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Abstract: The long-term overexploitation of groundwater has caused sharp decreases in groundwater
table depth and water storage in the agricultural areas of the North China Plain, which has led
to obvious changes in the runoff process of the hydrological cycle, affecting the mechanism of
runoff generation. Evaluating the impact of groundwater overdraft on runoff generation using
hydrological models is the focus of the current work. Herein, a hydrological modeling framework is
proposed based on the Variable Infiltration Capacity (VIC) model. The optimal parameters of the VIC
model were determined by the synergetic calibration method, combining runoff, evaporation, and
water storage levels. Meanwhile, a sliding calibration scheme was employed to explore the implied
relationships among runoff coefficient, groundwater exploitation, and model parameters, particularly
for the thickness of the second soil layer (i.e., parameter d2), both for the whole period and the sliding
window periods. Overall, the VIC model showed good applicability in the southern Haihe river
plain, as demonstrated by the low absolute value of the relative error (RE) between the simulated and
observed data for runoff and evaporation, with all REs < 8%, as well as large correlation coefficients
(CC, all > 0.8). In addition, the CCs between the simulated and the observed data for water storage
were all above 0.7. The calibrated optimal parameter d2 increased as the sliding window period
increased, and the average d2 gradually increased from 0.372 m to 0.415 m, for which we also found
high correlations with both the groundwater table and water storage levels. Additionally, increases
in the parameter d2 led to decreases in the runoff coefficient. From 2003 to 2016, the parameter d2

increased from 0.36 m to 0.42 m, and the runoff coefficient decreased by about 0.02.

Keywords: groundwater overdraft; runoff generation; VIC model; synergetic calibration; sliding
calibration; water storage

1. Introduction

In recent years, the problem of climate change has remained an important issue of
global concern, and a series of associated hydrological changes has received increasing
attention from hydrographers [1–6]. Plain areas are often regions with dense populations,
developed agriculture, and rapid economic and social development, where emerging
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environmental and hydrological problems caused by those intensive human activities
are becoming more and more prominent [7–12]. The North China Plain is one of the
three major agriculturally developed plains in China, and it is also the main center of
grain production in China, with corn and wheat yields that account for more than 45%
and 50% of the whole country, respectively [13,14]. However, the North China Plain has
long been perturbed by serious groundwater overdrafts due to extensive agricultural
irrigation [15]. The overexploitation of groundwater causes sharp declines in groundwater
levels, which has significantly changed the original hydrophysical mechanisms [16–18].
Consequently, it is critically important to explore the influence of groundwater overdraft
on runoff generation and reveal the relevant underlying mechanisms.

Conceptually, a hydrological model refers to a mathematical model for generalizing
complex hydrological phenomena and processes using a simulation method [19–22]; such
models contribute to the quantitative evaluation of the impacts of groundwater overdraft
on runoff generation. According to the degree of discretization of the descriptions of water-
shed hydrological processes, models can be divided into three categories: lumped [23,24],
distributed [25–28], and semi-distributed [29]. Of these, distributed hydrological models
show advantages over lumped models due to the fact that they take into account spatial
variability in processes, inputs, boundary conditions, and catchment characteristics [30].
Specifically, the Variable Infiltration Capacity (VIC) model has been widely applied for
numerous hydrological simulations and predictions, playing a critically important role in
studying the impacts of climate change on hydrological processes [31–34]. More impor-
tantly, the influence of soil inhomogeneity on runoff yield is described in the VIC model
using the soil infiltration capacity parameters for each grid [35], which facilitates the accu-
rate simulation of changes in groundwater storage; furthermore, it allows researchers to
quantitatively analyze the impacts on runoff generation.

In general, hydrological models often use the observed runoff series of the outlet
section to verify the reliability of the model [28,34]. However, for plain areas with ground-
water overexploitation, the changes in runoff production and model parameters have
always been a scientifically difficult problem for hydrology scholars [36–38]. On the one
hand, plenty of previous studies on hydrological model optimization have focused on
traditional hydrological simulations in hilly areas, with little attention paid to plain areas.
Hydrological modeling in plain areas is more difficult than in hilly areas because there is
no unified river basin outlet for calibration using observed runoff data [34]. On the other
hand, traditional hydrological modeling only considered runoff at the outlet of the basin
section [28,31,34], neglecting the influences of intense groundwater overexploitation on
runoff generation. There are several hydrological processes highly related to groundwater
overexploitation, especially concerning water storage, that can assist in synergistically
calibrating hydrological models. Moreover, precipitation is also consumed for most evapo-
transpiration during runoff generating processes, which further influences the dynamic
process of water storage according to the water balance principle; thus, the two hydrological
elements, i.e., water storage and evaporation, could be employed in hydrological models
for synergetic calibration. Therefore, constructing a hydrological modeling framework
appropriate for runoff simulation in plain areas is crucial for further quantitative evaluation
of the influences of groundwater overdraft on runoff yield, and the core of the framework
is a combination of the intermediate variables of water storage and evaporation.

However, water storage is difficult to assess by ground observations, and ground-
observed evaporation usually has low spatial resolution, which inhibits its further ap-
plication in hydrological models over large areas. With the continuous development of
remote sensing technology, satellite/reanalysis datasets concerning global evapotranspi-
ration and terrestrial water storage provide new technical possibilities for hydrological
modeling [39–44]. The observed evaporation data provided by the Global Land Evapo-
ration Amsterdam Model (GLEAM) have demonstrated good performance in numerous
cases, as demonstrated by high consistency with the flux observation tower [45]. As for the
water storage data monitored by the Gravity Recovery and Climate Experiment (GRACE)
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satellite, they have been successfully applied to hydrological model calibration, providing
a new avenue for regional groundwater storage estimation [46]. The GRACE water storage
data can also be employed for data assimilation of hydrological models to reduce the
uncertainty of hydrological models and improve the reliability of the simulations [47]. As
mentioned above, the introduction of the GLEAM evaporation and GRACE water storage
data to hydrological models enables the evaluation of multiple hydrological elements and
can also effectively reduce the large margin of error that may result from selecting the
optimal parameters of a model based only on a single hydrological element; reducing such
errors improves the integrity of hydrological simulations [48].

One of our study’s main goals is to quantitatively evaluate the impacts of groundwater
overdraft on runoff generation using a hydrological model for plain areas with intense
agricultural irrigation. Another aspect our study aims to explore is the applicability of a
synergetic calibration and validation method for simulating runoff processes based on the
GRACE water storage and GLEAM evaporation datasets.

To this end, a hydrological modeling framework is proposed based on the VIC model
using the synergetic calibration and validation of three hydrological elements, as well
as sliding calibration for the most sensitive parameters of the runoff generation model.
The runoff, evaporation, and water storage parameters were combined to synergistically
calibrate the VIC model, and the applicability of the VIC model was analyzed in the south-
ern Haihe river plain area. The relationships among the runoff coefficient, groundwater
exploitation, and model parameters were further explored, and based on that analysis,
a quantitative estimation of the effect of groundwater overdraft on the runoff coefficient
was carried out. This research may provide scientific guidance in climate change studies,
especially for distinguishing and quantifying the contributions of human activities (e.g.,
intense groundwater exploitation) to river streamflow changes; it may also contribute to
agricultural water management in certain plain river basins.

2. Data and Methodology
2.1. Study Area

The southern Haihe plain is located in the plain area of the central Haihe river basin
in China, with a total area of about 61,000 km2. As shown in Figure 1, the coverage area
includes the Taihang Piedmont economic belt centered around the cities of Shijiazhuang,
Handan, Xingtai, and Baoding. In addition, the cities of Hengshui and Cangzhou are in
the central plain area and the eastern marine plain area, respectively. The main crops in
the study area are wheat and corn. The average annual precipitation is about 520 mm. In
terms of climate conditions, the whole region has a warm temperate humid or semi-humid
climate, which is dry and cold in winter, with high temperatures and heavy rain in the
summer but less rain and high levels of evaporation in the spring. For this reason, these
areas experience heavy droughts in the spring, and floods often occur in the summer.

The groundwater level has been greatly reduced in these areas due to serious over-
exploitation, which has even caused dehydration and dry cracks. Since the discovery of
ground fissures in Handan city, Hebei Province, in the 1960s, more than 200 ground fissures
have been found in the southern plain area of the Haihe river; they are mainly distributed
in Tianjin, Tangshan, Baoding, Langfang, etc., with a scale often ranging from several
meters to 500 m, with a maximum length of thousands of meters [49,50]. Moreover, the
overexploitation of groundwater has also caused numerous ecological and environmental
problems, e.g., the formation of underground funnels, the drying up of wetland lakes, and
seawater invasion [19].
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Figure 1. Locations of the study area, meteorological stations, and elevation information.

2.2. Data Description

The calculation period in this study is from January 2003 to December 2016. The
data used for the current work mainly include precipitation, evaporation, maximum
temperature, minimum temperature, wind speed, runoff, water storage, land cover change
data, soil data, and Digital Elevation Model (DEM) data. A summary of the input data used
to construct the VIC model can be seen in Table 1. In addition, considering that the plain
area has no unified river basin outlet, the observed runoff data were calculated and restored
by analyzing the water resources of prefecture-level cities based on the statistical data of
the National Water Resource Evaluation presided over by the Ministry of Water Resources,
together with water resource data published on the China Water Resources Communique.
Such restored runoff data can well represent the natural runoff of the southern Haihe
river basin.

The observed evaporation data were obtained from GLEAM V3.3b, which is based
on remote sensing reanalysis data observed by various satellites and estimated by the
Priestley–Taylor formula, including total evaporation (E), vegetation transpiration (Et),
plant canopy interception loss (Ei), bare soil evaporation (Eb), snow sublimation (Es), and
surface evaporation (Ew). The dataset covers the period from January 2003 to December
2018, and its spatial resolution is 0.25◦. Additionally, water storage data for the study
area were obtained from the inversed water reserves data of the GRACE satellite. The
data source (JPL: https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/ (accessed
on 10 December 2021)) has monthly data with a spatial resolution of 1◦ × 1◦. To keep
in line with other data, the calculation period selected for the water storage data was
2003 January to 2018 December 2000. It should be noted that the missing data for water
storage were interpolated according to the adjacent average interpolation method, obtaining
water storage data for each 1◦ grid for the southern system of the Haihe river basin. The
groundwater table data were obtained from the Information Center of the Ministry of Water
Resources; these data were monthly with spatial resolution of 0.043◦ × 0.043◦, and the

https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
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period covered was from January 2003 to December 2016. A total of 4076 grid points were
selected in the study area.

Table 1. Summary of input data for driving the VIC model.

Data Data Sources/Links Data Description Resolution

Meteorological
driven data

China meteorological data network
(https://data.cma.cn/

(accessed on 17 October 2020.))

70a daily meteorological data of
699 meteorological
stations in China

Site data

DEM Geo-spatial data cloud (http://www.gscloud.cn/
(accessed on 6 September 2021)) SRTMDEM digital elevation data 90 m

Land cover University of Maryland global land cover dataset Global land cover data 1 km

Soil property
Scientific center for dry regions in cold regions

(http://westdc.westgis.ac.cn/
(accessed on 6 September 2021))

Chinese soil data set based on the
World Soil Database 5 km

2.3. Methodology

VIC Model. The VIC hydrological model, developed at Princeton University and
Washington University, is a large-scale land surface distributed hydrological model based
on a spatial orthogonal distribution grid. The VIC model was firstly proposed in 1992
by Wood et al. [51] and was later developed by Liang et al. [35]. Currently, the VIC
model has been improved from the previous VIC-2 L model to the more mature VIC-
3 L model. Compared with other hydrological models, the VIC model can simulate
land–atmosphere energy conversion and water balance and simultaneously considers
two types of runoff generation mechanisms, i.e., saturation excess and infiltration excess
runoff. The influence of soil inhomogeneity on runoff yield is also described using soil
infiltration capacity parameters for each grid. By doing so, the VIC model can complement
the shortcomings of the traditional hydrological model that only considers a single runoff
generation mechanism, and it can convert the runoff depth for each grid into runoff data
at the outlet of the basin through confluence calculations. Moreover, the VIC model
not only considers the energy conversion process but also describes the processes of
surface hydrological phenomena. For example, variations in vegetation evaporation, bare
soil evaporation, soil melting snow, and other parameters are employed in the model.
The temporal and spatial variations in precipitation, soil properties, and vegetation in
watersheds grid can also be estimated by the VIC model.

Three soil layers are distinguished in the VIC-3 L model, with surface runoff generated
in the upper and middle layers and base flow produced in the lower layer. The ARNO
model scheme is used to describe the base flow. The data output from the land surface
model are usually adopted as the input data for the confluence module in the VIC model,
using the Saint-Venant Equation to calculate the flow process from each grid to the outlet
section of the basin and to obtain the simulated runoff at the outlet of the river basin.

This work only considers the runoff generation process of the land surface model
and neglects the calculation of confluence, since plain areas have no unified basin outlet
section. The Haihe plain was divided into 188 grids with a spatial resolution of 0.25◦. The
physical and chemical properties of each grid were used as the input data to drive the
VIC model. The period covered by the data is from 2003 to 2016. The temporal resolution
of the VIC output depends on the input meteorological data (diurnal). When evaluating
the model performance against the observed data, it is necessary to unify the temporal
resolution by statistical reanalysis of the diurnal simulated results of the VIC model. The
temporal resolution of the restored natural runoff in plain areas is annual; thus, the total
annual runoff output of the VIC model was calculated for comparison with the restored
natural runoff. For comparison with the monthly GLEAM V3.3b evaporation data, the total
monthly evaporation of the VIC model was also calculated. Water storage is characterized
by the sum of the soil water content of the three layers of soil in the VIC model. The water

https://data.cma.cn/
http://www.gscloud.cn/
http://westdc.westgis.ac.cn/
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storage data observed by the GRACE satellite were adopted herein to evaluate the model
performance with respect to simulating water storage changes on a monthly scale. However,
the magnitude and unit of the GRACE satellite water storage data are not unified with
those of the soil water content data simulated by the VIC model; thus, data standardization
in preprocessing the two data series could attain better comparison results.

Model Synergetic Calibration and Validation. The optimal parameters of the VIC
model in the present work were determined by the synergetic calibration method based on
three hydrological elements, i.e., runoff, evaporation, and water storage. The synergetic
calibration method refers to using a group of parameters in the model to calibrate multiple
hydrological elements at the same time. In contrast with the traditional simulation of a
single point of runoff at the outlet of the basin section, the synergetic calibration method
simultaneously considers the simulation accuracy of the runoff, evaporation, and water stor-
age data. Four statistical metrics, namely the Nash–Sutcliffe efficiency coefficient (NSEC),
the relative error (RE), the root mean square error (RMSE), and the correlation coefficient
(CC), were used to evaluate the performance of the VIC model. The CC represents the
correlation between the observed values and the simulated values, the RE indicates the
relative error between the observed values and the simulated values, and the NSEC indi-
cates the fitting degree between the observed values and the simulated values. The higher
the NSEC, the higher the fitting degree between the observations and the simulations,
indicating a higher simulation accuracy of the VIC model. RMSE represents the average
level of absolute error between the observed and the simulated data series.

Herein, NSEC, RE, RMSE, and CC were calculated using the following formulas:

NSEC = 1 −
∑tn

t=t1

(
∅t

obs −∅t
sim
)2

∑tn
t=t1

(
∅t

obs −∅obs
)2 (1)

where t1 and tn are the start and end times of the observed and simulated data series,
respectively, ∅t

obs and ∅t
sim are the observed and simulated hydrological elements at time t,

respectively, and ∅obs is the average of the observed data series.

RE = (∅sim −∅obs)/∅obs (2)

where ∅t
sim and ∅obs are the averages of the model-simulated and the observed data

series, respectively.

RMSE =

√
∑tn

t=t1

(
∅t

obs −∅t
sim
)2

n
(3)

where ∅t
obs and ∅t

sim indicate the observed and the model-simulated hydrological elements
at time t, respectively.

CC =
∑m

i=1
(
∅simi −∅sim

)(
∅obsi −∅obs

)
√

∑m
i=1
(
∅simi −∅sim

)2
∑m

i=1

(
∅obsi −∅obs

)2
(4)

where ∅sim is a model-simulated value, ∅obs is an observed value, and ∅sim and ∅obs
are the averages of the model-simulated and observed data series, respectively. Note that
the Pearson’s CC was analyzed for significance at the 0.01 and 0.05 levels.

Specifically, in terms of simulating runoff using the VIC model, the model parameters
were calibrated using the total runoff simulated by the VIC model against the restored natu-
ral runoff, and three evaluation indexes, including RE, RMSE, and CC, were adopted in the
model’s performance evaluation. When simulating evaporation using the VIC model, the
model calibration was based on the simulated total evaporation and the observed GLEAM
v3.3b evaporation data. According to Zhong et al. [45], the GLEAM evaporation data
showed high consistency with those from the flux observation tower over the Huang–Huai-
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Hai Basin areas, indicating that GLEAM evaporation data can be regarded as references for
ground-observed evaporation. The selected evaluation indexes for evaporation simulation
were NSEC, RE, RMSE, and CC. The simulation of water storage was represented by the
sum of the soil water content of the three layers output by the VIC model. When calibrating
the model parameters, the inversed water storage data provided by the GRACE satellite
were used as the observed water storage, and the selected evaluation index was CC.

Sliding Calibration Method. There were six parameters in the VIC model needing
to be calibrated, i.e., the variable infiltration curve index (B), the ratio of initial nonlinear
base flow value to maximum base flow (DS), the maximum base flow velocity (Dm),
the maximum proportional coefficient of soil water content in the third layer (WS), and
the thicknesses of the second soil layer (d2) and the third soil layer (d3). It has been
demonstrated that the most important parameter affecting runoff production in the VIC
model is parameter d2 [34]. The thickness of the second soil layer affects the water storage
of each grid and further affects the grid infiltration, resulting in influences on the surface
runoff yield. The southern plain of the Haihe river exhibits the worst drop in groundwater
table and water storage levels due to many years of overexploitation of groundwater, which
may change the parameter d2 of the VIC model. On this basis, the sliding calibration
method was adopted to obtain the variation scale of the parameter d2 and further analyze
the implied relationship between groundwater exploitation and the model parameter d2.
Specifically, the sliding calibration scheme used in this work was as follows:

(1) Model calibration and validation for the whole period. The calculation period chosen
for the study area was from 2003 to 2016. The model was firstly calibrated and
validated for the whole period, with a calibration period from 2003 to 2012 and a
validation period from 2013 to 2016. The Rosenbrock method was adopted to calibrate
the six parameters (i.e., B, DS, Dm, WS, d2, and d3) of the overall calculation period.

(2) Sliding window division. Sliding window periods of five years were designated:
2003–2007, 2004–2008, 2005–2009, etc. A total of ten sliding windows were established
for the whole period 2003–2016. For each sliding window period of five years, the
VIC was separately constructed, with the first four years as the calibration period and
the last year used for model validation.

(3) Model calibration and validation for each sliding window period. When calibrating
the VIC model for each sliding window period, the parameters B, DS, Dm, WS, and
d3 were the same as those obtained in step (1), and d2 was the only parameter to
be calibrated. The parameter d2 was given a range of [0.1, 0.5], and the setting step
was set as 0.001, generating 400 groups of model parameter sets. The optimal model
parameters were ascertained using the synergetic calibration and validation method.
Firstly, five groups of model parameters were chosen based on the minimum sum of
the absolute values of RE and RMSE between the simulated and the observed runoff
and evaporation. Secondly, the optimal parameter was obtained according to the
largest CC between the simulated and observed water storage data.

3. Results
3.1. Spatial and Temporal Variations in the Groundwater Table and Water Storage

The annual rate of change in groundwater table and water storage levels in the south-
ern Haihe river plain was obtained by regression analysis at the annual scale. Then, the
spatial annual rate of change for the whole Haihe southern system was obtained by inter-
polation in space using the inverse distance weight (IDW) method, as shown in Figure 2a,b.
Spatially, the water storage data for the southern Haihe river plain showed a decreasing
trend, while the groundwater table showed an increasing trend. The spatial distributions
of the groundwater table and water storage levels were in good agreement. In addition,
those areas with the largest increase in the groundwater table and the most obvious decline
in water storage were primarily concentrated in the cities of Baoding, Shijiazhuang, and
Xingtai. Groundwater exploitation in the Haihe plain is the main source of local agricultural
irrigation, particularly for the Shijiazhuang, Baoding, Xingtai, and Hengshui areas, where
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irrigation for agriculture has been largely dependent on groundwater exploitation. It was
reported that local groundwater agricultural exploitation accounted for more than 80% of
total agricultural water use [52].

The changes in annual water storage and groundwater table levels were further
analyzed, as presented in Figure 3. An evident decreasing trend in water storage and an
increasing trend in the groundwater table were found in the southern Haihe river plain
areas. The water storage of the southern Haihe river plain decreased at the rate of 1.6 cm/a,
and the groundwater table increased at the rate of 0.27 m/a. The correlation between
water storage and the groundwater table was found to be strong, with the determination
coefficient (R2) reaching 0.82. Zhong et al. [45] found that the land water storage in Beijing,
Tianjin, and Hebei decreased at a rate greater than 1 cm/a, which was consistent with the
rate of decrease presented in this work (1.6 cm/a).
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3.2. Hydrological Simulation of Runoff, Evaporation, and Water Storage

Hydrological elements such as runoff, evaporation, and water storage are the key
variables that should be used to evaluate the simulation results of the VIC model. Based
on the synergetic calibration and validation method, the runoff, evaporation, and water
storage processes in the southern Haihe river plain from 2003 to 2016 were simultaneously
simulated using the VIC model. The applicability of the VIC model to the simulation of the
three hydrological elements in the southern Haihe river basin was evaluated both for the
whole period and for the sliding window periods. The results indicated that the VIC model
reflects the hydrological element changes of the southern Haihe river basin better than the
traditional model, as shown in Figures 4–6.
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In terms of the VIC model performance for the whole period (Figures 4k, 5k and 6k),
the VIC model well simulated the runoff and evaporation processes of the study area both
in the calibration (2003–2012) and validation (2013–2016) periods, as seen in the overall
statistical results in Table 2. All the NSECs were more than 0.8, and all the CCs were more
than 0.9; meanwhile, all the REs were less than 5%, and the RMSEs were small. According
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to the results of the water storage simulation, the CC for the calibration period was about
0.6; for the validation period, it was reduced to 0.4.

In terms of the sliding calibration results, the simulated runoff, evaporation, and water
storage data of the VIC model in the 10 sliding window periods were compared with the
observed values, and the statistics for the performance metrics are presented in distribution
box diagrams (Figure 7). Overall, the sliding simulation by the VIC model showed good
performance for the 10 sliding window periods. All absolute values of relative error (|RE|)
for simulating runoff and evaporation were less than 8%; the RMSEs were all less than 10,
and all the CCs were above 0.8. The simulation of water storage for each sliding period
indicated no significant difference in the CC between the simulated and the observed water
storage for both the calibration and the validation periods; all were ~0.7. The water storage
simulated by the VIC model was found to be in good agreement with the observations
of the GRACE satellite. However, for the sliding validation periods, the water storage
simulated by the VIC model was slightly higher than that of the GRACE satellite inversion,
particularly for the period from 2012 to 2016 (Figure 6).
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Table 2. Overall VIC model performance in simulating runoff, evaporation, and water storage for
the whole period over the southern Haihe river basin plain. (Note that ** indicates p < 0.01 and
* indicates p < 0.05).

Hydrological
Elements

Performance Metrics for the Calibration Period
(2003–2012)

Performance Metric Indicators for the Validation
Period (2013–2016)

NSEC CC RE/% RMSE NSEC CC RE/% RMSE

Runoff 0.87 0.97 ** −0.29 9.06 0.82 0.94 ** −5.32 10.66
Evaporation 0.95 0.98 ** 0.38 6.3 0.95 0.98 ** 0.69 6.15

Water storage 0.56 * 0.4 *
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Figure 7. Distribution box diagrams of the model performance metrics for three hydrological elements
(i.e., runoff, evaporation, and water storage) for the ten sliding window periods. Four statistical
metrics were as presented as (a) RE, (b) RMSE, (c) CC, and (d) NSEC, respectively.

3.3. Sliding Variation Trend of Model
3.3.1. Variation Trend of Thickness of the Second Soil Layer

To obtain the variation trend of the thickness of the second soil layer (d2) in the VIC
model, the optimal 25 parameter groups were selected from the total 400 sets of parameters
used for the calibration and validation of each sliding period (Figure 8). It can be seen that,
with the increase in the sliding window period, the average d2 (d2) gradually increased from
0.372 m to 0.415 m, especially for the last sliding period (2012–2016), which increased by 12%
compared to that of the first sliding period (2003–2007). According to the aforementioned
analysis of the changes in water storage and groundwater table levels, the largest decrease
in water storage and the largest increase in the groundwater table also occurred during the
period 2012–2016.
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3.3.2. Correlation Analysis of the Groundwater Table, Water Storage, and d2

The water storage and groundwater table levels simulated by the VIC model were
averaged for each sliding period, obtaining the water storage and groundwater table series
for different sliding window periods. Meanwhile, the optimal d2 was chosen for each
sliding period. On this basis, the correlations between water storage, the groundwater
table, and the parameter d2 were further analyzed (Figure 9). A significant correlation was
found between the groundwater table and water storage and the parameter d2, based on
regression analysis, as shown in Figure 9a,b. The correlation coefficient between water
storage and d2 was −0.95, and the slope of the regression line was −0.0003 (m), indicating
that for each 1 mm decrease in water storage, the parameter d2 of the VIC model increased
by 0.3 mm. Similarly, the correlation coefficient between the groundwater table and d2
reached 0.98, with the slope of the regression line reaching 0.017 (m), indicating that for
each 1 m increase in the groundwater table, d2 increased by 0.017 m. According to the
aforementioned temporal-spatial analysis of water storage and groundwater table levels in
Section 3.1, the rate of decrease in water storage was 1.6 cm/a, and the rate of increase in
the groundwater table was 0.27 m/a. At such decreasing/increasing rates, the parameter d2
in the VIC model would increase 0.46–0.48 cm/a for the southern Haihe river basin plain.
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3.4. Relationships among the Groundwater Table, d2, and Runoff Coefficient

The optimal d2 values for the 10 sliding periods were in the range of 0.35~0.43 m
(Figure 8). The constructed VIC model framework for the whole period (2003–2016) was
adopted herein to explore the relationship between the runoff coefficient and the parameter
d2. Specifically, the parameter d2 was set to 0.35–0.49 m, with a step of 0.01, to drive the
VIC model for each time period and to calculate the corresponding runoff coefficients. The
relationship between d2 and the corresponding runoff coefficient is presented in Figure 10a.
It can be seen that a significant negative linear relationship exists between the runoff
coefficient and d2 (regression equation: y = −0.33x + 0.29), with the Pearson’s correlation
coefficient reaching −0.99. As mentioned above, the parameter d2 in the VIC model
increased from 0.36 m (2003) to 0.42 m (2016) for the southern Haihe river basin plain.
The decrement of the runoff coefficient can be calculated using the regression equation;
it was reduced by ~0.02. The relationship between the observed groundwater table and
the runoff coefficient was also analyzed for the 10 sliding window periods (Figure 10b).
The regression equation between the groundwater table and the runoff coefficient was
y = −0.006x + 0.28, with a Pearson’s correlation coefficient of −0.89. Since the groundwater
table increased by 3.6 m from 2003 to 2016 (Figure 3), the runoff coefficient decreased by
~0.022, which was similar to the simulation results of the model.
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4. Discussion

Due to long−term extensive agricultural irrigation, the North China Plain is faced
with a serious groundwater overdraft problem (Li et al., 2021), which has caused a sharp
decline in the groundwater level, changing the original hydrophysical processes of the area
and further affecting the relevant runoff generation mechanisms [16–18]. This influence of
groundwater overdraft on runoff generation can be described and evaluated with the aid
of hydrological models (e.g., the VIC model) [48]. This work established a hydrological
modeling framework based on the VIC model, which was synergistically calibrated and
validated using data for three hydrological elements (i.e., runoff, evaporation, and water
storage); on this basis, the relationships among the runoff coefficient, groundwater storage,
and model parameters were further analyzed using the sliding calibration method.

Applicability analysis of the VIC Model. The optimal parameters of the VIC model
were determined by the synergetic calibration and validation method. The VIC model
suitably reflects the changes in the hydrological processes of the southern Haihe river
plain area; the model showed high estimation accuracy in simulating runoff, evaporation,
and water storage compared to physical observations, both for the whole period and the
sliding periods (Figures 4–7, Table 2). When simulating runoff and evaporation for the
whole period, all the NSECs were more than 0.8, all the CCs were more than 0.9, all the
REs were less than 5%, and the RMSEs were small. The runoff and evaporation simulated
by the VIC model were proven to be highly correlated with physical observations, as well
as exhibiting low estimation errors, indicating that the calibrated model parameters were
reasonable and applicable for simulating runoff and evaporation changes. As for the water
storage simulation, the VIC model showed passable performance in the calibration period
(CC: ~0.6) but worse accuracy in the validation period (CC: ~0.4). This is mainly because
the southern plain of the Haihe river basin has been seriously influenced by intense human
activities [53]. The frequent exploitation of groundwater caused the water reserves in those
areas to run out. In addition, water consumption in the basin is greater than the recharge
rate, causing the groundwater table to significantly increase. However, this interference of
human activities with regional water storage was not considered in the VIC model; as a
result, the simulated water storage was larger than the observed value using the calibrated
parameters in the calibration period. Correspondingly, the CC between the simulated and
the observed water storage was also low for the validation period.

The simulated runoff, evaporation, and water storage in the 10 sliding periods also
showed good performance, as presented by low REs (|RE| < 8%) and RMSEs (<10)
and large CCs (>0.8) (Figure 7). It should be noted that the NSEC of one sliding period
(2007–2011) was negative (NSEC < 0) when slidingly simulating runoff; this is likely due
to slight variations between the simulated and the observed annual runoff. Such an
inconspicuous relationship between the peak and valley values of annual runoff could
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not be well reflected by the NSEC. In terms of the water storage simulation for different
sliding periods, the water storage simulated by the VIC model was in good agreement with
the observations of the GRACE satellite (CC: ~0.7). For some sliding validation periods
(e.g., 2012–2016), the values for the simulations were found to be slightly higher than the
observations. This is because more water storage was predicted by the VIC model due to
the large rainfall input for 2016; however, the observed water storage in the same period
by the GRACE satellite presented a significant decrease (Figure 3). As a result, the water
storage simulated by the VIC model during the validation period was much higher than
that from the GRACE satellite inversion.

Impacts of d2 on runoff generation. The most sensitive parameter for runoff genera-
tion in the VIC model, namely d2, was slidingly calibrated and validated, with the optimal
25 parameter groups chosen for each sliding window period. The average d2 gradually
increased as the sliding periods increased, with the largest increment occurring for the last
sliding period (2012–2016), which increased by 12% compared to the first sliding period
(2003–2007). According to the observed data for water storage and the groundwater table,
the largest variation also occurred in the period 2012–2016, indicating that parameter d2 re-
sponds well to changes in water storage and the groundwater table. Based on a correlation
analysis of the groundwater table, water storage, and d2 (Figure 9), a significant correlation
was found, as shown by the CC of −0.95 between water storage and d2, with the linear
regression equation y = 0.38 − 0.0003x (y is d2 and x is water storage), and the CC of 0.98 be-
tween the groundwater table and d2, with the linear regression equation y = 0.126 + 0.017x
(y is d2 and x is the groundwater table). Thus, the increasing rate of the parameter d2 can
be calculated using the linear regression equations. As the water storage observed by the
GRACE satellite decreased at a rate of 1.6 cm/a, and the observed groundwater increased
at a rate of 0.27 cm/a (Figure 3), the parameter d2 in the VIC model increased at the rate of
0.46–0.48 cm/a under the interference of groundwater overexploitation.

Generally, the parameter d2 proved the most important parameter affecting runoff
production in the VIC model, and the larger the value of d2, the larger the water capacity,
indicating a lower runoff coefficient [54]. Herein, the relationship between d2 and the
runoff coefficient was found to be significantly negative, with a regression equation of
y = −0.33x + 0.29 (y is the runoff coefficient, x is d2), and a Pearson’s CC that reached
−0.99. As mentioned above, the parameter d2 increased by ~0.06 m from 2003 to 2016;
thus, the corresponding runoff coefficient was reduced by ~0.02. Meanwhile, the observed
groundwater tale also showed a high correlation with the modeled groundwater table, as
presented by a significant CC of −0.89 and a linear regression equation of y = −0.33x + 0.29
(y is the runoff coefficient, x is the groundwater table). Since the observed groundwater
table increased by 3.6 m from 2003 to 2016, the corresponding runoff coefficient decreased
by ~0.022, which was consistent with the values calculated using the parameter d2; this
further verified the quantitative estimation of the impacts of the parameter d2 on the
runoff coefficient.

In sum, the proposed hydrological modeling framework adopted the VIC model for
the synergetic calibration and validation of runoff, evaporation, and water storage, which
demonstrated good applicability for the southern Haihe river plain area. Further, the slid-
ing calibration method was used in the framework; it explored the relationships among the
groundwater table, parameter d2, and the runoff coefficient and was used to quantitatively
estimate the impacts of groundwater overdraft on runoff generation. In a changing envi-
ronment, this research could provide scientific guidance for distinguishing and quantifying
the contributions of human activities to river streamflow changes in climate change studies,
especially for agricultural plain areas with intense groundwater exploitation.

It should be kept in mind that the period covered by all the dataset series in this study
was chosen as 2003 to 2016; this is relevant mainly because the groundwater level during
this period decreased significantly due to intense agricultural irrigation in the North China
Plain areas. However, the groundwater overdraft situation has since been alleviated due to
the implementation of the South-to-North Water Diversion Project in the year 2016. Thus,
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the factors influencing runoff generation are now more complicated than before and need
to be further identified in future studies.

5. Conclusions

This work proposed a hydrological modeling framework to quantitatively evaluate the
impacts of groundwater overdraft on runoff generation. Firstly, the applicability of the VIC
model was verified for the southern Haihe river plain areas, with the optimal parameters
determined using the synergetic calibration method, which combined three hydrological
elements, i.e., runoff, evaporation, and water storage. Secondly, the relationships among
the runoff coefficient, groundwater exploitation, and model parameters were explored
based on the sliding calibration scheme, particularly for the most sensitive parameter d2,
both for the whole period and the sliding window periods. The major conclusions of the
current work are as follows:

1. A remarkable decrease in water storage and the groundwater table was found in
the southern plain of the Haihe river basin. The water storage decreased at the
rate of 1.6 cm/a, and the groundwater table increased at the rate of 0.27 m/a. The
areas with significantly increased groundwater table and decreased water storage
were concentrated in the cities of Baoding, Shijiazhuang, and Xingtai, where local
agricultural development is highly dependent on groundwater exploitation.

2. The VIC model showed good applicability for the southern Haihe river plain area.
The three hydrological elements, i.e., runoff, evaporation, and water storage, achieved
good simulation accuracy with the use of the synergetic calibration and validation
method. The correlation coefficients between the simulated and observed data for
evaporation and runoff were all above 0.8, the absolute value of RE was less than 8%,
and the RMSE was less than 10. The correlation coefficient between the simulated and
observed water storage was more than 0.6.

3. Groundwater exploitation may affect hydrophysical mechanisms and the runoff
generation process. The calibrated optimal parameter d2 in the VIC model increased
as the sliding window periods increased, and the average d2 gradually increased from
0.372 m to 0.415 m. Parameter d2 was also found to be highly correlated with both the
groundwater table and water storage. The increased parameter d2 indicated increased
soil water capacity, which decreased the runoff yield, as shown by the decrease in
the runoff coefficient. From 2003 to 2016, the parameter d2 increased from 0.36 m to
0.42 m, and the runoff coefficient decreased by about 0.02.
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