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Abstract: Smallholder irrigation schemes (SISs) have been portrayed as a panacea to climate change
adaptation. However, there is an emerging discourse that established schemes are becoming vulnera-
ble to increased climate variability and change, particularly increased water stress. This paper reviews
the existing knowledge on risks of climate change and variability in water supply in smallholder
irrigation farming in Zimbabwe. In addition, this paper highlights adaptation options to climate
change in SISs. Data for this review were collected systematically from peer-reviewed and published
literature. The literature used for this study showed that SISs in Zimbabwe are beset with water stress,
competing water needs and the outbreak of pests and diseases, which have been related with climate
change and variability. Climate change is making Zimbabwe more arid through decreasing precipita-
tion and warming. Droughts and floods are increasing in frequency and severity. Damage by floods
is increasing exponentially, impacting environments, ecological systems and national economies.
Climate change affects SISs’ productivity and decimates the livelihoods of scheme farmers. The
review suggests that there is a need for increased adsorptive, adoptive and transformational capacity
for SISs to obtain a new state of resilience from adverse effects of increased climate variability and
change. This review recommends understanding and prioritizing solutions to vulnerability to climate
change in SISs.

Keywords: rainfall; drought; temperature; water stress; pests and diseases

1. Introduction

Globally, the major abrupt influence of a changing climate in the agricultural sector will
be through a more variable precipitation pattern, increased temperatures and increases in
the frequency and severity of extreme weather events, such as cyclonic activities, droughts
and floods [1,2]. The impacts of climate change on water resources, including quantity and
quality of water, are a growing concern in smallholder farming systems, particularly in
those areas already experiencing water stress [1,3,4]. Some authors have documented the
possible impacts of climate change on new and emerging pests and diseases [5–7]. However,
addressing the impacts of climate change must be considered in for all socio-economic
conditions, including policies, institutions, investments, economies and technical factors
which affect the vulnerability of systems to climate change.

The change in climate experienced world-wide already has negative implications
for 21st-century agriculture in Zimbabwe [8]. There is mounting evidence that large
investments have been made in Zimbabwe’s SISs in an attempt to depart from rain-fed
agriculture through judicious harnessing of available water resources. However, there is
rising concern about the need to build the resilience of these schemes to protect investments
in light of a more variable climate. In this article, climate variables and socio-economic
factors are reviewed to inform decision-makers on possible actions for resilience-building,
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with a particular emphasis on SISs in Zimbabwe. Zimbabwe was selected for this study
following recent findings that there is increasing aridity across the country, as evaporation
may be rising concurrently with the decline in precipitation [9].

Several studies have been recently conducted globally to assess the influences of
climate change on water resources and irrigation systems, with the goal of maintaining
the long-term viability of irrigation systems and farmers’ livelihoods. Some researcher
have found climate change to result in decreased annual precipitation and reservoir in-
flow [10–12], reduced water quality [13], groundwater depletion [14,15], reduced crop
productivity [11,16,17], reduced irrigable land [18], changes in cropping area [16–20] and
implicated livelihoods [12]. Further, in Zambia, some authors have recommended the use
of water-efficient technologies and better management of water resources given increased
water stress [21]. Modeling in the Mediterranean region projected an increase in irrigation
water demand and a reduction in reserve water levels by the year 2100 [22]. A study in
Ecuadorian coast found out that tropical water resource systems could be unsustainable
under climate change [23]. A study in Southern Europe showed that the sustainability of
irrigated agriculture will be threatened by current planned management scenarios [24], and
in Tarim River Basin (TRB), an upward trend of irrigation carrying capacity towards 2050
is anticipated [25]. Some findings show that change from surface to subdroplet irrigation
reduces agricultural water use [15] and adoption of suitable adaptive strategies and that
measures could mitigate the effects of climate change [26].

The aim of this paper is to contribute to the understanding of the impact of climate
change among SISs. A comprehensive intersectoral analysis of climate change risks for
smallholder irrigation schemes was the purpose of this analysis. The present review is the
first one to summarize the impacts of climate change and variability in Zimbabwe, giving
an overview of implications of climate change for SISs and socio-economic conditions.
Therefore, the first climate change scenario for Zimbabwe was characterized based on
finding from existing literature. Then, climate change’s impacts on SISs in Zimbabwe
were discussed. Further, the socio-economic and the underlying factors related to SISs
were explored. The impacts of climate change on SISs vary extensively with the schemes’
ecological, institutional, governance, and socioeconomic characteristics. A review of a
wide range of these factors is critical for successful understanding of the impacts of climate
change, and for adaptation and resilience building. New work based on countries around
the world regarding climate change adaptation is highlighted to present alternatives to
improve climate change adaptation.

2. Methodology

For the purpose of this review, a systematic approach was utilized, focusing solely
on peer-reviewed primary articles on the effects of climate change and variability on
water systems and smallholder irrigation schemes in Zimbabwe, as shown in Figure 1.
Such articles were mainly obtained from Google Scholar using Boolean combinations of
keywords, including climate change, smallholder irrigation schemes, water resources,
adaptation, and Zimbabwe, for the period from 2010 to the present. A total of 2852 articles
related to this review were identified, out of which 28 articles were selected finally selected
for this review. An RMSE value of 18.52 was obtained, which is below 20 percent of
published papers per year.

Mann–Kendall tests were performed using precipitation and temperature trends of
Zimbabwe from 1901 based on data extracted from World Bank Group [27]. The Mann–
Kendall test was used previously used to assess climate trends [28,29]. As illustrated in
Table 1, temperature significantly increased, but the change in precipitation was not sig-
nificant. The H0, which suggests that there is no trend, was accepted for precipitation but
rejected for temperature. However, the data used show the general trend of climatic condi-
tions in Zimbabwe, and hence may vary from the observations from various metrological
stations across the nation.
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Figure 1. Schematic flowchart of the review process.

Table 1. Mann–Kendall trend tests for precipitation and temperature in Zimbabwe.

Precipitation Temperature

Kendall’s tau −0.07 0.37
S −522.00 2663.00

Var(S) 194,366.67 194,319.67
p-value (Tw tailed) 0.24 <0.0001

alpha 0.05 0.050

3. Results

Illustrated in Figure 2 is a flow diagram of the proposed interaction of the factors
discussed in this study.

3.1. Current Climatic Conditions and Their Variation in Zimbabwe

The current climatic conditions in Zimbabwe were compared to its base season in
1950. Greater parts of the country now experience a late start to the rainy season by up
to 18 days, while some regions experience an early start [9]. Additionally, termination of
the season occurs early, resulting in contraction of the season [9]. Further, the length of the
dry spells has increased, with a number of dry spells during the rainy season stretching to
20 days. Currently, annual rainfall ranges from 450 mm in agro-ecological zone (AEZ) Vb
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to 1250 mm in AEZ I [9]. Rainfall decreased in the northern, eastern and southern parts
while increasing significantly from the central to western parts of the country [9].
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Figure 2. Flowchart of proposed interaction of climatic, ecological and social factors.

Further, there was significant warming in both minimum and maximum temperatures
across the country [9]. Currently, the mean annual temperature ranges from 25 ◦C in AEZ
I to a maximum of 32 ◦C in AEZ Vb [9]. Maximum monthly temperature significantly
increased in February, May and June in the central, eastern and southern parts of the
country while decreasing in August in the southern parts of the country [9]. The winter
months (May, June and July) are getting colder. An increase in potential evapotranspiration
and a decrease in precipitation increase aridity across the country [9]. Arider agroecological
zones (AEZs) rose to 8.5% for AEZ Vb and 29.3% for region Va [9].

3.2. Climate Change Impacts in Zimbabwe

The potential impact of climate change on SISs depends on a combination of expo-
sure, sensitivity and resilience of the SISs to potential water supply and demand changes,
and hence, it varies considerably from one scheme to another. Agricultural communities
are seriously at risk due to reliance of their livelihoods on farming, their little scope of
diversification and their high exposure to climate variability [30]. Zimbabwe is evidently
experiencing the effects of climate change through notable increases in the frequency and
intensity of extreme weather events, making it face chronic food insecurity [31]. These
changes will result in water stress, rendering land difficult for agriculture, thereby threaten-
ing the nation’s economy and livelihoods. Agricultural systems in Zimbabwe have already
been identified as the most vulnerable entity to climate change due to their dependence on
natural resources [32,33]. The relative dependence of SISs in Zimbabwe on surface water
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makes the livelihoods of communities more vulnerable to climate change and variabil-
ity, as the existing resources often dry up [34], leading to water stress. The vulnerability
of SISs in Zimbabwe are increased revenue collapse, poor access to credit due to weak
tenure security and degradation of irrigation infrastructure [35]. Small scale farmers are
subjected to cropping calendars, low-value crops, uncertain markets, climate variability
and little food security, challenging their ability to benefit from loans. Although the SISs are
touted as a panacea to withstand impact of climate change and variability [31,36,37], they
face increasing water stress. Rising temperatures and changes in precipitation patterns, a
rise in evaporative demand, increased frequency of floods and greater depletion of water
supplies contribute to water stress. On the other hand, outbreaks of pests and diseases,
including new and emerging pests, are expected to increase due to changes in rainfall
and temperature [38].

The impact is expected to vary across the AEZs of Zimbabwe, since these are divided
mainly on the basis of rainfall regimes, soil quality and vegetation [32,39]. The impacts of
all the above challenges will not be homogeneous, given the heterogeneity in management
and institutions; thus, resilience and adaptive capacity varies across SISs.

3.2.1. Impact of Climate Change Change on Rainfall

Rainfall is seasonal in Zimbabwe. The rainy season generally stretches from mid-
November to March [32,40]. The country’s rainfall patterns are influenced by El Nino–
Southern Oscillation events, which have a 30% chance of causing drought [40]. Evidence of
desiccation below previous averages and increased rainfall variability has been noted in
most parts of the country [9,39]. A decline in rainfall by an average of 10% or 100 mm has
been observed in the country [40]. Most parts of Zimbabwe are becoming increasingly drier
due to climate change [32,41]. Besides, even AEZ II and III are becoming arid, as noted
by remarkable decreases in precipitation of 49% and 14%, respectively [32,39,42]. Rainfall
patterns and intensity are highly variable and are projected to be uncertain in the second half
of the 21st century [43]. Zimbabwe’s monthly precipitation is projected to decrease by 3.3,
5.1, 7.4 and 8.2 mm in the 2030s, 2050s, 2070s and 2090s under Representative Concentration
Pathway (RCP) 8.5, respectively [32,44]. According to IPCC, seasonal rainfall characteristics
such as onset, duration, dry spell frequencies and intensity have changed significantly in
the region [44]. However, the recent decline in agricultural production is linked to more
frequent and severe droughts [32,40]. Thus, Mazvimavi [40] advocates for planning and
managing water resource systems to adapt to changing climate.

Although the Mann–Kendall test showed an insignificantly trend of precipitation
(Table 1), the Sen slope (Figure 3) shows a gradual decrease with a margin of −0.47 mm per
year, which may suggest that climate change is negatively impacting rainfall.

3.2.2. Impact of Climate Change on Temperature

There is variation in temperature across AEZs [45]. The average annual temperature
varies between 18 and 25 ◦C in areas with high altitude (approximately 1500 m) in the
eastern and highveld and between 22 and 25 ◦C in lower altitudes (northern and southern
regions) [45]. The Metrological Services Department (MSD) of Zimbabwe has reported that
the daily minimum temperature rose by approximately 2.6 ◦C and the daily maximum
temperature rose by 2 ◦C over the last century [46]. The rise in temperature is attributed
to the recent increase in the number of hot days and nights and decrease in the number
of cold days and nights in recent decades. Temperature across the country is projected to
rise in the 21st century and beyond. However, the increase in temperature will depend
on greenhouse gas emission scenarios, as Zimbabwe’s monthly temperature is projected
to rise by 1.2 ◦C, 2.2 ◦C, 3.4 ◦C and 4.5 ◦C in the 2030s, 2050s, 2070s and 2090s under
RCP8.5, respectively [32,44]. The highest temperature increases are projected to occur in
June to September [44].
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The Mann–Kendall test (Table 1) and Sen slope (Figure 4) show a significant increase
in warming in Zimbabwe. The increase in warming trend reflects the growing impact of
climate change.
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3.2.3. Impacts of Climate Change on Incidences of Cyclones, Droughts and Floods

Droughts have devastating impacts on the nation’s economy and contribute to the
terminal vulnerability of the majority of its communities (Figure 5) [38]. The devastating
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droughts recently affecting Zimbabwe (January to March 2021) are strongly correlated to El
Nino [47]. Zimbabwe’s agricultural sector, which contributes nearly 12% of the nation’s
Gross Domestic Product (GDP), is severely affected by droughts (Figure 5) [38]. Approx-
imately 70% of the national population depends directly on agriculture [38]. Climate-
induced water stress has crippled agricultural and economic productivity, further resulting
in an upward spiral of poverty and insecurities [38]. Since 1990, severe incidences of
droughts were recorded: in 1991–1992, 1994–1995, 2002–2003, 2015–2016 and 2018–2019 sea-
sons [38,45]. Isolated droughts patterns varied spatially in 2003–2004, 2006–2007, 2011–2012
and 2017–2018 farming seasons [38,45]. Although droughts are a common feature in all
the provinces, they are more severe in southwestern provinces—Matabeleland North and
South—and less severe in the eastern provinces—Manicaland and Mashonaland East [42].
The bulk of droughts in the past century occurred in the past two decades, although most
of them were mild [45]. Droughts have culminated in the stagnation of rural livelihoods
for more than four decades through hunger, decimated crops and livestock production,
environmental degradation and declining socio-economic status [45]. In Zimbabwe, ad hoc
measures to address drought focus on alleviating its impacts rather than encompassing
the full cycle of drought management to ensure adaptation and copying at the individual,
national and regional levels in the unforeseeable future [3].
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Green Climate Fund [48]).

Cyclone-related extreme flooding has destroyed pumping facilities, embankments
and irrigation and drainage infrastructure in Zimbabwe over the years [37]. Cyclone
Eline of 2000, Cyclone Dineo of 2017 and Cyclone Idai of 2019 were the most disastrous
and fatal cyclones over the past two decades [49,50]. The communications system, crops
ready for the market, dwellings and SIS infrastructure were destroyed by cyclones and
floods [49–51]. Cyclone Eline destroyed Mutema Irrigation Scheme infrastructure, includ-
ing three boreholes, resulting in the scheme operating only at 10% capacity [51]. Cyclone
Japhet destroyed a dam in the Chirume communal land in Shurugwi, making the commu-
nity more sensitive to drought [52]. Cyclone Idai damaged ten SISs in Chimanimani district
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and eight SISs in Chipinge district [53]. Specifically, 2293.50 ha were damaged, affecting
5041 scheme farmers [53]. In addition to this, other support infrastructures, such as roads,
power supply lines and schools, were also damaged; and some crops under irrigation were
also lost [53]. According to estimates, a total of US $4,890,000 will be required to rehabilitate
the schemes [53].

3.2.4. Impact of Climate Change on Water Resources

Zimbabwe’s water resources, which amount to 20,000 million m3 per year, or 1413 m3

per capita, are mostly surface water resources, since there are limited groundwater re-
sources [47]. The country has 2200 dams, including 260 large dams with a total capacity of
99,930 m3 [47]. The water resources in the country vary across five AEZs [7]. The impact of
climate change is projected to severely reduce Zimbabwe’s water resources [7]. Rainfall
simulations in the Odzi, Gwayi and Sebakwe catchment areas has shown a decrease in
precipitation by 15–18% and an increase in evaporation by 7.5–13% [54]. This was projected
to result in a 50% decrease in runoff by 2075 [54]. Runde and Mzingwane catchments,
where average rainfall could decrease by between 12% and 16% by 2050, are anticipated
to face the largest decline [7]. Additionally, the recharge rates of wetland and aquifers are
expected to be reduced, impacting water availability for irrigation farming [7]. Additionally,
water demand for domestic purposes, irrigation, livestock, industry and energy generation
is expected to grow, as the population, number of cities and industries and evaporation are
projected to rise gradually [54]. The WorldBank [32] stated that climate change will result
in a 38% decline in national per capita water availability by 2050 in the best-case scenario,
pushing inhabitants of Zimbabwe to depend on groundwater sources.

The estimation by Yu et al. [55] that Africa could irrigate over 40 million ha is based on
land resources. However, such figures might be inaccurate, as they do not consider available
water resources, irrigation technology in use, diverse uses of water and the possible impact
of climate change. The surface and groundwater resources are challenged by climate
change and variability due to unpredictable seasonal rainfall and losses from evaporation,
low runoff and sedimentation in reservoirs [56,57]. Water resources are gradually moving
towards the level where current irrigation technology will not sustain them. Therefore, the
ministry responsible for water resources has a responsibility to formulate water resource
utilization policies [47].

3.3. Climate Change and Its Impact on Irrigation in Zimbabwe
3.3.1. Water Stress

The relationship between climate change and water stress could be the main contribut-
ing factor to vulnerability among SISs. The projected reduction in rainfall translates to
reductions in runoff and the refilling of water bodies [7]. Dams, rivers and catchment areas
are susceptible to drying, resulting in inadequate water supply for irrigation purposes.
Additionally, groundwater recharge is predicted to be more severe in arid and semi-arid
regions due to a decline in runoff [30]. Therefore, a rise in temperature and a decrease in
rainfall are predicted to worsen water stress among SISs [31,58]. Increased warming will
increase irrigation water demand by triggering a rise in evapotranspiration [59].

Water stress among SISs in Zimbabwe is associated with a combined effect of a
rising water deficit in catchment areas, an increase in population, rapid urbanization and
industrialization [43,60]. For example, a fall in Ruti dam’s water level in mid-2013 resulted
in the diversion of water from the Ruti Irrigation Scheme and allocating it to sugar estates,
making the problem of the SIS farmers more acute [58]. This was followed by the dam’s
total drying up in September 2013, resulting in the loss of the entire cropping season [58].
Additionally, Hanusch et al. [35] anticipate SIS performance to decline in the face of climate
change and variability, coupled with depleted sources of resilience in the country. In the
Mkoba Irrigation Scheme, only 20% of irrigated land was utilized in 2015, as the dam could
not meet irrigation water requirements [41]. The absence of an accessible and reliable water
source following the destruction of a dam in the Chirume community in 2008 has resulted
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in crop loss due to water stress during prolonged mid-season droughts [52]. Low rainfall
experienced in Zimbabwe due to climate change leads to poor crop yields, resulting in
massive economic, environmental and social costs [45]. The 1991/1992, drought resulted
in water stress, reducing Zimbabwe’s agriculture production and GDP by 45% and 11%,
respectively [61]. The increasing trend and severity of similar events resulting from climate
change cripples the national economy and livelihoods of rural people [45].

Several studies have shown excessive water stress-related yield decline in most SISs
in the western parts of the country, particularly Matabeleland South and North [43,45,60].
The water stress is projected to particularly affect schemes in AEZ IV and V [9,39]. Climate
change is likely to worsen evaporation in Zimbabwe, especially in the Lowveld, where it is
higher (<2200 mm), and where precipitation is a paltry (<300 mm) [47]. However, there
is a scarcity of data and accurate simulations of the potential effects of climate change on
water sources and catchment areas in Zimbabwe [62]. The projected rise in irrigation water
demand of 7% to 21% by the 2080s due to a surge in evapotranspiration water demand [30]
will worsen water stress in SISs. Some studies suggest that increased temperature and
low rainfall are altering the water available for irrigation purposes [58,62]; therefore, the
decline in water availability for irrigation diminishes productivity and livelihoods of
scheme farmers.

3.3.2. Competing Needs

Irrigation water has multiple uses among rural communities, where most schemes are
located. Water, an essential element in biological, social and economic systems [41,63], has
competing uses that affect water discharge to SISs. Competing water needs vary from one
AEZ to another, and are likely to intensify with climate change. High-level pressure on
water resources due to the combined demands of agriculture and other sectors has resulted
in water scarcity in Zimbabwe’s rivers, impacting water users and the environment [60]. In
rural Zimbabwe, water is needed for livelihood needs, including domestic uses, gardening,
fishing, irrigation, recreation, reeds, dip tanks and livestock watering [64]. However,
in Mkoba and Silalatshani irrigation schemes in the Midlands and Matabeleland South
provinces, water is diverted from irrigation canals to home gardens [41]. Increases in
average irrigation water requirements of 33%, 66% and 99% are expected in the 2020s, 2050s
and 2090s, respectively, from a baseline of 67 mm, for maize production in Zimbabwe [65].

Water, energy and food (WEF) are closely linked. Water use for energy generation,
representing 15% of global water withdrawal, competes with water demands for food pro-
duction [66]. Energy is essential for making water available for irrigation, food processing
and wastewater treatment [66]. Electrification is lacking in rural areas in Zimbabwe, and
those connected to the grid suffer frequent power cuts [60], making pumping of water for
irrigation purposes challenging. Moreover, there are limited prospects of expanding the
national grid to rural areas, as it will be more costly than in dense urban settlements [60].
As most SISs are located in rural regions, poor rural electricity has an impact on smallholder
irrigation. The challenge of simultaneously addressing potentially conflicting objectives
of WEF while maintaining resources for other sectors needs an integrated approach of the
system as a whole [67].

Meaningful development opportunities are missed when there is no clear link between
water use, energy supply and mainstream agricultural livelihood in Zimbabwe [68]. The
nexus’ effectiveness among SISs in Zimbabwe can be determined by community institutions’
strength, ownership and management structure [68]. The variable climate and recurrent
droughts in the country make the water supply sporadic, affecting hydropower’s potential
in Zimbabwe. Competing community needs around water use have been seen in the
development and use of SISs and hydropower stations. The sophisticated and organized
community structure at a scheme in Chipendeke in Manicaland province has integrated an
80 KW hydropower plant and irrigation [68]. Multiple uses of available water resources
can result in conflicts and lead to the possibility of multiple but independent failures in
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the water supply system in the face of climate change [63]. According to Palombi and
Sessa [30], climate change exacerbates tensions and increases competition for water.

3.3.3. Climate Change Impacts on Pest and Disease Outbreaks

Climate change will lead to new and emerging pests, whose effects vary with AEZs.
Crop loss will be increased by a myriad of climate change-related factors that include:
decrease in host plant resistance, reduction in the efficacy of pesticides and the arrival
of alien pest species [5,69]. Changes in both precipitation and temperature will lead to
increased infestations of pests and disease outbreaks, reducing crop and animal productivity
and driving up expenditure of pesticides, herbicides and veterinary drugs [6,7]. A change
in pest distribution is among the most commonly reported abiotic responses to climate
change [5,6]. A study in Mutare district shows that coffee white stem borers respond more to
precipitation factors [6]. Mafongoya et al. [5] postulate that incidences of pests in Zimbabwe
respond to changes in seasonality, temperature and rainfall patterns. Projected climate
change-related temperature and precipitation changes will likely result in crop losses due
to increased abiotic stress from weeds, insects, fungi, viruses, nematodes and rodents. Pests
cause yield loss at all stages of the production cycle, from planting to postharvest [69]. It is
projected that theyield loss of major staple crops due to increased pests alone will expand
by 10 to 25% for each degree of global mean surface warming [7]. Temperature enhances
the development rates of pests, shifts pests’ species composition and increases the spread
of invasive pests into new zones as suitable climatic conditions expand [5].

Zimbabwe’s smallholder farmers are projected to face a wave of new pests spreading
to Southern Africa, including the fall armyworm, tomato leaf miner and cotton mealy
bug [32]. Mid-season and prolonged dry spells may promote the occurrence of insect pests,
such as armyworms [70]. Fall armyworms destroyed 20% of the nation’s maize crops during
the 2016–2017 farming season, worsening the nation’s food status. Over 4 million people
were dependent on food aid [32]. New and emerging pests that are suited to the changes in
conditions make farming difficult in Zimbabwe [5,32]. However, characteristically, poor
smallholder farmers have no options to deal with new pests. A countrywide survey by
Mafongoya et al. [5] in Zimbabwe found out that smallholder farmers perceived increases
in the abundance of aphids, whiteflies, stem borers, ball worms, red spider mites, termites
and diamondback moths; and the emergence of new pests due to the shortening winter,
increasing temperature and lengthy dry spells.

3.4. Policies and Issues Related to Irrigation Water Management and Irrigation Schemes

Since the pre-independence era of Zimbabwe, the development of SISs has been
spearheaded using different management models [71]. During the post-colonial era (1980
to date), the government intensified the development of SISs. In 1980, about 4400 ha were
under SISs [72,73]. At the same time, 81 SISs were operational [72]. In 2000, the total area
under SIS was 11,860 ha and the number of SISs was 187 [74]. The area under SIS farming
as a percentage of the total irrigated area rose from 3.4% in 1980 [72] to 9.8% in 2000 [74].
Between 2000 and 2020, the area under SIS rose by about 119% to 26,000 ha [71]. The
land distribution program resulted in an increase in land under SIS farming, as the land
was acquired from large-scale commercial farmers and divided into smallholder irrigation
plots [46]. According to [75], Zimbabwe has a potential irrigable area of approximately
600,000 ha. As indicated in Table 2, the government proposed to develop 29,000 ha of SISs,
increasing the area under SISs by 112% to 55,000 ha by 2025 [71].
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Table 2. Proposed smallholder irrigation development from 2021 to 2025.

Year Area (ha) Percentage Total Area under SISs (ha)

Base year (2020) 26,000
2021 4000 15.38 30,000
2022 5000 34.62 35,000
2023 5000 53.85 40,000
2024 5000 73.08 45,000
2025 10,000 111.54 55,000

Adapted from [71].

Meanwhile, the Government of Zimbabwe (GoZ) has managed to mobilize funds for
development and revitalization of SIS annually after independence [76].

Among its initiatives, the GoZ has bilateral agreements with Brazilian, Chinese and
Indian governments towards the development of SISs. The Ministry of Lands, Agriculture,
Water, Climate and Rural Resettlement (MLAWCRR) mobilized a loan of US$ 98 million
from the Brazilian government for SIS development [31]. The Government of China is
focusing on transferring technology to SISs [31]. The International Fund for Agriculture
Development (IFAD) initiated the Smallholder Irrigation Revitalization Programme (SIRP)
and Smallholder Irrigation Support Programme (SISP) to rehabilitate existing schemes and
facilitate the development of new SISs [33].

In order to improve operational efficiency and guide the operation of SISs, Zimbabwe
has developed strategies and policies since 1980. Currently, the SISs are mainly guided
by the Zimbabwe Agricultural Policy Framework (ZAPF) (1995–2020) [76]. The National
Water Act of 1998 is the basis for financing the management of water resources under the
Zimbabwe National Water Authority (ZINWA) [76]. At the same time, several national
policies have sections devoted to SISs.

These policies are effective instruments for implementing and managing activities
in SISs in Zimbabwe [77]. Policies are among the pathways of SIS development, con-
sidering the need for improved water utilization management across scales and sectors.
Policies which evolved over the years have shaped the practices and performance of SISs
in Zimbabwe [31]. Despite the prominence of irrigation development in the governmental
development agenda, little attention has been paid to scheme management [41]. Recently,
Zimbabwe has unveiled the irrigation policy (Accelerated Irrigation Rehabilitation and
Development Plan 2021–2025) [71] after years of relying on other policies/sector strategies
shown in Table 3.

Table 3. Policies, programs and strategies relevant for SIS in Zimbabwe.

Policy/Strategy Relevance in the Context of SISs

1998 Water Act Gives authority to catchment council to allocate water to SISs [78].

2000 Zimbabwe National Water Authority Act Establishes the ZINWA as a parastatal agency—in charge of water
permits and water allocations, including for SIS use [79].

2002 Environmental Management Act and 2003
Environmental Agency Act

Introduces mandatory environmental impact assessments for
SIS development [80].

2000 Land Acquisition Act Empowers the government to compulsorily acquire land for SIS
development purposes [81].

Zimbabwe’s Agenda for Sustainable Socio-Economic
Transformation (Zim-Asset) 2013–2018

Sets the objective of increasing the area under SIS through
rehabilitation and modernization of irrigation schemes and increase

in power available and affordable for irrigation [82].

Zimbabwe’s National Climate Change Response
Strategy 2015

Mainstreaming climate change in all key sectors of the economy;
calls for integrated management and development of agricultural

water resources [75].
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Table 3. Cont.

Policy/Strategy Relevance in the Context of SISs

Comprehensive Agricultural Policy Framework 2012–2032

Includes provisions for rehabilitating and modernizing SIS
infrastructure, developing new irrigation infrastructure and
strengthening research on irrigation development and new

technologies (objective 7.3) [83].

Zimbabwe’s Agricultural Investment Plan 2013–2017 Aims to redesign and rehabilitate SIS infrastructure [84].

Medium-Term Plan 2011–2015
Focuses on rehabilitation of existing SIS infrastructures and

completion of irrigation projects to increase
agricultural production [85].

National Development Strategy 1 2021–2025
Intensification of construction and rehabilitation of SIS

infrastructure including dams and funding of
irrigation development [86].

National Agricultural Framework (2018–2030)

Development of low-cost technology investment in SIS, capacitation
and enhancing skills for irrigation technicians and promotion of

low-cost finance for irrigation development, investment in
irrigation development and water harvesting technologies [87].

Accelerated Irrigation Rehabilitation and
Development 2021–2025

Rehabilitation and revitalization of over 450 SISs in communal
areas, on 26,000 ha and a concomitant farmer capacitation,

governance overhaul and business model transformation to ensure
viability and sustainability of these schemes.

Development of various SISs in the Lowveld Green Zone Irrigation
Development and projects linked to dams in communal and

resettlement areas.
To improve access to finance, inputs, markets and overcome

governance and business systems at irrigation schemes.
Reliable market arrangements for produce from SISs [71].

Investment in expanding SISs needs to be coupled with measures to allocate water
effectively and equitably. The MLAWCRR is responsible for the development and im-
plementation of agriculture and irrigation policies. The department of Water Resources
Planning and Irrigation Development (WRPID) of MLAWCRR is responsible for planning,
identifying, designing, constructing, operating and managing SISs at the national, provin-
cial and district levels [31]. The MLAWCRR formulates policies for the utilization of water
resources. The Water Law of 1998 emphasizes water management through decentralization
and stakeholder participation in line with International Water Resources Management
(IWRM) [76]. ZINWA manages water permits in seven catchment councils which are sub-
divided into sub-catchment councils. Governance structures of an SISs vary with scheme
type. The GoZ partly operates and maintains jointly managed schemes. Farmer-managed
schemes were developed by GoZ but are owned and managed by farmers through irriga-
tion management committees (IMCs) [76]. However, the effectiveness of IMCs varies from
one scheme to another. Traditional chiefs allocate land for scheme development. Multi-
lateral and bilateral donors exclusively support SISs in communal areas by rehabilitating
decaying scheme infrastructures. The Food and Agriculture Organization (FAO) supports
MLAWCRR in policy formulation and coordinates efforts by donors and GoZ to partner in
the irrigation sector [31].

Both GoZ and donor communities have introduced some initiatives to improve the
production of SISs. They have financed the maintenance of SISs to enhance their produc-
tivity. Moreover, GoZ injects input subsidies to enhance crop productivity [41]. The GoZ
prescribes a cropping program which aim to sustain production [31]. The cropping calendar
focuses on low-value staple crops, which are the cheapest on the market, which is a big
stumbling block for resilience. Surprisingly, there is minimal critical reflection in the litera-
ture on limitations of SISs as a climate change adaptation strategy in different contexts [31].



Water 2022, 14, 1682 13 of 20

3.4.1. Socio-Economic Conditions

There are limited statistics on the contribution of SISs to the national GDP; however,
the evidence that SISs contribute to food security, income and general well-being better
than rainfed farms is overwhelming [35,64]. In addition, SISs provide rural people with an
alternative source of employment and income [33]. However, gendered plot ownership
exists in SISs in Zimbabwe, as males own approximately 67.9% of plots, despite that most
scheme labor is provided by women [33]. The majority of farmers are women, as many
men work in towns because farming is not profitable enough to support a family.

Climate change’s impact on SISs is worsened by non-climatic factors, including pop-
ulation growth, urbanization, global economic growth, rising competition for natural
resources, agronomic management, technological innovations, trade and food prices [30].
These factors have immediate impacts on water resources, hence the need to be understood
and incorporated into climate change adaptation discourse in SISs [30]. The population of
Zimbabwe of 16.6 million people. It is rising at the rate of 2.3% per annum and is projected
to reach 22.2 million and 33.2 million by 2030 and 2050, respectively [47,88]. The population
rise relates to the reduction in HIV-related deaths, improved health services, expanding
educational levels, rising income and urbanization [88]. However, the majority (66%) of the
population resides in rural areas [88].

Zimbabwe has experienced a deteriorating socio-economic environment following
the Economic Structural Adjustment Program (ESAP) of the 1980s and the downwards
macroeconomic trends in the 2000s, which impact the supply of basic agricultural inputs
(fertilizers, seeds, crop chemicals and electricity) [31,33,89]. In the 2000s, a decline in the
country’s GDP was noted [33]. The economic downturn perpetuated widespread poverty
and loss of livelihood opportunities, particularly in rural areas, mostly in semi-arid and
arid regions, where 76% of people live below the national poverty datum line [46]. The turn
of events has decapacitated the schemes’ ability to cope and transform to match temporal
and permanent changes in climatic conditions.

Additionally, Zimbabwe has endured HIV/AIDS, which remains in above 15% of
the population, decimating the labor force and diverting income and labor from scheme
farming [3]. The current outbreak of COVID-19 and its associated control measures, such
as lockdowns, negatively affect small and medium enterprises in Zimbabwe, which are
mainly agro-based [90].

Conflict and insecurity, inequitable land distribution, low education, poor infrastruc-
ture, gender inequality, dependence on natural resources and low health status perpetuate
vulnerability at the household level in Zimbabwe [3]. Zimbabwe’s drought and food
insecurity situation was projected to result in 1.5 million people (16%) being food insecure
by 2050 [32].

3.4.2. Water Management

Zimbabwe has seen limited conceptual and practical analysis of the management of
SISs, as much of the recent studies focused on the quantitative performance of SISs. Water
management in SISs in Zimbabwe is coupled with inefficient and inflexible scheduling,
making it challenging to maximize yield and profit [36]. Poor water management; low input
use; relatively small, irrigated plots; and complex group dynamics have been implicated in
the low crop yields in SISs in Zimbabwe [71]. However, the recent development of the Ac-
celerated Irrigation Rehabilitation and Development Plan 2021–2025 has brought to an end
the challenges of adopting other policies to address scheme challenges. In addition, SISs in
Zimbabwe’s primary focus on food security at the expense of economic growth has resulted
in farmers’ failure to meet the schemes’ maintenance and development demands [31].

Water pricing is among the tools used to manage water scarcities and competing
demands to protect the resource and its quality [66]. Therefore, water pricing policies
can incentivize water conservation, construction, operation and maintenance of the sys-
tems [91]. However, use of water pricing impacts availability of water for agricultural
uses especially for marginalized populations [66]. A case study in irrigation projects in
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Nyanyadzi, Zimbabwe, noted that communities view irrigation as a development expendi-
ture for the government and donors in their pursuit to ensure food security among rural
communities [92]. This, in turn, diminishes the proportion of cost recovery, threatening the
viability and sustainability of SISs [92].

Given that the country’s agricultural system is heavily subsidized, cost recovery of
water delivery is arduous and complicated [92]. Fundamental planning, designing and
maintaining of the water delivery system is constrained by stakeholders’ inability to address
the budget deficit challenge in SISs [92]. Mutambara et al. [60] suggest that low productivity,
dependency syndrome, poor services and political interference in water governance in
SISs in Zimbabwe affect farmers’ contributions towards water bills. Failure to pay water
bills directly affects water access, water resource planning and infrastructure maintenance,
hampering the system’s ability to adapt and mitigate climate change’s impacts [60,91].

SISs in Zimbabwe can exploit short- and long-term adaptation and management
practices. Conservation agriculture, crop rotation and mulching are common adaptation
practices implemented in Zimbabwe [7,93]. However, the usefulness of agriculture and
irrigation policies is limited by a lack of appropriate mechanization, making them labor-
intensive [93]. Conservation agriculture is mostly implemented among rain-fed farmers,
and its consideration for scheme farming is minimal [93].

3.4.3. Policy Influences on Adapting to Climate Change in SISs

Policy interventions affect the adoption of smart technology, institutions and value-
chain networks that are required for successful irrigation timing; the number of farm-
ers; and the size of irrigated land for profitable, equitable and economically sustainable
schemes [36]. Collective social network interventions transform irrigation schemes into
sustainable irrigation communities. These require policy interventions and institutional
commitment. The failure of SISs is caused by weak institutions which perpetuate a lack of
agronomic and irrigation knowledge, a limited financial capacity to fully maintain scheme
infrastructure and the dilapidated state of irrigation infrastructure, in addition to existing
water challenges [36]. New and existing policies must have the potential to reduce water-
related conflicts between irrigators and multiple water consumers within SISs. However,
the success of majority of irrigation policies hinges on irrigation management committees’
(IMCs) strategies.

Land tenure in Zimbabwe is not well defined or understood by irrigators, leading to
confusion over management and challenging individual loan acquisition for investing in
schemes [36,41]. Perceived tenure security by farmers and potential investors and lenders
influence long-term investment. Furthermore, small plot sizes limit scheme faming’s abil-
ity to be financially sustainable for loan payback. Market access, which can potentially
incentivize the production of irrigators, is extremely limited [41]. Water pricing in Zimbab-
wean policy is dependent on geography, allowing for local payment arrangements that
could jeopardize the irrigation system’s long-term viability [41]. IMCs lacks the capacity
to enforce critical rules, resulting in limited maintenance and reduced production. Irri-
gators in Zimbabwe were recognized for a lack of knowledge of critical statutory bodies,
such as the Agricultural Marketing Authority of Zimbabwe, which is responsible for reg-
ulating participation in the production, buying and processing of agricultural products
in Zimbabwe [41].

3.4.4. Recommendations to Adapt to Climate Change in SISs

Moyo et al. [41] recommend transformation of the agricultural landscape in Zimbabwe
through the adoption of pluralistic extensions to enable diversification of sources of in-
formation and skills. The participation of private-sector players (sellers and buyers) was
recommended for the provision of extension advice. Existing policies and institutions
must ensure that input and output markets, and associated information flows between
these markets and farmers, function properly [36]. To ensure the effectiveness of this
intervention, a critical mentality shift is required to go from subsistence to market-oriented
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production by creating economic incentives. Governance actors, NGOs and private-sector
players anchor their perceptions of the goals of the system food security paradigm on the
economic-development paradigm [63]. Devolution of the central control to a lower-level
was recommended by van Rooyen et al. [63]. This would provide farmers with the opportu-
nity to experiment, learn and organize in response to actual irrigation demands. Improving
interaction between actors and the central government would boost the ability to respond
to changing conditions. The presence of the Agricultural Marketing Authority within the
scheme communities needs to be substantially improved to foster their mandate. Owner-
ship of implements such as tractors, ploughs and wheelbarrows was implored for poverty
reduction, securing livelihoods and climate change adaptation [41]. Coordinating efforts
to integrate missing value chain players through stakeholder dialogue and utilization of
mobile phone technologies is a goal. Policies and institutions need to support irrigators in
innovation and development [41]. In addition, examining the organizational structure of
schemes institutions (IMCs, ZINWA, the Department of Irrigation and AGRITEX) would
help to clarify their roles and responsibilities [41].

A study in Zambia recommends use of water-efficient technologies and improved
management of water resources [21]. Additionally, subsidizing agricultural production
was recommended to ensure sustainable groundwater withdrawal and food security in
arid and semi-arid regions [67]. In contrast, water resource planning and management
were recommended for mitigation and development in water systems [10]. The adverse
effects of climate change on water resource availability can be mitigated by expanding
storage capacity (or rainwater storage), fair policies for water supply and distribution, river
health and watershed management [94]. Further, completion and modernization of the
sewage treatment and wastewater treatment was recommended as the best alternative to
improve water quality before channeling it back into rivers [95]. Optimal operation of the
reservoirs through irrigation management could address water stress challenges, although
decreasing agricultural income. The transformation from traditional surface irrigation
to subdroplet irrigation substantially reduces agricultural water use [15]. Lv et al. [96].
Schilling et al. [12] highly emphasized the possibility of water resource policy contributing
to effective water allocation in the face of climate change [90], as users would respond by
changing their patterns of water use and allocation [10]. Smallholder irrigation schemes
can adopt crops with lower water footprints [97], improved irrigation water management
and climate-smart irrigation, to sustainably improve food security [94]. At the same time,
technical interventions through technological integration, nutrient and water management,
temperature measuring instruments and soil health analysis are key for climate change
adaptation [94]. Farmers, local communities, universities, scientists, policymakers, NGOs
and others can use a holistic strategy to decrease the risks and improve the adaptation to
climate change of agriculture and water resources [94].

The literature remains unclear about the future patterns and impact of climate change
on water availability for SSI farming in Zimbabwe. All models might not point to the
same scenario, as there are large variations in the assessment of runoff and recharge.
Several studies projected a general decline in rainfall and rise in temperature across the
country [4,7,9,40,44], whereas others suggest a redistribution of the AEZs [9,39]. Some
studies suggest shrinkage of more productive regions, while others suggest a shift in
AEZs, making existing zones obsolete and misleading [98]. There is a dearth of literature
on combined insights from quantitative predictive models with quantitative explanatory
models, especially for rural areas where data availability is limited. A multidimensional
risk analysis is needed to assess climate change’s impact on water availability for SIS
farming. However, the bottom-up approach gives opportunities to build resilience and
develop vulnerable communities.

3.5. Limitations of the Study

This study could have been limited by restricted search terms (climate change, small-
holder irrigation schemes, water resources) that could have led to some critical literature
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being left behind. There is a possibility that different authors used diverse terms based on
their studies’ purposes, and climate change is a multidisciplinary field. Additionally, this
study was limited to the country level, with little focus on regional and global levels, possi-
bly limiting understanding of the study at a broader scale, although lessons from global
scale have been drawn. Further, the articles mainly focused on the negative attributes of
climate change, with little focus on the potential benefits of climate change in smallholder
irrigation, suggesting bias. In addition, the articles used for these studies used varying
methods of study, sample sizes and analytical frameworks.

3.6. Area of Future Research

SISs has the potential to provide employment and fight hunger and “hidden hunger”
in rural communities [33,64], which affects 66% of Zimbabwe’s population [88]. However,
there is a broad literature on the underperforming of schemes in SSA, and in Zimbabwe,
there are limited studies proving a link between climate change and underperforming
schemes. A study by Moyo et al. [41] provides insight on the factors that affect yields, food
security and farm income in irrigation schemes in Zimbabwe, including poor infrastructure,
soil infertility, limited access to farm inputs, farm implements, functioning markets and
agricultural knowledge. Furthermore, as advised by Moyo et al. [41] it is necessary to
investigate potential technologies and institutions in which to invest in order to deal with
climate change. Their relationship with climate change must be taken into account. To better
understand vulnerability to climate change in SISs for future adaptation policy formulation,
development and funding, there is a need to assess their vulnerability. This will enable
stakeholders to be advised on how to develop local strategies to adapt to climate change.
Investigating vulnerability in SISs is important for more vulnerable schemes to be identified
and to provide a database for the nature of support needed in each area. Current problems
are linked with water management and associated policies in SISs in Zimbabwe making
farmers vulnerable to the predicted impacts of climate change. Additionally, investigating
the institutions and governance aspects that affect smallholder irrigation adaptation to
climate change is key to addressing climate change vulnerability in SISs. How farmers
could be better able to deal with predicted climate changes need to be understood.

4. Conclusions

This article has reviewed the impacts of climate change on Zimbabwe’s SISs and
identified associated adaptation options implemented based on the available literature. In
Zimbabwe, climate change has resulted in a rise in temperature and a decrease in rainfall.
Studies showed the sensitivity of SISs to climate change, as the recharging of surface and
underground water bodies is deteriorating, impacting water access. Climate change results
in greater severity of crop pests and disease, their resistance to pesticides and the emergence
of new pests and diseases, resulting in crops losing quality and quantity. The crop growing
area was reported to shift as climatic conditions become harsher in primary production
zones. Therefore, climate change results in a decline in the productivity of schemes and
increases production costs beyond the reach of scheme farmers. Literature has shown that
existing adaptation strategies fail to catch up with climate change effects, as schemes are
reported as having collapsed, especially in drier regions. However, local institutional actors
play a key role in the adaptation of SISs to climate change. They formulate policies and offer
critical support by maintaining existing schemes, providing subsidies and establishing new
schemes. For the successful adaptation of SISs to climate change, there is a need to assess
vulnerabilities further and advise stakeholders based on policy and investment options
needed at local and national levels. Engaging with scheme farmers and stakeholders at the
local level is required to understand vulnerabilities based on their lived experience. Yet,
this issue is not documented in Zimbabwe. Climate change risks in SISs are driven by rising
temperature, variation in precipitation, rising aridity, the socio-economics environment
and limited adoption of irrigation technology. However, adoption of relevant technological,
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institutional, management and holistic strategies is key to reducing the risk of climate
change among the SISs.

The population in need of agricultural transformation is the one that is most vulner-
able to climate change due to water scarcity and increased pests and diseases. Farmers
are struggling to cope with the impacts of climate change, which is projected to alter the
magnitude, timing and distribution of pests, resulting in crop loss. Smallholder farming
in Zimbabwe experiences greater vulnerability to climate change hazards due to endemic
poverty, restricted access to capital and technology and substandard infrastructure, impact-
ing food and nutrition security. The projected increases in rainfall variability, temperature
and extreme events exacerbate the predominantly rainfed farming system’s vulnerability,
affecting its response to national food needs.
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