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Abstract: This paper looks at regional water security in eastern China in the context of global climate
change. The response of runoff to climate change in the Qinhuai River Basin, a typical river in eastern
China, was quantitatively investigated by using the Soil and Water Assessment Tool (SWAT) model
and the ensemble projection of multiple general circulation models (GCMs) under three different
shared socioeconomic pathways (SSPs) emission scenarios. The results show that the calibrated SWAT
model is applicable to the Qinhuai River Basin and can accurately characterize the runoff process at
daily and monthly scales with the Nash–Sutcliffe efficiency coefficients (NSE), correlation coefficients
(R), and the Kling–Gupta efficiency (KGE) in calibration and validation periods being above 0.75
and relative errors (RE) are ±3.5%. In comparison to the baseline of 1980–2015, the mean annual
precipitation in the future period (2025–2060) under the three emission scenarios of SSP1-2.6, SSP2-4.5,
and SSP5-8.5 will probably increase by 5.64%, 2.60%, and 6.68% respectively. Correspondingly, the
multiple-year average of daily maximum and minimum air temperatures are projected to rise by
1.6–2.1 ◦C and 1.4–2.0 ◦C, respectively, in 2025–2060. As a result of climate change, the average annual
runoff will increase by 16.24%, 8.84%, and 17.96%, respectively, in the period of 2025–2060 under
the three SSPs scenarios. The increase in runoff in the future will provide sufficient water supply
to support socioeconomic development. However, increases in both rainfall and runoff also imply
an increased risk of flooding due to climate change. Therefore, the impact of climate change on
flooding in the Qinhuai River Basin should be fully considered in the planning of flood control and
the basin’s development.

Keywords: climate change; CMIP6; hydrological response; runoff simulation; SWAT model; the
Qinhuai River Basin

1. Introduction

Global climate change is one of the dominant factors affecting hydrological cycles [1],
with the water–heat combination change of precipitation and air temperature having
a particularly far-reaching impact on runoff [2]. According to a series of reports from
the Intergovernmental Panel on Climate Change (IPCC), the issue of global temperature
rise is becoming increasingly prominent [3], not only through significant increases in the
intensity of extreme precipitation in many regions of the world, especially in parts of
southern China, but also in changes to the hydrological cycle rate and runoff formation
process in these areas [4,5]. It will continue to play a role in the next 50 or 100 years [6],
disturbing the eco-hydrological cycle of the basin. In the context of global warming,
rainfall as well as rainfall intensity will be changed, which will change runoff and flood
by altering the hydrological cycle. As one of the basic links of the water cycle, runoff is
an important breakthrough point for a scientific understanding of the water cycle process
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and a comprehensive understanding of the characteristics of water resources. Therefore,
it is particularly important to deeply and systematically carry out distributed watershed
hydrological simulation and model parameter sensitivity analysis, and to explore the
response mechanism of watershed runoff under future climate change scenarios.

The Qinhuai River is located in Jiangsu province and is known as “the mother river
of Nanjing”. Previous studies of the Qinhuai River Basin have mostly focused on the
intensification of flood risks caused by rapid urbanization [7,8]. For instance, Wang et al. [9]
compared and analyzed the temporary and spatial variation of the water surface ratio and
its decisive factors between watershed and urban areas based on the K-mean Clustering
Water Index Method and pointed out that human factors are the main driving factors of
water surface change. Qin et al. [10] evaluated land use/cover change (LUCC) through
the construction of the Decision Tree model with the help of the Surface Energy Balance
Algorithm for Land (SEBAL) model. The results showed that significant changes of LUCC
transformed paddy fields and dryland into impervious surfaces in large areas, resulting
in a downward trend in daily evapotranspiration at the basin scale over the four seasons.
Yang et al. [11], Gao et al. [12], and Song et al. [13] also analyzed the influence of the
change in underlying surface and drainage capacity of the Qinhuai River Basin on the
rainstorm flood process, and urban waterlogging risk changes in the context of high-
speed urbanization by coupling MIKE11 and MIKE21 model and using the Hydrologic
Engineering Center’s Hydrologic Modeling System (HEC-HMS) model. At present, there
are few studies on the impact of climate change on hydrological processes in the Qinhuai
River Basin.

The response of runoff to global climate change has been extensively investigated by
using multiple methods [14,15]. These methods are the statistical analysis method [16,17], the
watershed contrast test [18], and the hydrological modeling method [19,20]. The distributed
hydrological model has been widely used because it considers both the spatial heterogeneity of
the watershed and the physical process of the hydrological cycle [21]. The SWAT model in the
distributed model comprehensively considers many factors, such as soil, vegetation, surface
water, and groundwater, which are affected by climate change and human activities. With
the advantages of high computational efficiency, the ability to simulate long-term continuous
hydrological processes and flexibility in application, this model has become an indispensable
tool in the process of water resources conservation and management and has been widely
used in the simulation of the hydrological cycle and the prediction of the hydrological effects
of climate change at a watershed scale at home and abroad [22]. Wang et al. [23] expounded
the principle, structure, and application of the SWAT model. In addition, the SWAT model
was used to study the Lancang-Mekong River Basin [24], the Zishui Basin [25], and the Vistula
and Odra River Basins [26].

In recent years, atmospheric models have also been further developed, which provides
a new opportunity to study the hydrological effects of climate change on regional scale.
In this study, six global climate models in the Coupled Model Intercomparison Project
Phase 6 (CMIP6)—BCCCSM2-MR, MRI-ESM2-0, GFDL-ESM4, CanESM5, INM-CM5-0, and
MIROC6—were selected based on their spatial resolution, and three SSP emission scenarios
of SSP1-2.6, SSP2-4.5, and SSP5-8.5 were chosen to reproduce future discharge. Previous
studies have confirmed that the six selected CMIP6 climate models have good applicability
in China [27–29]. Although GCMs model for future meteorological elements has the strong
ability of extensional forecast, the spatial resolution of the model itself is low. If the climate
model is directly applied to the study of small-scale regional climate change response,
the spatial differences in small-scale regions may be ignored. Therefore, the problem of
downscaling and bias correction must be considered when using GCMs to predict regional
climate change in small watersheds. The downscaling method can transform the results
of large-scale and low-resolution GCMs simulation into small-scale and high-resolution
regional climate information, to effectively solve the problem of scale mismatch of climate
models [30,31]. Among all the different downscaling methods, the statistical downscaling
approach such as Inverse Distance Weighting (IDW) is effective and simple in terms of
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principle and calculation and consistent with the first law of geography [32]; it has been
commonly used in hydrology. This method has high requirements for the distribution
and density of meteorological stations and is suitable for areas with large density and
the small topographic relief of meteorological stations; the observation data of adjacent
rainfall stations must have a positive spatial correlation [33]. By downscaling, the temporal
and spatial resolution of GCMs in the study of watershed climate characteristics has been
improved. After that, it is also necessary to correct the deviation of the data to ensure that
it matches the observed data, to further improve the data accuracy. A daily bias correction
(DBC) approach is developed by Chen et al. [34,35], which can correct biases of precipitation
frequency and intensity simultaneously. This method is a hybrid method that combines
the daily transition (DT) method and the local strength scale (LOCI) method, and its good
applicability has been widely verified in China [36].

On this basis, the method of combining watershed-scale hydrological models such as
SWAT with the output of GCMs to assess the impact of climate change on hydrological
processes has been more and more widely used. In previous studies, the method of
coupling the SWAT model with global climate models has been validated and applied
to some river basins to predict the impact of climate change in the future. He et al. [37]
quantitatively simulated the runoff response of the Luo River Basin to climate change by
using the SWAT-distributed hydrological model based on future climate scenarios and the
land use produced by the CA-Markov model. They found that the change of runoff was
positively correlated with the change in precipitation and negatively correlated with the
change in temperature. They also found that the influence of land use and climate change
on runoff shows a non-linear synergistic effect. Clina et al. [38] combined downscaled
general circulation models for three Representative Concentration Pathways (RCPs) in
CMIP5 to assess the impacts on discharge regulation and water supply in the Laguna
del Sauce catchment. Zhao et al. [39] investigated the variation of hydrological drought
in the Weihe River Basin by using three GCMs in two RCP emission scenarios, and the
SWAT hydrological model. Tian et al. [40] used two global climate models provided by the
CMIP5 and CA-Markov model and combined them with the SWAT model to quantitatively
evaluate the impact of climate change and LUCC on runoff. Cheng [41] applied the SWAT
model to examine the impact of LUCC and climate change on runoff in the Yuan River
Basin in different scenarios. This study clearly illustrated the dominant role of climate
change in runoff changes and found that the decrease in runoff was caused by the increase
in temperature and decrease in precipitation. The CMIP program has developed to the
sixth generation so far, and each update has made the simulated data closer to the real
climate change by reviewing past experience and using new technologies. Most of the
above studies used CMIP5 model projections, but few used the recently released CMIP6
model projections to evaluate hydrological changes.

Therefore, the target of this study is to use the SWAT model and the available six
global climate models provided by the CMIP6 for downscaling and bias correction under
three future climate scenarios—SSP1-2.6, SSP2-4.5, and SSP5-8.5—to qualitatively analyze
the extent of future climate change and its impact on runoff and to assess the flood risk in
the Qinhuai River Basin. This study can provide basic information and scientific evidence
for water resources management in the Qinhuai River Basin amid climate change. It is
of great theoretical value and practical significance for mastering the mechanism of river
basin water cycles, regulating and distributing water resources reasonably, and managing
water resources comprehensively.

2. Data and Methodology
2.1. Study Area

The Qinhuai River Basin is situated in southwest Jiangsu province, China (Figure 1).
It is located between 31◦34′ to 32◦10′ North latitude and 118◦39′ to 119◦19′ East longitude.
The basin covers an area of approximately 2631 km2, with an elevation cram range of −43
to 416 m (Figure 2a). It is a double outlet river basin, with the water source in the South
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originating from the Jurong River in Baohua Mountain, Jurong, and the water source in
the north deriving from the Lishui River in Donglu Mountain, Nanjing. The two rivers
converge to the main stream of the Qinhuai in the northwest village of Jiangning district,
Nanjing, divert in Dongshan township, and join the Yangtze River at Wudingmen Sluice
and Qinhuai River New Sluice in the northwest corner of the river basin. The topography
is a complete, fan-shaped structural basin, with the central part a plain surrounded by hills
and accounting for 78% of the total area. The subtropical monsoon climate of the study area
has four distinct seasons, with abundant rainfall and sufficient sunshine. The multi-year
average annual precipitation over the basin is almost 1056 mm, while the average annual
temperature is about 15 ◦C. The land use of the basin is mainly agricultural land, followed
by urban commercial land and Forest. The Sankey diagram (Figure 3) shows that the
change of land use in the basin from 1980 to 2015 was mainly from cultivated land to
residential area, which changed by 240 square kilometers, followed by from cultivated land
to forest land, which changed by 22 square kilometers. This indicates that land use change
in the study catchment is mainly induced by human activities, such as urbanization, and
change in agriculture development, etc.
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2.2. SWAT Model
2.2.1. Principle and Development of Model

The Soil and Water Assessment Tool (SWAT) [42] is a public-domain-distributed
hydrological model developed by the Agricultural Research Service of the United States
Department of Agriculture (USDA-ARS) in 1994. It is a physics-based model that combines
the Simulator for Water Resources in Rural Basins (SWRRB) model and the Routing Outputs
to Outlet (ROTO) model organically [43]. Since its successful development, the model
has been improved several times in more than 30 years and has made great progress
in the research depth and application fields. This study was carried out by using the
model version of SWAT2012, which is a version with more accurate simulation results
by constantly adding new modules, modifying calculation methods, and increasing the
scope of application [44]. It takes the day as the time step, simulates the continuous time
series, and uses the discretization method to describe the spatial differences of hydrological
elements and other parameters in the basin. The hydrological process simulated by the
SWAT model can be divided into the runoff generation and overland flow concentration
phase and the river confluence phase. In the model, the basin is first divided into multiple
sub-basins, and on this basis, the sub-basins are then divided into multiple hydrological
response units (HRUs) for simulation operation. In this study, the Qinhuai River Basin is
divided into 51 sub-basins and 1582 HRUs.

The model can be used to simulate the changes of discharge under current conditions
and under changing underlying surface or meteorological conditions. The operational
basis of the model is the water balance equation [45]:

SWt = SW0 +
t

∑
i=1

(
Rday −Qsurf − Ea −wseep −Qgw

)
(1)

where SW0 (mm) is initial soil moisture content, SWt (mm) is final soil moisture content,
Rday (mm) is the precipitation at day i, Qsurf (mm) is the surface runoff at day i, Ea (mm) is
the evapotranspiration at day i, wseep (mm) is the soil flow depth on day i, Qgw (mm) is the
groundwater runoff depth on day i, and t (d) is time [46].

2.2.2. Evaluation Indices of Model Applicability

Based on previous studies [40,47–49], the Nash–Sutcliffe efficiency coefficients (NSE),
the correlation coefficients (R), the relative error (RE), and the Kling–Gupta efficiency
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(KGE) in calibration and validation periods are selected to evaluate the applicability of
the model. R is used to evaluate the degree of coincidence between the measured value
and the observed value. The closer the R value is to 1, the greater the goodness of fit. If R
equals 1, it proves that the two data have sequences that are exactly the same. The relative
error can evaluate the deviation between the simulated value and the observed value. The
closer the RE value is to 0, the closer the two values are. The Nash efficiency coefficient
is also an important standard to measure the simulation effect. The closer the NSE value
gets to 1, the closer the simulation results are to the measured values. In general, when
0.75 < NSE ≤ 1, the simulation consequence is considered to be excellent. The simulation
result is considered relatively good when 0.65 ≤ NSE < 0.75. When 0.5 < NSE ≤ 0.65, the
outcome of the simulation is considered acceptable. The result is considered unacceptable
when NSE ≤ 0.5 [47]. KGE can pay attention to the R, mean value difference, and standard
deviation between the simulated and observed values at the same time. Thus, it can
better evaluate the performance of the model. When KGE > 0.7, the model is considered
credible. The simulation consequence is considered to be satisfactory, when KGE > 0.8.
When KGE > 0.9, the results are considered excellent [49].

NSE = 1− ∑n
i=1(Qoi −Qsi)

2

∑n
i=1(Qoi − µoi)

2 (2)

R =
∑n

i=1(Qoi − µoi)(Qsi − µsi)√[
∑n

i=1(Qoi − µoi)
2
][

∑n
i=1(Qsi − µsi)

2
] (3)

RE =
∑n

i=1(Qsi −Qoi)

∑n
i=1 Qoi

× 100% (4)

α =
σsi

σoi
(5)

β =
µsi
µoi

(6)

KGE = 1−
√
(α− 1)2 + (β− 1)2 + (R− 1)2 (7)

where n is the number of measured data, Qsi (m3 s−1) is the value of simulated discharge,
Qoi (m3 s−1) is the value of observed discharge, µsi (m3 s−1) is the mean value of simulated
discharge, and µoi (m3 s−1) is the mean value of observed discharge.

2.3. Data Description

Constructing the SWAT model requires basic data such as DEM, land use, soil, topog-
raphy, meteorology, and hydrology. Since the SWAT model requires all raster data to have
a unified projection system and geographical coordinates, the projection coordinate system
is transformed into WGS_1984_UTM_Zone_51N, and the geographical coordinate system
is transformed into GCS_WGS _1984.

2.3.1. Topographic, Soil, and Land Use Data

The DEM data is obtained from the Geospatial Data Cloud, and its spatial resolution
is 90 m. The land use data with resolution of 1 km is from the Resources and Environment
Science and Data Center. In this study, we used land use data of 1990 and 2010. The soil
data is derived from the Harmonized World Soil Database. The resolution of the data is
1 km. The data source used in China is 1:1 million, and the soil data are provided by the
second National Land Survey in Nanjing.

2.3.2. Hydro-Meteorological Data

The meteorological data are derived from the daily climatic dataset of the Jiangsu
International Ground Exchange station supplied by the National Earth System Science and
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Data Center. The maximum and minimum temperature data used in this study is 55 years
of daily data from the Nanjing Meteorological Station from 1961 to 2015. The relative
humidity, wind speed, and sunshine duration are generated by the weather generator of
the SWAT model. The precipitation data are derived from seven rainfall stations in the
basin (Aiyuan, Dongshan (Daluo Village), Qianhan Village, Tuqiao, Wudingmen Sluice,
Nanjing, and Zhaocun Reservoir stations) from 1978 to 2015. The hydrological data are
based on the daily observed discharge data of the Wudingmen Sluice and the Qinhuai
River New Sluice, which controlled the drainage source areas of the Qinhuai River Basin
from 1978 to 2015.

2.4. GCMs and Climate Change Scenario

The general circulation model has been considered as a direct and effective method to
assess the process of global climate change. The CMIP Program aims at better analyzing
past, present, and future climate change, and it has been released to the sixth edition, which
has not only ushered in a new era for climate science research but has also become a key
element of national climate change assessments. The CMIP6 model is affected by factors
such as the mechanism, the setting of initial conditions, the resolution, etc., resulting in
the different accuracy characteristics of the simulation ability of the same basin and region.
According to the applicability of CMIP6 in China, six GCMs projections of BCCCSM2-
MR, MRI-ESM2-0, GFDL-ESM4, CanESM5, INM-CM5-0, and MIROC6 were used in this
study [27–29]. The downscaled GCMs projections under the three emission scenarios of
SSP1-2.6, SSP2-4.5, and SSP5-8.5 are from China Meteorological Administration (CMA).
The spatial resolution of each mode is different. The name and basic information of the
mode are shown in Table 1.

Table 1. The details of 5 GCMs used in CMIP6.

ID Name of GCM Country Institution Atmospheric Resolution (Lat × Lon)

1 BCCCSM2-MR China BCC 1.125◦ × 1.125◦

2 MRI-ESM2-0 Japan MRI 1.125◦ × 1.125◦

3 GFDL-ESM4 America NOAA GFDL 1◦ × 1.25◦

4 CanESM5 Canada CCCMA 2.7673◦ × 2.8125◦

5 INM-CM5-0 Russia INM 1.5◦ × 2◦

6 MIROC6 Japan MIROC 1.389◦ × 1.406◦

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change
(IPCC), released in 2021, uses the new climate model in CMIP6, in which the new emission
scenario driven by different socio-economic models, the shared socioeconomic pathways
(SSPs), replaces the representative concentration pathways (RCPs) in CMIP5. As an im-
portant part of the new generation of climate change scenarios, SSPs look at five different
development models of future economic and social system development, reflecting the
relationship between radiation forcing and socioeconomic development. If SSPs are set
from the perspective of mitigation and adaptation challenges faced by the future social
economy, they can be divided into five paths. The SSP1 scenario describes a world with
sustainable development and low climate change challenges. The SSP2 scenario looks
at a middle of the road world, that is, social, economic, and technological trends do not
deviate significantly from historical patterns and face moderate climate change challenges.
The SSP3 scenario presents the worst development direction that society must avoid or
prepare to deal with. The SSP4 scenario involves intra-regional and external inequality,
with low challenges to be mitigated but large challenges to be adapted. The SSP5 features
a high-speed development pattern promoted at the cost of a large amount of fossil fuels.
The difference between SSPs and RCPs is that although the radiative forcing predicted
by the new scenario in CMIP6 is similar to that in CMIP5, the emission paths and mixed
emission paths of carbon dioxide and non-carbon dioxide are different. The three climate
scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5 selected in this study are all upgraded from



Water 2022, 14, 1778 8 of 17

RCP2.6, RCP4.5, and RCP8.5, which is an important improvement in CMIP6 scenarios. The
SSP1-2.6 scenario in the CMIP6 is low-force, representing the combined effects of low social
vulnerability, low mitigation pressure, and low radiative forcing. The SSP2-4.5 scenario
is intermediate, representing a combination of medium social vulnerability and medium
radiation coercion. The SSP5-8.5 scenario is high-force, representing the combination of
high social vulnerability and high radiative forcing, and it is the only path to achieve the
man-made radiative forcing level of 8.5 W m−2 by 2100.

3. Results and Discussion
3.1. Parameter Sensitivity Analysis

The SUFI-2 algorithm in SWAT-CUP is a reverse method to verify applicability of
hydrological model and can analyze the sensitivity of model parameters. There are tens of
parameters in the SWAT model. Based on the literature [50–53], 13 of the most sensitive
parameters were identified by SWAT-CUP and were listed in Table 2. The model parameters
were optimized by using the SUFI-2 algorithm in which a simulations approach was used
for best fit by multiple iterations. We use the T-Stat value and p-value produced in the
SUFI-2 algorithm to evaluate the sensitivity of the model parameters. A higher absolute
value of T-Stat indicates a higher sensitivity of the parameters. The p-value reflects the
significance of the sensitivity. When a p-value approaches 0, this indicates the higher
significance of the sensitivity. The physical meanings of model parameters were given
in Table 2, and the initial ranges of model parameters were given as well based on the
previous studies [50–54].

Table 2. The sensitive parameters for discharge with their ranges and fitted values.

Rank Parameters Description T-Stat p-Value Fitted Value Range

1 V_ESCO.hru Soil evaporation
compensation factor −20.847 0.000 0.892 0.8 to 1

2 V_CH_N2.rte Manning’s n value for the
main channel −4.684 0.000 0.198 0 to 0.3

3 V_SLSUBBSN.hru Average slope length −3.899 0.000 50.180 10 to 150
4 V_GW_DELAY.gw Groundwater delay −1.823 0.069 160.620 30 to 450
5 V_ALPHA_BF.gw Base flow alpha factor −1.799 0.073 0.623 0 to 1
6 V_SMFMX.bsn Melt factor for snow on June 21 −1.768 0.078 1.060 0 to 20

7 V_CH_K2.rte Effective hydraulic conductivity in
the main channel −1.569 0.117 13.625 5 to 130

8 V_GWQMN.gw Threshold depth of water in shallow
aquifer for return flow to occur −1.566 0.118 1.026 0 to 2

9 V_SMTMP.bsn Snow melt base temperature −1.539 0.125 −16.120 −20 to 20

10 R_SOL_K (1).sol Soil saturated hydraulic
conductivity of the first layer 1.455 0.146 0.590 −0.8 to 0.8

11 R_SOL_AWC (1).sol Soil available water storage capacity
of the first layer −0.991 0.322 −0.057 −0.2 to 0.4

12 V_GW_REVAP.gw Groundwater
reevaporation coefficient −0.615 0.539 0.181 0 to 0.2

13 R_CN2.mgt SCS runoff curve number −0.561 0.575 −0.167 −0.2 to 0.2

Table 2 indicates that the soil evaporation compensation factor (ESCO) is the most
sensitive parameter. ESCO mainly dominates the evaporation from soil water. The evapora-
tion of soil water will decrease when ESCO increases. As a result, runoff will increase. The
Mannin’s n coefficient for the main channel (CH_N2) and average slope length (SLSUBBSN)
rank No.2 and No.3 in sensitivity of model parameters. SLSUBBSN mainly reflects the
influence of the topography and geomorphology on the runoff yield. Based on the value of
T-Stat, it can be found that changes in ESCO, CH_N2, and SLSUBBSN have a higher influ-
ence on the runoff generation for the Qinhuai River Basin, while the other 10 parameters
have a relative lower influence on the runoff yield.
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3.2. Applicability Analysis of SWAT Model

We use data series from 1978–2015 to calibrate and validate the SWAT model. In order
to eliminate the initial value of the state variable, we take the first two years as a warm-
up period. 1980–2000 and 2001–2015 are calibration and validation periods, respectively.
Due to land use change, we therefore used land use data of 1990 to represent land use
condition in 1980–2000 for model calibration and land use data in 2010 to represent land
use condition in 2001–2015 for model validation. Based on the sensitivity analysis of
model parameters and the optimal parameters, the daily discharges from 1980–2015 were
simulated. We integrated daily discharge to monthly simulated discharge. The applicability
of the SWAT model was evaluated with four evaluation indices (NSE, R, RE, and KGE) and
flow duration curves (FDC) based on simulations at daily and monthly scales. Figure 4
shows the simulated and observed daily discharge for two typical years of 2000 in the
calibration period and 2010 in the validation period. The flow duration curves of the
simulated and observed daily discharge for the entire period from 1980–2015 are shown
in Figure 5. It can be seen from Figure 4 that the simulated and observed daily discharge
fit well for most cases. Although there are some peak discharges being overestimated or
underestimated, the relative errors and absolute errors are acceptable according to the
Standard for Hydrological Information and Hydrological Forecasting issued by Ministry of
Water Resources in 2008 [55]. The flow duration curve in Figure 5 indicates that most high
flows (approximately >100 m3/s) were under-simulated. There are low flows being over-
and under-simulated.
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The simulated and observed monthly discharges in calibration and validation periods
were given in Figure 6. The seasonal patterns of the multiple-year average of the simulated
and observed discharge are given in Figure 7. The statistical results of SWAT model
performance for daily and monthly discharge simulated were summarized in Table 3. Both
Figures 6 and 7 show that the simulated and observed monthly discharges match well.
The results in Table 3 indicate that the NSE values in calibration and validation periods
are above 0.75 for daily discharge simulation, while the corresponding R values are 0.88
and 0.90 for both the periods, respectively. Relatively, the SWAT model performs better for
monthly discharge simulation with NSE values, R values, and KGE values, which are much
higher than that of daily discharge simulation. Meanwhile, relative errors in calibration
and validation periods are ±3.5%. According to the Standard for Hydrological Information
and Hydrological Forecasting, the SWAT model reaches to class A (NSE > 0.75) for both
daily and monthly discharge simulation.
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Table 3. The calibration and validation results of the SWAT model.

Temporal Scale Period NSE R RE KGE

Daily Calibration 0.79 0.88 2.30% 0.85
Validation 0.75 0.90 −3.14% 0.79

Monthly Calibration 0.87 0.91 2.30% 0.87
Validation 0.85 0.95 −3.14% 0.83

3.3. Projected Changes in Precipitation and Temperature

Rainfall variability is one of the manifestations of climate change and has a direct
impact on the runoff process and the hydrological cycle [56]. The forecast period of the
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study is from 2025 to 2060, and the baseline period is from 1980 to 2015. The average annual
precipitation in the baseline period is 1103.79 mm. Figure 8 shows that under the three
emission scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5, the average annual precipitation in
2025–2060 has different ranges of increase compared with the baseline period. Generally,
predictions of precipitation have great uncertainty. For the SSP1-2.6 emission scenario, most
of the GCM projections show a 5.64% precipitation increase in the future on average, with a
range of (−3.63%, 15.37%). For the SSP2-4.5 emission scenario, more than half of the GCMs
project that precipitation will increase by 2.60% (−0.35%, 4.94%) in the future 2025–2060.
For the SSP5-8.5 emission scenario, all GCMs project that precipitation will increase by
6.67% with a range of (1.61%, 12.75%). On average, the average annual precipitation in the
Qinhuai River Basin under each SSP scenario changes little and shows an increasing trend
(Figure 9). The precipitation increase rate under the SSP1-2.6 emission scenario is the fastest,
at 3.86 mm/(10 years). In addition, the precipitation increase rate under other emission
scenarios is slower than that in history, and the increasing trend in precipitation under the
SSP2-4.5 emission scenario is the slowest, at 1.99 mm/(10 years). The precipitation increase
trend under the SSP5-8.5 emission scenario is between the other two emission scenarios.
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Temperature can indirectly influence the change of runoff through surface evapotran-
spiration [57]. According to the data of IPCC, there is high confidence that the global mean
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evaporation increases with global warming, with evaporation increasing by 1–3% for every
1 ◦C increase in temperature [58]. The multi-year average of maximum and minimum air
temperature in the baseline period is 20.63 ◦C and 12.19 ◦C, respectively. The changes in
the multi-year average maximum and minimum air temperature in the future 2025–2060
relative to the baseline period for the three SSPs emission scenarios were investigated
(Figure 10). In the future, the multi-year average temperature in the Qinhuai River Basin
will be accompanied by a rapid warming trend and will be higher than that in history as a
whole. This may be due to the intensification of global warming caused by the continuous
increase in global greenhouse gas emissions, which is reflected in the increasing rate of
warming as the equivalent of carbon dioxide emissions increases. Figure 8 indicates that all
six GCMs predict that maximum and minimum air temperatures will continue to rise in
varying degrees in the future. The maximum air temperature will rise by 1.6 ◦C (1.26 ◦C,
2.01 ◦C), 1.65 ◦C (1.04 ◦C, 2.32 ◦C), and 2.08 ◦C (1.40 ◦C, 2.92 ◦C) under the three emission
scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The minimum air temperature
would rise by 1.40 ◦C, 1.60 ◦C, and 1.99 ◦C, respectively, with ranges of (1.06 ◦C, 2.01 ◦C),
(1.12 ◦C, 2.40 ◦C), and (1.41 ◦C, 3.00 ◦C) for the three SSPs scenarios. Based on the precipi-
tation and temperature data, this shows that the hydrothermal conditions in the Qinhuai
River Basin will still show warm and humid trends in the future.
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3.4. Climate Change Impact on Runoff

The runoff variation trend from 2025 to 2060 was analyzed based on the global climate
model data of precipitation, maximum temperature, and minimum temperature from 1980
to 2014 after down-scaling and deviation correction, as well as the calibrated SWAT model
set in the study area. Figure 11 shows that the six GCMs all project that discharge will
increase by 8.84% (2.45%, 13.57%) in the SSP2-4.5 emission scenario and 17.96% (7.40%,
32.46%) in the SSP5-8.5 scenario. For the SSP1-2.6 emission scenario, most of the GCMs
project that discharge will increase by 16.24% with a range of −4.17% to 38.60%. Future
climate projections via the GCMs are largely uncertain. Given the great non-determinacy
between different climate models, we applied the multi-model ensemble of GCM under
three different emission scenarios in the study to project the future runoff process. The
change in the average runoff at the outlet of the Qinhuai River Basin from 2025 to 2060 is
shown in Figure 12. As can be seen, under the SSP1-2.6 emission scenario, the maximum
annual runoff is 758.4 m3 s−1 in 2051, and the minimum one is 307.0 m3 s−1 in 2039. Under
the SSP2-4.5 emission scenario, the runoff is greatest in 2059 and lowest in 2027, which
are 663.3 m3 s−1 and 288.3 m3 s−1 respectively. Under the SSP5-8.5 emission scenario,
the average annual runoff reaches the maximum and minimum values in 2058 and 2031,
respectively, with a maximum of 701.4 m3 s−1 and a minimum of 323.5 m3 s−1. The trend
test of runoff series under the three SSPs scenarios was carried out using the Mann–Kendall
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method. The Z value obtained under the SSP1-2.6 emission scenario is 3.08, which is much
higher than the upper limit of the confidence level of 1.96. The absolute values of Z values
obtained under the SSP2-4.5 and SSP5-8.5 emission scenarios are 0.97 and 1.40, respectively,
and are all within the confidence level threshold of 1.96. The results show that at the 95%
confidence interval, the increasing trend of runoff series in the future of Qinhuai River
Basin is remarkable only in the SSP1-2.6 scenario, while the increase in runoff under the
other two scenarios is not significant.
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three emission scenarios.

Climate change not only directly affects the hydrological cycle but also affects regional
water resources indirectly by changing land use (i.e., vegetation, etc.,). However, the Sankey
diagram (Figure 3) shows that land use change in the study catchment is mainly induced by
human activities, such as urbanization, changes in agriculture development, etc. This result
is consistent with the previous study of Ma et al. (2015) [59]. Climate change contributes
a small proportion of land use change. In addition, China is vigorously promoting the
protection of cultivated land resources, especially in the 14th Five-Year Plan; the state clearly
proposed to take rural agriculture as the key development direction in the future. It can be
inferred that the area of cultivated land may not change greatly under the future climate
change. We therefore project the future water resources of the catchment by focusing on
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changes in precipitation and temperature and neglecting the impact of change in land use
induced by climate change.

The rise in temperature across the SSPs, with more of an increase in SSP5-8.5 followed
by SSP2-4.5 and SSP1-2.6. However, the increase of precipitation and discharge is in the
order of SSP5-8.5, SSP1-2.6 and SSP2-4.5. The rise of temperature in SSP2-4.5 scenario
is more than that in SSP1-2.6 scenario, while the precipitation and the discharge that is
greatly affected by it are higher for SSP1-2.6 and SSP2-4.5, in that order. This might be
related to the uncertainty of the results of SSP1-2.6. As we can see in Figures 8 and 11,
in the SSP1-2.6 emission scenario, there is a great difference between the high and low
values of future runoff, and the evaluation results are quite dispersed, indicating that the
results are uncertain, while the evaluation results are relatively concentrated for scenario
SSP2-4.5. To some extent, uncertainty in precipitation and temperature forecasts might
further affect the hydrological and water resources forecasts of the basin [60,61]. Runoff
in the basin always has a certain law of response—linear or non-linear—to the change in
precipitation [62]. The change trend of runoff and precipitation in each period in the basin
in the future is basically the same. The correlation between precipitation and runoff is good,
and the runoff in each scenario increases with the increase of precipitation. This shows that
the change in precipitation has a direct impact on the runoff in the basin, and there is a
positive correlation between them [40], while the impact of temperature change on runoff
is indirect [63]. Previous studies have indicated that the response of runoff to the changes
in rainfall is stronger and the precipitation and runoff in the Yangtze River Basin may
continue to increase in the future [64–66], which corresponds with the results of this study.
Overall, the future runoff of the Qinhuai River Basin may continue to increase, especially in
the flood season. This phenomenon will further aggravate the flood control pressure in the
wet period, which is not conducive to the future water resources management of Qinhuai
River Basin. From the perspective of water resources, local planning departments will face
new challenges in the management of water resources in the future. Although the GCMs
were used to run the SWAT model, the temporary spatial variability of the runoff process
in the basin may be much greater than that of atmospheric process reflected by GCMs. In
the process of runoff prediction, there are some uncertainties in the downscaling, climate
model, emission scenarios, and hydrological model. Moreover, human activities, such as
urban impervious surface expansion, reservoir operations, and other land use changes, also
have a significant impact on runoff generation and water resources [67]. However, these
aspects are beyond the scope of this study and need further research.

4. Conclusions

The SWAT model performs well for discharge simulation at both daily and monthly
scales. The NSE and KGE values of discharge simulation in the calibration and valida-
tion periods are above 0.75, and the relative errors (RE) are ±3.5%. The SWAT model is
applicable to the Qinhuai River Basin for climate change impact studies.

The projected precipitation and temperature of the Qinhuai River basin will likely
increase under the different SSPs scenarios. The average annual precipitation in 2025–2060
under the three SSPs emission scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5 will probably
increase by 5.64% (−3.63%, 15.37%), 2.60% (−0.35%, 4.94%), and 6.68% (1.61%, 12.75%),
respectively, in comparison with the baseline of 1980–2015. The multiple-year average
of daily maximum and minimum air temperatures will likely rise by 1.6 ◦C and 1.4 ◦C
for scenario SSP1-2.6, 1.7 ◦C, and 1.6 ◦C for scenario SSP2-4.5, and 2.1 ◦C and 2.0 ◦C for
scenario SSP5-8.5.

As a result of future climate change, the projected runoff of the Qinhuai River basin
shows an increasing trend. The multi-year average runoff in the Qinhuai River Basin was
projected to increase by 8.84%–17.96% during 2025–2060 in comparison to the baseline.
An increase in runoff will help to relieve the contradiction between the water supply
and demand. However, changes in extremes due to rainfall increase might aggravate the
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flooding situation. Flooding issues induced by climate change will probably be a new
challenge to flood control.
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