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Abstract: Arsenic (As) contamination of groundwater is a global public health problem. Microor-
ganisms have a great effect on the migration and transformation of arsenic. Studying the effect of
microbial community structure and function on arsenic release in the groundwater environment
of the riverbank filtration zone has important theoretical and practical significance. In this paper,
in-situ monitoring technology and molecular biology technology were used to study the microbial
community in the process of river water infiltration in the Shenyang Huangjia water source, China.
The results showed that the structure, diversity and abundance of the microbial community in
groundwater were closely related to the arsenic content. Proteobacteria was the dominant phylum
in groundwater of the study area, and Acinetobacter, Pseudomonas, Sulfuritalea, Sphingomonas and
Hydrogenophaga etc. were the main dominant bacterial genera. In addition to reducing and oxidizing
arsenic, these functional microorganisms also actively participated in the biogeochemical cycle of
elements such as iron, manganese, nitrogen and sulfur. There was a significant correlation between
dominant bacteria and environmental factors. Fe/Mn had a significant positive correlation with As,
which brought potential danger to the water supply in high iron and manganese areas.

Keywords: microbial community structure; arsenic-bearing groundwater environment; riverbank
filtration zone

1. Introduction

Driven by riverside exploitation, strong interactions occur between river water and
groundwater [1–3]. The riverbank filtration zone, as the key zone of interaction, affects the
migration and transformation of pollutants in the process of river water infiltration [4–7].
Arsenic is a typical toxic carcinogen. Long-term drinking of arsenic-bearing groundwater
will do great harm to human health, which can lead to neurasthenia, cardiovascular disease,
liver cancer, kidney cancer and so on [8–10]. In view of the high risk of arsenic, the World
Health Organization (WHO), the European Union and many countries (including China
and the United States) stipulate that the concentration of arsenic in drinking water should
not exceed 10 µg/L [11,12]. Once arsenic contamination occurs, the impact on human
beings is very serious [13–16].

The formation of arsenic-bearing groundwater is the result of a series of water-rock
interactions, hydrogeochemistry and geological microorganisms. The release mechanisms
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are mainly as follows: desorption, reductive dissolution of arsenic-bearing minerals, oxi-
dation of arsenic-bearing minerals and the direct reduction of arsenic [17–22]. There are
mainly two forms of arsenic in nature, inorganic arsenic and organic arsenic, and its main
valence states are As3+ and As5+. These two valence states of arsenic are the main existing
forms in groundwater and soil. Arsenic mainly exists in the form of arsenite or arsenate
in groundwater, and As3+ has stronger mobility and biological toxicity than As5+ [23–25].
Most of these studies are based on traditional hydrogeochemical or mineralogical methods.
With the continuous deepening of research, scholars found that microorganisms affect the
geochemical process of arsenic in groundwater [26–28]. Microorganisms with an arsenic
metabolism function can directly promote the redox and methylation of arsenic, which
affects the migration and transformation of arsenic [29–31]. Indigenous iron-reducing bac-
teria can promote the reduction of iron hydroxides and release the adsorbed arsenic [32–34].
The reduced sulfur produced by microbial reduction can form arsenic-bearing sulfide pre-
cipitation with dissolved arsenic in groundwater. If the arsenic–sulfur complex is formed
in this process, it will promote the migration of arsenic in groundwater, because it is not
easy to be adsorbed [35]. Microbial activities in the groundwater system, especially the
microbial-mediated cycling and metabolism of elements such as iron and manganese,
affect the migration and transformation of arsenic in the arsenic-bearing groundwater
environment [36–39].

Previous studies have shown that arsenic enrichment during riverbank filtration is
closely related to microorganisms, and most of them focus on the effect of a certain bacterial
species on arsenic. However, the effects and potential mechanisms of microbial community
structure and function on arsenic release in the groundwater environment of the riverbank
filtration zone are still unclear. Therefore, an in-depth study on the microbial community
composition and functional genes of the arsenic-containing groundwater environment is
of great scientific significance for understanding the arsenic release and the formation of
arsenic-bearing groundwater under the influence of microorganisms.

Shenyang Huangjia water source is located in the north of Shenyang City, China. The
content of iron, manganese and arsenic in groundwater exceeds the standard seriously [40].
At present, the source and cause of arsenic in the groundwater of this water source are
not completely clear. Therefore, this paper uses in-situ monitoring technology and molec-
ular biology technology to analyze the microbial community structure characteristics of
the arsenic-bearing groundwater environment in the riverbank filtration zone, and it re-
veals the impact of the microbial community on the biogeochemical process of arsenic
in groundwater. This study can deeply understand the formation law of groundwater
chemical composition and reveal the formation of arsenic-bearing groundwater under the
influence of microorganisms, which is of great significance to the monitoring and protection
of groundwater.

2. Materials and Methods
2.1. Study Area Description

The study area is located in the Shenyang Huangjia water source, and the Liao River
flows from east to west in the north of the study area (Figure 1). Groundwater is stored
in an unconsolidated phreatic Quaternary aquifer, with a buried depth of 1–4 m. The
aquifer is about 50 m thick and is mainly composed of fine sand, medium coarse sand
and gravel. Twelve mining wells are arranged along the river, with a total mining volume
of 30,000 m3/d. The groundwater receives lateral recharge from the Liao River all the
year round.
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Figure 1. Location of the study area and distribution of monitoring sites.

2.2. Sampling and Testing

Along the groundwater flow direction, five monitoring wells (numbered W1, W2, W3,
W4 and W5) were set up at 1.5 m, 4 m, 6.5 m, 12.5 m and 17 m away from the south bank
of the Liao River, while these five wells were each screened to 10.0 m below the ground
surface. The river water sampling point W0 was arranged about 6 m away from the south
bank. We carried out sample collection in August and collected five groundwater samples
and one river water sample. Before collecting groundwater samples, at least 3–5-times the
volume of the monitoring well pipe was extracted, and a portable water quality analyzer
(HQ40d, Hach Company, Loveland, CO, USA) was used to measure the groundwater
temperature (T), pH, oxidation-reduction potential (ORP), dissolved oxygen (DO) and
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other indicators on site. Samples should have been taken after the readings were stable.
The river water samples were collected about 20 cm below the water surface. The collected
water samples were sealed with sealing film without headspace after adding a protective
agent according to the preservation requirements [41].

Fe2+ and Mn2+ were measured in situ by a spectrophotometer (DR2800, Hach Com-
pany, Loveland, CO, USA). Conventional anions and cations were determined by ion
chromatography (881 Compact IC, Metrohm AG, Herisau, Switzerland), and HCO3

− was
determined by acid–base titration. After the water samples were filtered by a GF/F mem-
brane (1825-047 Whatman Glass Microfiber Filters, Cytiva Company, Buckinghamshire,
UK), the DOC was determined by a TOC instrument (TOC-L CPH CN200, Shimadzu
Corporation, Kyoto, Japan). As was determined by inductively coupled plasma mass
spectrometer (7500C ICP-MS, Agilent Technologies, Santa Clara, CA, USA). The above
tests were completed in the Key Laboratory of Groundwater Resources and Environment,
Ministry of Education, Jilin University. The microbial community composition and arsenic
functional genes were analyzed by 16S rRNA high-throughput sequencing, which was
completed by Beijing Allwegene Technology Co., Ltd., Beijing, China.

3. Results and Discussion
3.1. Hydrochemical Characteristics

The pH of the river water in the study area was 8.17 (Table 1). The pH of groundwater
ranged from 7.16 to 7.52, which was weakly alkaline on the whole, and it gradually de-
creased along the groundwater flow direction (Figure 2). The ORP and DO content of the
river water were 35.02 mV and 9.34 mg/L, respectively, indicating that it was in a state of
oxidation. The ORP of groundwater ranged from −135.23 mV to −11.54 mV, which de-
creased to −135.23 mV at 17 m away from the riverbank, showing strong reducibility. Along
the groundwater flow direction, the ORP and DO content gradually decreased, reflecting
that the infiltrated river water experienced a transition from an oxidation environment
to a reduction environment. The DOC content in river water was relatively high. Along
the groundwater flow direction, the DOC content in groundwater gradually decreased,
reflecting the strong redox reaction between DOC and electron acceptors in groundwater.

Table 1. Physico-chemical parameters in river water (W0) and groundwaters (W1–W5).

Sample ID W0 W1 W2 W3 W4 W5

Distance to the riverbank
(m) −6 1.5 4 6.5 12.5 17

T (◦C) 22.24 14.71 13.17 12.21 10.94 10.49
pH 8.17 7.52 7.36 7.33 7.27 7.16

ORP (mV) 35.02 −11.54 −69.88 −94.45 −118.79 −135.23
DO (mg/L) 9.34 7.56 2.07 2.11 1.93 1.90

DOC (mg/L) 18.76 9.79 9.34 8.16 7.27 6.69
K+ (mg/L) 6.32 5.17 3.39 3.41 3.75 8.31

Na+ (mg/L) 31.27 49.66 43.87 39.85 32.37 30.00
Ca2+ (mg/L) 50.46 91.96 87.42 101.46 116.97 129.05
Mg2+ (mg/L) 20.90 28.17 27.18 32.64 40.43 109.35
Cl− (mg/L) 41.80 56.56 57.26 60.11 69.78 27.57

HCO3
− (mg/L) 169.00 378.41 348.80 431.06 480.42 957.55

NO3
− (mg/L) 7.69 2.36 1.77 0.59 0.33 0.30

SO4
2− (mg/L) 75.50 68.63 68.55 61.01 62.58 54.79

As (µg/L) 2.21 37.04 40.69 46.95 48.80 51.34
Fe2+ (mg/L) 0.11 13.35 17.02 19.93 21.89 25.93
Mn2+ (mg/L) 0.14 2.00 5.42 6.14 7.56 7.42
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Figure 2. Variations in hydrochemical parameters along the groundwater flow direction.

The hydrochemical type of river water was a Ca-Mg-Na-HCO3-SO4-Cl type. The
hydrochemical type of groundwater was mainly a Ca-Mg-HCO3 type, and the SO4

2−

content decreased, which was affected by reduction (Figure 3). Along the groundwater flow
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direction, the SO4
2− content decreased from 75.50 mg/L at the river water to 54.79 mg/L at

W5, showing the consumption of SO4
2− in groundwater, indicating the gradual enhance-

ment of SO4
2− reduction, pointing to the possible activity of sulfate-reducing bacteria in

groundwater. As a sensitive redox component, the NO3
− content gradually decreased to

0.30 mg/L along the groundwater flow direction, reflecting the strong denitrification effect
of NO3

− as an electron acceptor.
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Figure 3. Piper diagram of river water and groundwater samples.

The content of Fe2+ and Mn2+ in the river water was low, both being less than 0.2 mg/L.
Along the groundwater flow direction, the content of Fe2+ and Mn2+ in groundwater grad-
ually increased. At W5, the content increased to 25.93 mg/L and 7.42 mg/L, respectively,
indicating that the reductive dissolution of iron and manganese minerals occurred in
the gradually reducing environment, which increased the content of Fe2+ and Mn2+ in
groundwater. Similarly, the As content in the river water was low, which was far below
the 10.0 µg/L set by the WHO for water quality standards, indicating that the river water
may not be polluted by arsenic. Along the groundwater flow direction, the As content in
groundwater gradually increased. At W5, the As content increased to 51.34 µg/L, which
was about 25-times the As content in river water. At the initial stage of river infiltration,
some arsenic-bearing minerals were oxidized and dissolved to release As. With the transfor-
mation of groundwater to the reducing environment, Fe/Mn minerals underwent reductive
dissolution, and As adsorbed on the mineral surface, and the lattice was released.

As was significantly positively correlated with Fe2+ and Mn2+ and negatively corre-
lated with NO3

− and SO4
2− (Table 2). NO3

− and SO4
2− also had a negative correlation

with Fe2+ and Mn2+, indicating that with the infiltration of river water, Fe3+, Mn4+, NO3
−

and SO4
2− were reduced in the process of increasing the arsenic concentration. There

was a significant correlation between the components, indicating that there was a close
relationship between iron, manganese, nitrogen and sulfur and the release of arsenic.
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Table 2. Correlations between As, Fe2+, Mn2+, nitrate and sulfate.

Component As Fe2+ Mn2+ NO3− SO42−

As 1.000

Fe2+ 1.000 ** 1.000

Mn2+ 0.943 ** 0.943 ** 1.000

NO3
− −1.000 ** −1.000 ** −0.943 ** 1.000

SO4
2− −0.943 ** −0.943 ** −0.829 * 0.943 ** 1.000

Notes: ** correlation is significant at a confidence level of 0.01; * correlation is significant at a confidence level
of 0.05.

3.2. Microbial Species Abundance and Diversity

Due to different physical and chemical conditions, microbial communities have dif-
ferent structures and compositions. The interactions among various communities and
the collection of various enzymatic reactions play a significant role in the biogeochemical
process of arsenic. The samples were classified by Operational Taxonomic Units (OUT)
species, and a total of 2330 OTUs were obtained, belonging to 40 phyla, 106 classes and
302 genera. The microbial abundance of river water and groundwater was different, show-
ing strong spatial heterogeneity. The species abundance of river water was relatively high,
1245 OTUs, and that of groundwater was relatively low, 157–288 OTUs (Figure 4). Along
the groundwater flow direction, the OTUs decreased gradually on the whole.
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Figure 4. Microbial abundance and diversity.

The Shannon index of the river water was high, indicating that the river water had
a high species diversity and rich species. Along the groundwater flow direction, the
microbial diversity in groundwater generally decreased gradually, while the corresponding
arsenic content in groundwater was high, reflecting that higher arsenic content had a strong
inhibitory effect on microorganisms in groundwater, resulting in fewer species [42–44].

It can be seen from Figure 5 that the PC1 principal axis could explain 44.36% of the
sample composition differences, and the PC2 principal axis could explain 13.79%. In the
Principal Co-ordinates Analysis (PCoA) diagram, the closer the distance between two
samples, the higher the similarity of species [45]. The microbial species composition of
the five groundwater samples was similar, which was distributed in the upper left part
of the PCoA diagram, while the river water sample was distributed in the lower right
part, showing the difference in microbial species composition between river water and
groundwater samples.
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Figure 5. Principal Co-ordinates Analysis 3D map.

W1, which was spatially closer to the river water, had an obvious deviation from the
river water (W0) in the PCoA diagram. With the increasing distance from the riverbank, the
deviation between groundwater and river water decreased, indicating that W1 and river
water species were less similar than other groundwater, and there were certain differences
in the communities. There was a high physical and chemical gradient between W1 and the
river water; the microbial activity in the groundwater was high, and the biogeochemical ef-
fect was relatively strong. With the further infiltration of river water, the species abundance
decreased, and the gradient of environmental conditions decreased relatively.

3.3. Microbial Species Composition

Proteobacteria (38.4–85.4%) was the dominant bacterial phylum, followed by Bac-
teroidetes (4.1–18.8%) and Cyanobacteria (1.2–23.1%) (Figure 6). Proteobacteria was the
most common and dominant bacterial phylum in arsenic-contaminated environments, with
numerous arsenic-resistant bacteria [46], and its abundance generally increased first and
then decreased along the groundwater flow. Among the Proteobacteria, Alphaproteobacteria
was the dominant bacterial class, accounting for 15.2–33.7%, followed by Betaproteobacteria
(8.7–34.9%), Gammaproteobacteria (1.9–30.3%) and Deltaproteobacteria (0.3–22.5%).
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Alphaproteobacteria included Sphingomonas and Brevundimonas, which have the ability
of arsenic reduction and iron reduction [47].
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Betaproteobacteria included many aerobic or facultative bacteria, usually with vari-
able degradability. The study area mainly included Vogesella, Aquabacterium, Polaromonas,
Gallionella, Hydrogenophaga, Sulfuritalea, etc. Aquabacterium is an iron-reducing bacterium.
At the same time, as a facultative aerobic bacterium, Aquabacterium can use nitrate as
an electron acceptor for nitrate reduction, accounting for a relatively high proportion in
W1, which is related to the rapidly decreasing NO3

− content along the groundwater flow,
indicating that its existence affects the change of nitrate content in groundwater. Gallionella
and Hydrogenophaga are ubiquitous in groundwater and can catalyze the reduction of As(V)
to As(III), reduce part of arsenite and also catalyze the reduction and dissolution of iron
manganese oxide bound iron, releasing arsenic in the lattice into groundwater [48].

The species abundance of Gammaproteobacteria was significantly different. The study
area mainly included Acinetobacter, Pseudomonas, Perlucidibaca, Aeromicrobium and Flavobac-
terium. Acinetobacter is a typical bacterium with an arsenic metabolism ability, which is
widely distributed in the arsenic-contaminated environment. Some strains have significant
arsenic resistance compared with other bacteria, and some strains can reduce or oxidize
arsenic. In addition, some strains also show an iron reduction and sulfur metabolism ca-
pacity [49–51]. Pseudomonas is mostly facultative anaerobic bacteria, which can use nitrate
as an electron acceptor for metabolism and participate in denitrification. At present, many
Pseudomonas strains that have been found are arsenic-resistant bacteria, which is closely
related to the release and migration of arsenic [52–54]. At the same time, Drewniak et al.
found that some Pseudomonas can produce a compound bound to iron to promote the
migration of arsenic from natural minerals [55,56].

Most Deltaproteobacteria can utilize various ions as electron acceptors and widely
participate in sulfate reduction and iron reduction in the environment, such as sulfate-
reducing bacteria and sulfur-reducing bacteria, etc. [48]. The high presence of sulfate-
reducing bacteria in a certain location of the aqueous medium indicates that the source of
arsenic in the groundwater may not be the reduction of iron oxides, but the pyrite provides
the substrate for sulfate-reducing bacteria to metabolize, resulting in the release of arsenic.

It can be seen that the species and genetic diversity of Proteobacteria are extremely
rich, covering a wide range of physiological metabolism types, and they are widely present
in groundwater in the study area. Microbial bacteria show certain metabolic functions of
arsenic, iron, manganese, sulfur and nitrogen; actively participate in the redox process and
have a great effect on the migration and transformation of various elements.

3.4. The Impact of Environmental Factors on Microbial Communities

Environmental factors affect the composition of the microbial community in ground-
water. A Redundancy Analysis (RDA) was used to analyze the microbial community and
environmental factors. The length of the arrows of environmental factors indicates the de-
gree of its impact on the microbial community. As, Fe2+, Mn2+, NO3

− and SO4
2− affect the

microbial community (Figure 7). The angles between the arrows of environmental factors
represent positive and negative correlations. As was positively correlated with Fe2+ and
Mn2+ environmental factors and negatively correlated with NO3

− and SO4
2−, which was

consistent with the results of the Spearman correlation analysis. As, Fe2+ and Mn2+ pointed
to W3, W4 and W5, indicating that they affected the microbial community structure of the
groundwater sample in these three reducing-environment areas, corresponding to the high
concentrations of arsenic, iron and manganese in these groundwater samples. Sphingomonas
and Hydrogenophaga, which have the ability to metabolize arsenic and iron, accounted for
a high proportion. Sulfuritalea is not only an arsenic dissimilatory reducing bacteria, but
it is also a sulfur oxidizing bacteria and denitrifying bacteria; Pseudomonas is not only an
arsenic-resistant bacteria, but it also can participate in denitrification; Acinetobacter not only
has the ability of arsenic metabolism, but it also shows the ability for iron reduction and
sulfur metabolism. These three bacteria had a good correlation with NO3

− and SO4
2−.
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3.5. Arsenic Functional Genes

There were bacteria containing the As(V)-reducing gene arrA and the As(III)-oxidizing
genes aioA and arxA in the river water. However, in the groundwater, only bacteria
containing the As(V)-reducing gene arrA, but no As(III)-oxidizing genes, were found
(Table 3).

Table 3. OTUs of river water and groundwater.

Gene Groups W0 W1 W2 W3 W4 W5

arrA 1081 1162 1016 1082 1024 905

aioA 18 - - - - -

arxA 351 - - - - -

The bacteria containing arrA were mainly Proteobacteria and Actinobacteria, including
a great quantity of reducing bacteria, such as Geobacter, Sulfuritalea, Desulfuromonas, etc.
(Figure 8). Dissimilatory Arsenate-Reducing Prokaryotes (DARPs) existing in anaerobic
environments can use As(V) as an electron acceptor for redox reactions to obtain energy
for cell growth. This reduction mechanism is called the respiratory reduction mecha-
nism [57–59]. The functional gene arrA is a reliable marker for the reduction of As(V) by
DARPs, and microorganisms containing arrA have a great effect on the biogeochemical
cycle of arsenic [60–62]. DARPs can reduce As(V) in amorphous iron oxide, alumina or
arsenic-containing minerals; release arsenic in sediments and increase the arsenic content,
especially the As(III) content in groundwater [63–65]. Although microorganisms containing
the arrA gene are mostly detected in anaerobic environments, some scholars have cloned
the gene in the rhizosphere soil of rice, indicating that the expression of the arrA gene may
not be strictly anaerobic, so the arrA gene was also detected in the river water in the study
area. [66,67].
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The bacteria containing aioA were mainly Proteobacteria, including Xanthobacter and
Defluviimonas (Figure 9). Bacteria containing arxA were mainly Proteobacteria and Acti-
nobacteria, including Parvibaculum, Rhodobacter, Maricaulis and so on. Under aerobic
conditions, As(III) is oxidized to As(V) under the action of microorganisms, and the oxi-
dation of As(III) is achieved by oxidase. Currently, the As(III) oxidase is mainly divided
into AioA and ArxA. The process by which microorganisms oxidize As(III) into As(V)
to reduce toxicity is arsenic oxidation by microorganisms. There are mainly autotrophic
arsenic-oxidizing bacteria and heterotrophic arsenic-oxidizing bacteria that can carry out
this process [68–70]. These species were found only in the river water. The oxidation of
As(III) occurs in the periplasm and is accompanied by electron transfer during the oxidation
process [71–73].
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4. Conclusions

The river water in the study area was not polluted by arsenic. Along the groundwater
flow direction, the oxidation environment gradually transitioned to the reduction environ-
ment. The content of arsenic, iron and manganese in groundwater gradually increased,
while NO3

− and SO4
2− showed a decreasing trend, indicating that Fe3+, Mn4+, NO3

− and
SO4

2− were reduced in the process of increasing arsenic concentration.
The species abundance of river water in the study area was relatively high, and that

of groundwater was relatively low. There was a significant negative correlation between
microbial diversity and arsenic content, and microbial diversity was higher in groundwater
with a relatively low arsenic content. Proteobacteria was the dominant phylum in the
groundwater, and Acinetobacter, Pseudomonas, Sulfuritalea, Sphingomonas and Hydrogenophaga
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etc. were the main dominant bacterial genera. In addition to reducing and oxidizing arsenic,
these functional microorganisms also actively participated in the biogeochemical cycle
of elements such as iron, manganese, nitrogen and sulfur. Through the functional gene
analysis, it could be seen that there were mainly DARPs in the groundwater. There was
a significant correlation between dominant bacteria and environmental factors. Fe/Mn
had a significant positive correlation with As, which brought potential danger to the water
supply in high iron and manganese areas. It can provide reference for the site selection and
construction of the water source in the future and promote the development of groundwater
arsenic pollution control technology.
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