNN model in forecasting drought 

damage. Therefore, this is a useful tool for a decision maker to determine the water short-

age and the required amount of rainfall to reduce the damage. This model can be used to 

proactively formulate water-saving measures and water supply measures through diver-

sion from nearby basins before the on-set of extreme droughts. 

 

Figure 11. Amount of water shortage forecasted under different SPEI conditions of the 2015 drought 

case. The observed SPEI values from October 2014 to May 2015 were included in the optimal DNN 

model and the amount of water shortage was forecasted in May 2015 depending on the different 

SPEI scenarios between June 2015 and August 2015 in (a) sub-basin 3101 and (b) sub-basin 3202. 

Figure 11. Amount of water shortage forecasted under different SPEI conditions of the 2015 drought
case. The observed SPEI values from October 2014 to May 2015 were included in the optimal DNN
model and the amount of water shortage was forecasted in May 2015 depending on the different
SPEI scenarios between June 2015 and August 2015 in (a) sub-basin 3101 and (b) sub-basin 3202.



Water 2022, 14, 1922 16 of 19

In the annual water shortage forecasting in sub-basins 3101 and 3202, various SPEI
indices in the range from −1 to 1 were used in the optimal DNN model for three months
from June to August. The optimal DNN model showed that water shortages may occur
in the range of 3–16 and 8–27 million m3 in sub-basins 3101 and 3202, respectively. In
sub-basin 3101, an SPEI index between −0.6 and −0.9 was recorded during the period,
and the water balance analysis model predicted a water shortage of 13 million m3. In
sub-basin 3202, an SPEI index between −0.9 and −1.4 was recorded, and the water balance
model predicted a water shortage of 30 million m3. These results are clearly in good
agreement, further demonstrating the reliability of the optimal DNN model in forecasting
drought damage. Therefore, this is a useful tool for a decision maker to determine the water
shortage and the required amount of rainfall to reduce the damage. This model can be
used to proactively formulate water-saving measures and water supply measures through
diversion from nearby basins before the on-set of extreme droughts.

5. Discussion and Conclusions

Herein, a risk-based drought management system was presented for decision makers
to formulate countermeasures for upcoming drought damage [14]. The following require-
ments should be satisfied to support decision makers in forecasting drought damage. First,
the spatial extent considered for forecasting should include all water systems (all the wa-
ter consumptions and all sources of water supply) in the area. This assessment of water
shortages in the water system can contribute toward identifying both afflicted areas and
their severity. The assessment results, rather than being expressed as complex statistical
figures, should be expressed as quantitative values, such as the amount of water shortage
directly resulting from an existing drought and the amount of precipitation required for
the damage mitigation. Finally, rather than putting effort into recovery after disaster oc-
curs, forecasting should be frequently performed with limited information and numerous
weather forecasting scenarios, and the result should be delivered to decision makers well
before drought onset. To satisfy these requirements, this study proposes the methodology
for a drought forecasting system to couple the water balance analysis model, which is a
physical/conceptual model, and the DNN model, which is a data-driven model.

In drought assessment, based on the analysis method currently used in the National
Plan, several improvements were proposed to include all the water systems and examine
the actual situation. Moreover, the demand estimation method in the sub-basin was
improved by applying the GIS format of land use and the population census data, and
the agricultural demand in the rainfed area was included to accurately estimate the actual
water demand. In terms of water supply, both agricultural reservoirs and confined aquifers
as well as intake and sewage treatment facilities were included to simulate water supply
and return within the sub-basin boundary. Due to these improvements, the affected areas
and their water shortage was simulated in the model; thus, the model is suitable for drought
forecasting at the sub-basin level. In previous studies, to improve the water balance analysis
model in the National Plan, similar approaches have been suggested, such as including
agricultural reservoirs and agricultural demand in the rainfed area in the analysis [30,40,41].
However, to our knowledge, no previous study has adopted the GIS format of land use
and the population census data to estimate the water demand in each sub-basin area. Of
the 21 sub-basins in the study area, the water demand in 11 sub-basin areas estimated by
the current method and the improved method was at a level of significant or moderate
difference. Additionally, the water balance analysis model is generally adopted to calculate
the required volume of the water management facility to prevent water shortage under
the future water demand conditions and to simulate the variation of the water shortage
due to climate change [42–44]. However, herein, the water balance analysis was used for
the drought damage forecasting to simultaneously identify the afflicted areas and their
water shortage. For the drought case of the year 2015, the water balance analysis reliably
indicated the four severely impacted areas based on the amount of water shortage, while
the meteorological drought index indicated that 20 sub-basins were severe drought areas.
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In the drought forecasting with the DNN model, observation data from the past
50 years were not sufficient to train the model. As an alternative measure, RCP scenarios
were assumed to represent possible weather events in the future. Of the 360 years of
the water shortage resulting from the four RCP scenarios, 32 cases of water shortage
exceeded the value of the worst drought year obtained from the past observation data.
When sufficient data from extreme drought cases were considered, the performance of the
model training and validation was within an acceptable range, and optimal DNN models
were derived for each sub-basin. In previous studies, the tree-ring chronology network
and the recorded rainfall data from the 18th to 19th century were adopted for reliability in
the extreme drought analysis [31,32,45]. Herein, the RCP scenarios were included in the
training process of the DNN model, which significantly increased the correlation coefficient
of 0.82–0.83 in comparison with the correlation coefficient of 0.52–0.63 in the model training
with a limited number of the observed data.

Herein, for the drought event in 2015, the optimal DNN model exhibited reliable
drought damage forecasting with various meteorological conditions for the next sev-
eral months. Data-driven stochastic methods, such as artificial neural networks and au-
toregressive integrated moving average models, are commonly employed for drought
forecasting [21,46–48]. Additionally, the meteorological and hydrological models are em-
ployed together for hydrological drought forecast [49–51]. However, none of these previous
studies have considered coupling the water balance model and DNN model. Since the
coupled model proposed herein can deliver reliable and prompt predictions of the drought
damage, it can contribute to the continuous analysis of the expected water shortage and
the amount of rainfall for the following period, which can assist in formulating proactive
measures for forecasted droughts.

In a follow-up study, the reliability of the analysis results needs to be improved by
calibrating the water balance analysis model, which was not performed in this study
because of the lack of current drought damage survey data. Moreover, to improve the
consistency between the values predicted through the optimal DNN model and the values
calculated through the water balance analysis, additional climate change scenarios from
other organizations need to be adopted in the training and validation process of the DNN
model. Additionally, other variables need to be considered as independent variables for the
DNN model, such as the number of days of rainfall in each month and the average rainfall
intensity. Finally, since recognizing the cause of the predicted results from the DNN model
is difficult, we propose that a preliminary analysis should be performed of the threshold
or weather patterns that might cause an extreme drought event since it will improve the
understanding of the cause.
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