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Abstract: The discharge of wastewater from aquaculture ponds causes a certain degree of damage
to the environment. It is necessary to continuously improve the treatment efficiency of wastewater
treatment devices. The purpose of this study is to obtain an optimal ratio of wastewater circulation
devices in order to obtain the best operating parameters and to reduce the discharge of polluted
water. We constructed an experimental wastewater circulation device consisting of three units. The
primary unit contained modified attapulgite (Al@TCAP-N), volcanic stone, and activated carbon for
precipitation. The secondary and tertiary units used biological methods to enhance removal rates
of nitrogen and phosphorus. Water quality indicators of total phosphorus (TP), total nitrogen (TN),
ammonia (NH3-N), permanganate (CODMn), and total suspended solids (TSS) were detected. Water
quality was tested under different matching ratios for three units of different hydraulic retention time
(HRT) and load Results showed that the removal rate of TP, TN, NH3-N, and TSS reached 20–60%,
20%, 30–70%, and 10–80%, respectively. The average reduction efficiencies of secondary module
chlorella and filler on TP, TN, NH3-N, CODMn, and TSS were 56.88%, 30.09%, 0.43%, 46.15%, and
53.70%, respectively. The best removal rate can be achieved when the matching ratio of each unit
becomes 2:1:1 and the hydraulic retention time is maintained within 2 h in the high-concentration
load. Finally, the average removal rates of TP, TN, NH3-N, and TSS reached 58.87%, 15.96%, 33.99%,
and 28.89%, respectively. The second unit obtained the enhanced removal effect in this wastewater
treatment system when adding microorganisms and activated sludge.

Keywords: wastewater; modified attapulgite; volcanic stone; hydraulic retention time; removal rate

1. Introduction

With the rapid development of the aquaculture industry in China, the intensive
and large-scale cultivation model brings about a high amount of wastewater, specifically
reaching 40 billion tons per year [1], enriched with nitrogen, phosphorus, and organic
matter [2] from feed residues, as well as even fish excreta or residual bodies [3]. In 2020,
the area of freshwater aquaculture ponds exceeded 50.4 thousand ha, with a total output
of 32.4 million tonnes [4]. According to calculations, the emitted permanganate (CODMn),
total nitrogen (TN), ammonia (NH3-N), and total phosphorus (TP) from aquaculture was
666, 99.1, 22.3, and 16.1 thousand tons, respectively, accounting for only 3.11%, 3.26%,
2.31%, and 5.10% of total national agricultural emissions, respectively [5]. The discharge
of a large amount of aquaculture wastewater has led to the aggravation of water resource
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pollution and the decline of water quality, which has been a worldwide problem especially
in developing countries. About 25% of feed nitrogen is converted to fish biomass [6],
and unused feed exists as a pollutant in water bodies. The recirculating aquaculture
system (RAS) is an intensive aquaculture facility model [7]. Some currently emerging
mainstream treatment methods include physical precipitation, filtration and adsorption,
microbial remediation, phytoremediation, etc. Our previous experiments constructed an
experimental wastewater circulation device consisting of three units, and they confirmed
that modified attapulgite (Al@TCAP-N) [8,9], volcanic stone, and activated carbon (mix
ratio of 1:1:1) had good water treatment effect in the primary unit [10]. The question is
whether the combined biological (botanical and microbial) method enhanced the removal
rate of nitrogen and phosphorus in the secondary and tertiary units.

Al@TCAP can effectively reduce ammonia nitrogen (NH3-N) and total phosphorous
(TP) in water [8]. Phytoremediation and bioremediation are eco-friendly methods of
wastewater treatment to reduce anthropogenic water contamination. Water hyacinth
Eichhornia crassipes roots provide a large underwater surface area to promote the absorption
of various nutrients and various nitrification-associated reactions. Many conventional
wastewater treatment plants use an activated sludge process containing mixed living
microorganisms, either to alert pathogenic prevention or to enhance the removal rate via
aquatic plants, immobilized biofilm, microorganisms, or the combined method of all three.
Through this calculation, with combined ammonia removal efficiencies of several nitrifying
bacteria, the removal rate of NH3-N reached 71% [11]. The biological purification method
uses microorganisms to convert dissolved organic matter into harmless substances, and
commercial micro-ecological products include effective microorganisms (EM), Bacillus,
Streptococcus, Lactobacillus, and photosynthetic bacteria [12].

In the Jiangsu province of China, the wastewater treatment system named “two dams
and three districts” and constructed for water purification, wastewater went through the
procedure as “river channel/drainage ecological ditch-primary settlement area I-overflow
dam-nitrification/denitrification area II-subsurfaceflow dam-aeration and reoxygenation
area III” to enhance removal of suspended solids, nitrogen, and phosphorus. Total nitro-
gen and phosphorus can be reduced by submerged macrophytes [13,14] and emergent
aquatic plants (TN/TP over 80%) [15], root-associated bacteria [16], aerobic granules (70%
attributed to precipitation within the granules) [17], and autoclaved aerated concrete parti-
cles [18]. Brachiaria-based constructed wetland (total nitrogen 75.6–84.6% and phosphate
55.2–85.6%) [19] integrated anammox, endogenous partial-denitrification, and denitrifying
dephosphatation in a sequencing batch reactor with granular sludge (nitrogen and phos-
phorus removal of 93.9% and 94.2%, Anammox pathways contributed 82.9% of overall
nitrogen removal, 8.4% of anammox bacteria, and 1.5% glycogen-accumulating with 1.1%
co-existing phosphorus-accumulating organisms [20] could enhance removal efficiency,
especially in the sediment [21,22]. The main purpose of this study is to obtain relatively
good operating parameters of the wastewater circulation device. The method of “primary
precipitation-secondary remediation-third strengthening unit” was used to study the mech-
anism of the combined treating method, and simultaneously, the enhanced [23] removal
effect of wastewater treatment system was evaluated.

2. Materials and Methods
2.1. Experimental Design and Sampling

The wastewater used in the experiment came from the ponds of FFRC-CAFS. The
nitrogen removal modified attapulgite (Al@TCAP-N) used in the experiment was pro-
vided by the Nanjing Institute of Geography and Limnology, CAS. Volcanic stone was
purchased from Guangzhou Huadi Aquarium Supplies Co. Ltd (Guangzhou, China).
Activated carbon (Φ 0.3 cm, 1.5 cm long) was provided by Sinopharm Shanghai Chemical
Reagent Co.Ltd (Shanghai, China). Activated sludge was provided by Hynix Semicon-
ductor (Wuxi) Co.Ltd (Wuxi, China). EM bacteria (Bacillus: Lactobacillus = 6:4), chlorella
(Chlorella pyrenoidosa), biological economical microbial formulation package (mainly lactic
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acid bacteria, yeast and nitrifying bacteria, ratio as 6:2:1), duckweed (Lemna minor), and
water hyacinth (Eichhornia crassipes) were obtained from our laboratory. The experiment
was carried out from September to October 2020 in a self-designed wastewater circulation
device for aquaculture in the unit (Wuxi, Jiangsu Province, 31◦30′ N, 120◦14′ E).

The device was divided into three units. The first unit (A) contained four rectangular
plastic cylinders (40 cm× 40 cm× 25 cm). Activated carbon, volcanic stone, and Al@TCAP-
N (ratio = 1:1:1) were wrapped in a net bag and placed at the bottom of the device. The
second (B) and third (C) units were two cylinders (70 cm × 70 cm × 50 cm) and one
(70 cm × 70 cm × 50 cm) square plastic cylinder, respectively, which were mainly used for
strengthening treatment. The device combined the three modules through plastic pipes
and adjusted the relevant parameters by controlling switches for the different designed
experiments (Figure 1). Water samples were collected at 0.5 m below the water level with a
500 mL plastic bottle and were stored in the refrigerator for 3 repetitions.
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Figure 1. The self-designed wastewater circulation device.

2.2. Water Quality Detection and Optimization

Water quality indexes were determined according to the national standards of the
People’s Republic of China, GB11894-89 (potassium persulfate oxidation-ultraviolet spec-
trophotometry method), GB11893-89 (ammonium molybdate spectrophotometry method),
and GB11892-89 (acid potassium permanganate method) for TN, TP, and CODMn, respec-
tively, while NH3-N and TSS were determined by neutral reagent photometric method and
gravimetric methods.

Tilapia aquaculture wastewater was added into the secondary unit, and we added
different types of purification material into it. The control and six experimental groups were
set up, which were named as plant group a (duckweed and water hyacinth TN, TP, CODMn,
NH3-N, and TSS), group b (drug package), group c (packing), group d (activated sludge),
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group e (EM bacteria) and group f (chlorella). The detection indexes contained TN, TP,
CODMn, NH3-N, and TSS. In order to determine the better effect, plants (water hyacinth),
microorganisms, activated sludge, chlorella, a biological drug package, and fillers were
selected and used as the materials. To find the most appropriate material-matching scheme,
and screening from the above experiments, several effective purification materials were
combined and matched. After data analysis, the fillers and chlorella were used as fixed
additives. Then, the collocation experiment was carried out in the second unit under the
same conditions of the first and third units. Three groups were set up to study the effect
of their combined wastewater treatment, with group X shortening for EM bacteria and
activated sludge, group Y shortening for EM bacteria and plants, and group Z shortening
for plants and activated sludge.

2.3. Influencing Factors with Different Loads, Hydraulic Residence Times (HRTs) and Ratios

Different wastewater treatment methods were simulated for the whole experimental
device, and the second and third units were run separately as controls to obtain the most
reasonable wastewater treatment scheme. The effects of different concentration loads,
hydraulic retention times (1, 2, and 3 h), and different unit ratios (1:1:1, 2:1:1, and 2:2:1)
on the treatment effect of aquaculture wastewater were studied. With respect to the load
tests with different concentrations, the hydraulic residence time (2 h), and ratio (2:1:1) were
kept unchanged. Water was taken as the initial background value at the beginning of the
experiment, which was divided into three groups: group G with high concentration load,
group H with medium concentration load, and group I with low concentration load. With
respect to the different hydraulic residence time tests, the high concentration load and ratio
2:1:1 were kept unchanged. The experiment was divided into three groups: group J, 1 h
after operation; group K, 2 h after operation; and group L, 3 h after operation. With respect
to the different unit ratio test, hydraulic residence time (2 h) and high concentration load
were kept unchanged. The experiment was divided into three groups: group M 1:1:1 after
operation, group N 2:1:1 after operation, and group O 2:2:1 after operation.

2.4. Data Analysis

For all parameters, data were compared using a one-way analysis of variance at the
end of each bioassay. A mean comparison was performed using Fisher’s least significant dif-
ference test and the Duncan multiple range test with a significance level of p < 0.05. The data
were calculated using SPSS 25.0 software, and the relevant graphs were drawn in Origin 9.4.
The removal rate of detected water quality indicators was calculated through the removal
rate of each indicator to draw the relevant chart. The removal rate of each water quality
index was calculated using the following equation: % Removal rate = (C0−Ch)/C0 × 100,
C0 = pre-treatment water quality indicators, and Ch = treatment of water quality indicators.

3. Results
3.1. Screening, Collocation, and Optimization of Secondary Unit Purification Materials

Other materials, with the exception of the biological drug package, had good removal
effects on various indicators of water quality, and the treatment effect of chlorella and
packing was good and stable (Figure 2a). Finally, chlorella and fillers have been used as
fixed treatment materials. The one-way removal effect of plants and sludge was good
(Figure 2b), and the combination and matching experiment of plants, activated sludge and
EM bacteria was conducted, and results showed that the combination of plants and sludge
had a relatively good treatment effect on various water quality indicators in wastewater
(Figure 2b).
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3.2. Influencing Factors of Different Loads, Hydraulic Residence Times, and Ratios

With a high concentration load, the removal rate of TP, TN, and NH3-N in the wastewa-
ter reached 60%, 20%, and 30%, respectively. Suspended matter could also be removed well,
but the CODMn treatment effect was unsatisfactory (Figure 3). With medium concentration,
the effects of all water quality indexes decreased, with TP, TN, NH3-N at about 10%, 20%,
and 10%, respectively. Suspended solids also had some removal effect, but the removal
rate of CODMn reached 30%. With low concentration, the removal rates of TP, TN, and
NH3-N reached 20%, 15–50%, and 15–40%, respectively, but the removal rates of CODMn
and suspended matter decreased.
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After hydraulic retention for 1 h, the removal rates of TP, TN, NH3-N, and TSS in
wastewater by this system reached 30%, 20%, 25%, and 40–80%, respectively (Figure 4).
The removal rate of TP, TN, NH3-N, and TSS in wastewater by this system reached 50%,
20%, 30%, and 60–80% in 2 h hydraulic retention time. When hydraulic retention time
reached 3 h, the removal rates of TP, TN, NH3-N, and TSS in wastewater reached 20–50%,
25%, 25–40%, and 40–60%. In summary, it could be found that the removal rate of CODMn
at each stage had a certain effect, and with the increase in hydraulic retention time, the
removal rates of various water quality indicators in wastewater of this system showed an
increasing trend, enhancing the treatment effects of purification materials on wastewater to
a certain extent. However, too long of a hydraulic retention time (3 h) had a poor effect on
the removal ration of CODMn.
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Wastewater treatment effects under different unit ratios were analyzed. When the ratio
of each unit at all levels was 1:1:1, removal rates of TP, TN, NH3-N, and TSS reached 20–50%,
20%, 25–40%, and 40–60%, respectively (Figure 5). When the ratio was 2:1:1, removal rates
of TP, TN, NH3-N, and TSS reached 20–60%, 20%, 30–70%, and 10–80%. When the ratio
was 2:2:1, the removal rates of TP, TN, NH3-N, and TSS reached 30–50%, 25%, 30–40%, and
10–60%, respectively. The CODMn of each unit changed with each ratio, and when the ratio
was 2:1:1, comprehensive removal rates of various indicators of wastewater of each unit
were better.
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4. Discussion

In our early experiments, the first unit of the circulating device and its materials were
studied in detail [10]. Here, we mainly discuss the specific effects of the second unit of the
circulating device and its materials selection. A variety of purification materials, such as
microalgae [24], aquatic plants, and activated sludge are selected. Chlorella has a good
effect of reducing pollutants in wastewater and is very effective in removing nitrogen and
phosphorus in wastewater [25,26] by using those as essential nutrients for growth [27] up
to 50% [28]. These waste substances can be developed to become important food sources
for algae with high economic significance [29,30]. The removal efficiency of using Chlorella
vulgaris for NH3-N, NO3

−-N, and PO4
3−-P reached as high as 95%, 53%, and 89%, whereas

the maximum removal rates were 3.41 mg/L·day, 0.20 mg/L·day and 0.8 mg/L·day,
respectively [31].

Activated sludge-containing microorganisms and aquatic plants can have a good
symbiotic relationship with one another through adaptive survival [32]. The effect of mixed
use is much better than that of single use of one of them as a purification material [33]. Plant
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roots usually secrete organic carbon, and microorganisms can use organic carbon as carbon
source [34], while symbiotic bacteria-based using two aquatic plants gain good removal
efficiency [16]. Based on this observation, we added plants and sludge to strengthen the
treatment effect of this second unit. Ammonia nitrogen in water is mainly removed by
microbial nitrification, and dissolved oxygen (DO) provided by plant roots is the key to the
nitrification process. Plants provide attachment and expand surface area for microorgan-
isms underwater and absorb various nutrients TP and TN or NH3-N in water. Purification
was effective for total nitrogen (82–83%, the main factor DO), ammonium nitrogen (77–79%),
total phosphorus, and phosphates (83–84%, the key process sediment adsorption), while
NO2-N and N-NO3 removal efficiency was very low [35,36]. Ammonium (NH3-N) is one
of the main sources of inorganic nitrogen absorbed by higher plant roots [37], followed
by a good effect on the removal of phosphate in wastewater. Duckweed as a purification
material plays a very important role in both low and high nutrient levels, especially in the
process of nitrogen absorption [38]. In addition, for phytoremediation, it is worth noting
that management of ponds should be strengthened, and that dead plants should be fished
out in time to prevent absorbed nutrients such as nitrogen and phosphorus from being
released into the water [39]. When Chlorella and fillers were stable, the combination of
plants and sludge enhanced the pollutant removal effect and achieved good experimental
results. After growing in monocultures for 46 days, Ipomoea aquatica (90.6% and 8.8%) and
Salvinia natans (67.3% and 14.2%) obtained the highest TP removal efficiency in lightly
and highly polluted wastewater, respectively. The combination of S. natans and Eleocharis
plantagineiformis effectively removed TP and TN from lightly polluted water, suggesting
that this combination is suitable for phytoremediation of eutrophic wastewater [40].

HRT is one of the key factors in the formation of a microbial community [41]. Under
different HTR, the treatment effect of aquaculture wastewater will have different results [42].
Similarly, there will be some differences in the treatment effect of wastewater at different
concentrations and modules. The experimental results show that wastewater circulation
device has a good treatment effect on the three wastewater concentration gradients, and
that the removal rate effect of high concentration wastewater is higher than those of the
low concentration group and the medium concentration group. By comparing the removal
rate of wastewater under the three module ratios, the results show that module ratio-M
and module ratio-O will slightly strengthen the removal rate of TN, NH3-N, and TSS as
compared with module ratio-N, but that module ratio-N will greatly increase the removal
rate of TP. Finally, when comparing the treatment effects of different HRT, the results show
that HRT has better removal effects than 1 h and 3 h periods. The experiment simulates
and analyzes the discharge of aquaculture wastewater in the actual aquaculture process,
integrates the better treatment methods in actual production, and improves wastewater
treatment efficiency in actual production to a certain extent. The materials used in the
first-level module are inexpensive and could be reused through simple cleaning in these
wastewater purification modes, while the secondary module is green and environmentally
friendly but occupies a larger pond area and is applied for effective management. It is
good to see that the tertiary module can be removed when concerning operation and
management costs, only based on our current limited data. The effective removal rate of
constructed wetland (revealed by the higher values and to be practical in the filed culture)
needs to be further studied [19].

The improvement of pollutant removal in wastewater mainly depends on the biologi-
cal mechanisms of plants and microorganisms. Phytoremediation is generally regarded as
an alternative method responsible for ecology and replacing physical methods can be harm-
ful to the environment, so it has become an ideal wastewater remediation method due to
its low cost, environmental friendliness, and security [43]. Some biological processes other
than plant absorption [44] are also primary methods of pollutant removal. Aerobic granules
reduce infrastructure and operation costs (25%), energy requirements (30%), and space re-
quirements (75%) of wastewater treatment [15]. Better nutrient removal with optimal costs
are an A2O process [45], anaerobic/oxic/anoxic (AOA) strategy (total inorganic nitrogen
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90.4%, higher activity of ammonia oxidation bacteria, Nitrosomonas and Ca. Brocadia) [46],
laboratory-scale synchronous combined with anammox process, sequencing-batch reactors,
the contributions of simultaneous partial nitrification denitrification, denitrification, and
anammox to ammonia removal were 15.0%, 45.0%, and 40.0%, respectively, a short sludge
retention time (SRT 12 d) could achieve synergy between ammonia-oxidizing bacteria and
phosphorus-accumulating organisms [47]. Anaerobic–aerobic–anoxic sequencing batch
reactor system (6 h, average removal efficiencies for COD, TN, and TP of 96.81%, 96.32%,
and 94.33%, respectively) [48], Brachiaria-based constructed wetland [49], algal-bacterial
symbiosis system (total nitrogen 65.8% and phosphorus 89.3%, the chlorophyll-a increased
to 3.59 mg/g at stable stage, was 4.07 times higher than that in suspension) [49].

Biochar modification (using straw and modified by nanostructured material) has am-
plified the issue in the recent years. Wheat straw (≥5 g straw kg−1) amendment to sandy
soil has the potential to remove nutrients from wastewater and gain removal efficiency [50].
A total of 0–1.2 g/L Fe3O4

@SiO2 nanoparticles promote the removal performance of TN,
TP, The relative abundance of Alphaproteobacteria, Betaproteobacteria, and Gammapro-
teobacteria increased to 27.05%, 7.21%, and 14.77%, respectively, by more than two times,
while at the genus level, 0.3 g/L Fe3O4

@SiO2 NPs enriched norank_f_Nitrosomonadaceae,
norank_f_Xanthomonadaceae, Amaricoccus, and Shinella. The gene copy number of
ammonium-oxidizing, nitrite-oxidizing, and denitrifying bacteria population remarkably
increased, whereas the number of phosphorus-accumulating organisms slightly increased.
Nitrogen removal primarily occurred through a biological mechanism, while most phospho-
rus in wastewater may be removed by the combination of physicochemical and biological
methods [51]. The reuse and recovery test showed that removal efficiencies of fresh alum
by acidification for TSS, COD, TP, TN were 85%, 65%, 80%, and 33%, respectively. Struvite
precipitation effectively removed increased phosphorus solubilized by acidification [52].

5. Conclusions

The results showed that average reduction efficiencies of secondary module chlorella
and fillers on TP, TN, NH3-N, CODMn, and TSS were 56.88%, 30.09%, 0.43%, 46.15%, and
53.70%, respectively. On the basis of fixing chlorella and filler reduction nutrient salts, the
combination of plant and activated sludge treatment has a good effect on the removal of
wastewater water-quality indicators. The optimal operating mode of the device is obtained
under high concentration load (TP 5.5 mg/L, TN 15.7 mg/L), the ratio of each module is
2:1:1, and the removal rate is best when the hydraulic residence time is within 2 h. Finally,
the average removal rate of TP, TN, NH3-N, and TSS can reach 58.87%, 15.96%, 33.99%, and
28.89%, respectively. The second unit obtained an enhanced removal effect when adding
microorganisms and activated sludge, while the third unit could be adjusted according to
cost and labor management.
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