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Abstract: Groundwater radon concentrations can reflect the changes of crustal stress and strain.
Scholars and scientific institutions have also recorded groundwater radon precursor anomalies before
earthquakes. Therefore, groundwater radon monitoring is an effective means of predicting seismic
activities. However, the variation of radon concentrations within groundwater is not only affected by
structural factors, but also by environmental factors, such as air pressure, temperature, and rainfall.
This causes difficulty in identifying the possible precursor anomalies. Therefore, the EMD-LSTM
model is proposed to identify the radon anomalies. This study investigated the time series data
of groundwater radon from well #32 located in Sichuan province. Three models (including the
LSTM (Long Short-Term Memory) model with auxiliary data, the EMD-LSTM (Empirical Mode
Decomposition Long Short-Term Memory) model with auxiliary data, and the EMD-LSTM model
without auxiliary data) were developed in order to predict groundwater radon variations. The results
indicated that the prediction accuracy of the EMD-LSTM model was much higher than that of the
LSTM model, and the EMD-LSTM model without auxiliary data also can obtain an ideal prediction
result. Furthermore, the different durations of seismic activities T (T = ±10, ±30, ±50, and ±100)
were also investigated by comparing the identification results. The identification rate of the precursor
anomalies was the highest when T = ±30. The EMD-LSTM model identified five possible radon
anomalies among the seven selected earthquakes. Taking well #32 as an example, we provided a
promising method, that was the EMD-LSTM model, to detect the groundwater radon anomalies. It
also suggested that the EMD-LSTM model can be used to identify the possible precursor anomalies
within future studies.

Keywords: radon anomaly; earthquake precursor; Empirical Mode Decomposition; Long Short-Term
Memory; trend prediction

1. Introduction

Earthquake forecasting is a worldwide challenging problem, and it has a long history
littered with failed attempts [1,2]. However, earthquake precursors are regarded as a key to
predict earthquakes. Many scholars and researchers suggest geofluids precursors are one
of the most potential and anticipated types [3,4]. Among geofluids anomalies induced by
seismic activities, some are significantly detected in hydrogeochemical processes that vary
in different scales [5–7].

Radon (222Rn) has a half-life of approximately 3.8 days and is continuously occurring
within soil or rock fissures in nature; thus, making it suitable for studying geological
movement processes that occur from hours to days. Many studies documented that
groundwater radon concentrations are sensitive to stress/strain in crustal [8,9]. With the
preparation and occurrence of earthquakes, the stress/strain can change the development
degree of fractures within rocks as well as the flow of groundwater, leading to changes
in radon concentrations [10]). Therefore, groundwater radon monitoring is one of the
important means of predicting earthquakes [11].
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However, previous studies have shown that radon concentrations in groundwater
can be affected by numerous factors. Although the deformation and fracture of rocks
can change the radon concentrations in groundwater [12,13], radon concentrations are
easily influenced by environmental factors, such as rainfall, air pressure, and temperature.
Zafrir et al. [14] and Garavaglia et al. [15] revealed that groundwater temperature and air
pressure can influence groundwater radon concentrations. Yan et al. [16] demonstrated
that radon concentrations in a hot spring may be changed due to the water temperature.
Papachristodoulou et al. [17] reported that the radon diffusion in the soil is affected by
water saturation. The variations in radon concentration present nonlinear and complex
dynamic characteristics, due to the environmental factors. It is difficult to identify the
groundwater radon precursor anomalies; therefore, new methods are needed to detect
these anomalies.

Previous researchers have advanced some methods to extract hydrogeologic precur-
sor information by conventional statistical and signal processing methods. For example,
Yan et al. [18] used wavelet decomposition to remove barometric and earth tidal responses
of groundwater levels; thus, obtaining the precursor anomalies. Furthermore, it is incon-
venient to select appropriate wavelet bases within the wavelet transform. Chen et al. [19]
used the Hilbert Huang transform (HHT) method to detect the transient anomalous signals
in groundwater level data; however, HHT still requires auxiliary data. Pu et al. [20] used
the first-order difference, variation rate, and trend rate methods in order to extract the
precursor information of groundwater temperature in Southeast Gansu. However, some
hydrological anomalies were too small to be detected by these methods.

In recent years, a machine learning approach, the Artificial Neural Network (ANN),
has been used to identify radon anomalies within groundwater or soil [21]. Zhang et al. [22]
used a decision tree method to identify the radon concentration anomalies in a hot spring;
however, this method easily overfits the data. The Long Short-Term Memory neural
network (LSTM) is suitable for handling long-term and nonlinear data, due to its unique
memory system [23]). Zhang et al. [24] successfully used the LSTM neural network to
predict groundwater levels within the Hetao Plain. Cai et al. [25] also used the LSTM neural
network to predict groundwater levels, geomagnetism, and gravity precursor data; thus,
effectively identifying precursor anomalies. Although the LSTM neural network effectively
predicts time series data, this method is still challenging when obtaining ideal results
for the strongly nonlinear data. Therefore, the nonlinear and nonstationary data can be
decomposed into stationary data using the Empirical Mode Decomposition (EMD) method,
then the LSTM neural network can be used to simulate the decomposed signals. Finally, all
the simulated results are superimposed to improve the model’s prediction accuracy [26].

Sichuan province is the most active and intensive area of medium and strong earth-
quakes in China. Well #32 is located in Xichang city within the Sichuan province and has a
series of high-quality groundwater radon data. Well #32 provided suitable conditions for
the identification of radon anomalies by the EMD-LSTM model.

In this paper, we applied the EMD-LSTM method to identify the possible radon
anomalies in well #32 from 1 February 2010 to 31 December 2020. This model is suitable
for predicting the non-linear and non-stationary data. The main process of this paper is:
(1) process the data and supplement the missing data; (2) select the earthquake that may
cause the change of radon concentrations in well #32; (3) the data are divided into two
parts, one part is the data during seismic activities period, and the other part is the data
during non-seismic activities period; (4) establish the EMD-LSTM model, and the data
during non-seismic activities period are used as the training set and validation set, then
the data during seismic activities period are used as the prediction set; (5) compare the
correlation coefficient R2 value between the prediction and the observation values during
the period of non-seismic activities (validation set) and the period of seismic activities
(prediction set). The difference of correlation coefficient R2 is used as the basis to identify
earthquake precursors.
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2. Geological Setting

The study area is located on the eastern edge of the Tibet Plateau and is the junction of
the Qinghai-Tibet and the Yunnan-Guizhou plateaus. This area is controlled by three strike-
slip faults, which are Anninghe fault, Zemuhe fault, and Xiaojiang fault. The Anninghe
fault is N-S trending, with a length of approximately 200 km and the Zemuhe fault is
NNW-SSE trending, with a length of approximately 120 km. The Zemuhe fault is the
connection zone of the Anninghe fault and Xiaojiang fault (Figure 1). Crustal structure can
be partitioned into four geological units in this study area: the Sichuan-Yunnan Block of
the west, the Bayan Har Block of the north, the South China Block of the southeast, and the
Sichuan Basin of the northeast [27,28].
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Figure 1. The location and geological setting of well #32.

The drilling depth of well #32 is 390 m, and it flows well with confined aquifer. The
lithology of observation aquifer (the depth is 259 m to 321 m) is sandstone and mudstone,
and it is typical confined fissure water of a deep bedrock structure. The study area is one of
the most active and intense areas containing moderate to strong earthquakes. The historical
record has shown at least nine strong earthquakes of M ≥ 7 in the past 1200 years within
this region [29].

3. Methods and Model
3.1. Data Processing and Seismic Setting

The average daily data of the groundwater radon, air pressure, temperature, and
rainfall of well #32 were collected from 1 February 2010 to 31 December 2020. During the
monitoring period, the data were only missing for a few days, and the difference method
was used to supplement the missing data. However, the air pressure, temperature, and
rainfall data were missing from 19 March to 31 December in 2017. The average values of
the same two days in 2018 and 2019 were used to supplement the missing data during the
same period.

In the process of radon anomalies identification, it is crucial to select the corresponding
earthquake. Dobrovolsky [30] proposed a way to determine the precursory anomalies areas
according to the earthquake magnitude:
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Dε =
100.433M−2.73

3
√

ε
(1)

where Dε is the greatest distance that the precursor may appear, M is the magnitude, and
ε = 10−8 is the limit for distinguishing between an earthquake preparatory strain and the
daily strain loading by earth loads.

In addition, these earthquakes occurred within 3 months and were regarded as one
earthquake in order to distinguish the possible precursor and post-seismic effects of con-
sistent earthquakes [22]. Simultaneously, the seismic energy density e (J/m3) was used to
verify whether these earthquakes could change the hydrological changes. According to the
published global hydrogeology phenomenon after earthquakes, the co-seismic response
hydrological changes normally occurred when the seismic energy density was greater than
10−4 (J/m3) [31]. The calculation equation is as follows:

Logr = 0.48M− 0.33 log e− 0.4 (2)

where r is the epicentral distance and e is the seismic energy density.
According to Equations (1) and (2), seven groups of earthquake events were selected

(Table 1). Thirty days before and after each group of earthquakes (i.e., T = ±30) was also
regarded as the seismic activities period, and the rest of the time was regarded as the
non-seismic activities period (Figure 2), as it had the highest identification rate when the
duration of seismic activity T = ±30.
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Figure 2. Radon, barometric pressure, water temperature, and precipitation data within well #32
from 1 February 2010 to 31 December 2020; the gray area represents the period during seismic activity,
and the rest of area represents the period without earthquakes (these data are used to train the
EMD-LSTM model); the red dotted lines indicate the time of earthquake occurrence.
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Table 1. The specific information of selected earthquake events.

Group Magnitude of
Earthquake (M)

Epicentral
Distance (km) Date Seismic Energy

Density (J/m3)

1
5.7 155 24 June 2012 100.442

5.7 176 7 September 2012 100.272

2
5.9 284 31 August 2013 10−0.021

4.3 54 14 October 2013 10−0.068

3 5.3 134 5 April 2014 100.017

4

6.5 136 3 August 2014 101.584

5.0 125 7 August 2014 10−0.097

5.0 76 1 October 2014 100.361

6.3 274 22 November 2014 100.564

5.8 265 25 November 2014 10−0.118

5 5.1 24 31 October 2018 102.024

6 6.0 265 17 June 2019 100.173

7 5.0 116 18 May 2020 10−0.194

3.2. Empirical Mode Decomposition (EMD)

Huang et al. [32] proposed the Empirical Mode Decomposition (EMD) method. EMD
is based on direct energy extraction associated with various intrinsic timescales, and can
decompose the non-stationary and the non-linear data sets into many intrinsic mode
functions (IMFs).

EMD assumes that any signal could contain IMFs, and the IMFs are defined as: (1) the
number of zero points that are equal to or have at most one difference from the number of
extreme points within the data set; (2) at any point on the signal, the mean value between
the upper envelope determined by the maximum point and the lower envelope determined
by the minimum point is 0. Therefore, the signal is locally symmetrical about the time axis.

The process of EMD for the data set Xt is:

(1) The maximum and minimum values of the data set are obtained, and the interpolation
function is fitted to all extreme points to obtain the upper envelope Ut and the lower
envelope Lt.

(2) The average values between the upper and lower envelopes are calculated using the
equation: mt =

Ut+Lt
2

(3) Let ξt = Xt − mt. If the ξt is the IMF, then ξt is equal to It. Otherwise, ξt as a new
input, repeating the above steps until the IMF is obtained.

(4) Let residual rt = Xt − It, then rt as a new input, repeating the steps (1) and (2).
When the last residual satisfies monotonicity, the termination conditions are obtained.
The original signal Xt can be reconstructed by a series of IMFs and Rt, that is, Xt =
N
∑

i=1
Ii
t + Rt (Rt is the residual function).

3.3. Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber [33] first proposed the Long Short-Term Memory neural
network (LSTM). LSTM is a unique type of Recurrent Neural Network (RNN), and uses
gate units and memory cells to effectively overcome the inherent problems of the traditional
RNN, such as gradient vanishing and exploding [34,35]. The special structure of the LSTM
neural network can effectively deal with long-time scale nonlinear time series data.

The LSTM neural network includes the input layer, hidden layer, and output layer.
The hidden layer, that is the LSTM layer, is a special neuron structure designed using
three gate units (including the input gate, forget gate, and output gate) and memory cells
(Figure 3). ft, it, ot represent the forget gate, input gate, and output gate, respectively. The
unit state ct runs through the gate structure. In Figure 3, in addition to h flowing over time,
unit state c also flows over time.
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and output gate, respectively. x, h, and c represent the input, output, and update state of each cell.

The forget gate determines which information should be ignored, and is determined
by the previous output vector ht−1 and the input vector xt at the current time. The forget
gate ft is defined as:

ft = σg(W f xt + U f ht−1 + b f ) (3)

where σg is the sigmoid activation function and the output value ranges from 0 to 1
(0 represents that all the information is removed, while 1 represents that it is all retained).
W and U are the weight matrices. b is the bias vector. W, U, and b are determined by the
training data.

The input gate it consists of sigmoid layer and tanh layer. The sigmoid layer deter-
mines which information should be updated, and Ct is determined by the tanh layer. Then,
the units state ct is updated by Ct.

it = σg(Wixt + Uiht−1 + bi) (4)

Ct = σc(Wcxt + Ucht−1 + bc) (5)

ct = ft ∗ ct−1 + it ∗ Ct (6)

where σc is the tanh activation function and ∗ is the Hadamard product.
Finally, the output gate controls what information should be output. The output ht is

determined by the output gate ot and the units state ct.

ot = σg(Woxt + Uoht−1 + bo) (7)

ht = ot ∗ σc(ct) (8)

3.4. EMD-LSTM Model Development

According to previous studies, the EMD method has the advantage in signal decom-
position, while the LSTM neural network method has the advantage in predicting the
long-time series data. Therefore, the EMD-LSTM method presents significant advantages
in predicting nonlinear and non-stationary series data sets. To identify radon anomalies,
the EMD-LSTM model was developed as:

(1) Collated the data set. The data set (including groundwater radon, air pressure,
temperature, and precipitation) during the non-seismic activities period was arranged
chronologically. The collated data were then set as training set and validation sets.
Next, the data set during the seismic activities period was set as the prediction set.
The radon data set after collating is shown in Figure 4.

(2) The EMD method was applied to the collated data set, then the IMFs functions and
residual functions Rt were obtained.

(3) The IMFs and Rt were predicted by the LSTM neural network. Eighty percent of the
decomposed signal during the period without any earthquakes was set as the training
set, and 20% of the decomposed signal during the period without earthquakes was set
as the validation set. Then, the 7 seismic activity periods were set as the prediction set.
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(4) The EMD decomposition signal’s prediction results were superimposed to obtain the
final prediction results.
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The hyperparameters of the LSTM neural network (including the number of hidden
layers, the number of neurons, and the learning rate) were determined using the control
variable method. In this paper, the number of hidden layers was set as 1 layer, and the
learning rate η was adjusted 3 times. The number of neurons within the hidden layer was
determined using the empirical Equation [36]:

p =
√

q + l + a (9)

where p is the number of neurons in the hidden layer, q is the number of neurons in the
input layer, l is the number of neurons in the output layer, and a is an integer between
1 and 10.

According to Equation (9), the number of hidden neuron layers p was 4–10, and the
learning rate was set as {0.0001, 0.0003, 0.001, 0.003, 0.01}. When the hyperparameter p was
6 and η was 0.0001, the root mean square error (RMSE) was the smallest, and the correlation
coefficient (R2) was the largest within the validation set.

In this paper, the loss function loss (LOSS) in the LSTM neural network is defined
as follows:

LOSS =
m

∑
i=1

(Yi − yi)
2 (10)

where Yi is the observation value, yi is the prediction value, and m is the number of samples.
The Adam optimization function, which had the characteristics of fast convergence,

was used [37]. For efficient learning, the min-max normalization approach was used to
scale the range of input variables to (0, 1) before the training process:

xnorm =
x− xmin

xmax − xmin
(11)

where x, xnorm, xmax, and xmin are the observation, normalized, maximum, and mini-
mum data, respectively. Finally, the inverse normalization was used to obtain the final
predicted results.

3.5. Model Performance Criteria

In order to evaluate the prediction results of the EMD-LSTM model, two conventional
metrics were adopted in this paper, including the root mean square error (RMSE) and the
correlation coefficient (R2). The equations are defined as follows:
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RMSE =

√
1
m

m

∑
i=1

(Yi − yi)
2 (12)

R2 = 1−

m
∑

i=1
(Yi − yi)

2

m
∑

i=1
(Yi −Y)2

(13)

where Yi is the observation value, yi is the prediction value, Y is the average values of the
observation value, and m is the number of samples. RMSE is used to measure the degree of
the standard deviation between the prediction and the observation values. The smaller the
RMSE value, the closer the prediction values are to the observation values. The value of R2

reflects the linear correlation between the prediction and the observation values, and its
value range between 0 and 1 (0 indicates no fit, and 1 indicates a perfect fit).

4. Results
4.1. The Result of EMD-LSTM Model Prediction

The prediction results of each decomposition function (including IMFs and Res) by
the LSTM neural network were shown in Figure 5. The prediction accuracy of IMF1 to
IMF4 was relatively low because the data of IMF1 to IMF4 presented the characteristics
of strong nonlinearity. The high-frequency fluctuation signal (IMF1 to IMF4) contained
a large number of irregular noises. However, the predicted results of IMF5 to IMF9 and Res
were consistent with the observation values. The predicted results can reflect the medium
and long-term trends within the time series data.
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training set, validation set, and prediction set are shown in Figure 6. The RMSE value was
0.264 and the R2 value was 0.895 within the training set; in addition, the RMSE value was
0.295 and the R2 value was 0.949 within the validation set. The results indicated that the
EMD-LSTM model could effectively predict the time series data of the groundwater radon.
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4.2. The Result of Seismic Anomaly Identification

In order to identify the radon anomalies caused by earthquakes, the R2 value between
the prediction and the observation values during the period of non-seismic activities
(validation set) and the period of seismic activities (prediction set) were compared. If the R2

value during the period of seismic activities was lower than that during the period without
earthquakes, it indicated that the earthquake may affect the radon concentrations. The
R2 values between the prediction and the observation values during the seismic activity
period were shown in Figure 7. The R2 value in the training set was less than the R2 value
(R2 = 0.949) in the validation set, especially the R2 value during seismic activity events (3),
(5), (6), and (7), their R2 values were 0.627, 0.650, 0.520, and 0.402, respectively.
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The radon anomalies can be identified when the differences in the R2 values during
non-seismic and seismic activities are greater than 15%. The differences in the R2 val-
ues of seven seismic activity events were 12.1%, 15.0%, 33.9%, 9.5%, 31.5%, 44.3%, and
57.6%, respectively. Therefore, the EMD-LSTM model effectively identified five seismic
activity events. The results indicated that the EMD-LSTM model was suitable for the
anomalies detection.

In order to evaluate the grade of reliability of data analysis approach, we compared
this with other research results. Zhang et al. [22] used a decision tree method to identify the
groundwater radon anomalies in a hot spring from 1980 to 2008. They identify 15 possible
radon anomalies among the 24 chosen earthquakes. In addition, Zhao et al. [28] applied the
residual signal processing technique, the Hurst exponent estimates, and statistical standard
(the mean ± two standard deviation) to analyze the radon anomalies in well #32 from
1 January 2008 to 31 December 2018. They detected 12 radon anomalies within 20 chosen
earthquakes. From the result, the groundwater radon anomalies identification rate by
EMD-LSTM method is higher than that by other two methods.

5. Discussion
5.1. Duration of Seismic Activity Impact on Precursor Anomaly Identification

In order to evaluate the impact of complete earthquake events (including earthquake
preparation, occurrence, and aftershock) on radon concentrations in groundwater, the
identification results of four different seismic activity periods T (i.e., T days before and after
the earthquake) were calculated. For example, T = ±10 represented the seismic activity
period, which included 10 days before and 10 days after the earthquake. The average R2

value within the non-seismic activity periods (training set and validation set), as well as
the average R2 value of the seismic activity period (prediction set) were shown in Table 2.

Table 2. The duration of seismic activities (T) impact on the precursor anomaly identification.

T The Value Of R2

in the Training Set
The Value of R2 in the

Validation Set
The Average Value of R2

in the Prediction Set

The Difference between the
Validation Set

and the Prediction Set

±10 0.889 0.936 0.607 0.329
±30 0.895 0.949 0.671 0.278
±50 0.892 0.953 0.748 0.169
±100 0.890 0.961 0.756 0.205

Although the difference between the validation set and the prediction set was the
largest when T = ±10, it has the highest identification rate when T = ±10 and ±30. In order
to avoid mixing the radon data that were affected by the seismic activities in the training
data, T = ±30 was selected as the duration for the seismic activities within this paper.

5.2. Comparison with Other Models

To evaluate the prediction accuracy of EMD-LSTM model, the model’s prediction
results of the EMD-LSTM model with auxiliary data (including air pressure, temperature,
and precipitation), the EMD-LSTM model without auxiliary data, and the LSTM model
with auxiliary data were compared in this study (Figure 8). The R2 value and the RMSE
value of the EMD-LSTM model with auxiliary data within the validation set were 0.949
and 0.295, respectively, while the R2 value and the RMSE value of the LSTM model within
the validation set were 0.891 and 0.445, respectively. The different results indicated that the
prediction accuracy of the EMD-LSTM model was better than that of the LSTM model. In
addition, the prediction value of the LSTM model had hysteresis on the observation value.
The results indicated that the LSTM model may not be perfect for the strong nonlinear and
nonstationary data.



Water 2022, 14, 69 11 of 14

Water 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

as the average R2 value of the seismic activity period (prediction set) were shown in Table 
2. 

Although the difference between the validation set and the prediction set was the 
largest when T = ±10, it has the highest identification rate when T = ± 10 and ± 30. In order 
to avoid mixing the radon data that were affected by the seismic activities in the training 
data, T = ± 30 was selected as the duration for the seismic activities within this paper. 

Table 2. The duration of seismic activities (T) impact on the precursor anomaly identification. 

T 
The Value Of R2 in 

the Training Set 
The Value of R2 

in the Validation Set 
The Average Value of R2 in 

the Prediction Set 

The Difference between 
the Validation Set 

and the Prediction Set 
±10 0.889 0.936 0.607 0.329 
±30 0.895 0.949 0.671 0.278 
±50 0.892 0.953 0.748 0.169 

±100 0.890 0.961 0.756 0.205 

5.2. Comparison with Other Models 
To evaluate the prediction accuracy of EMD-LSTM model, the model’s prediction 

results of the EMD-LSTM model with auxiliary data (including air pressure, temperature, 
and precipitation), the EMD-LSTM model without auxiliary data, and the LSTM model 
with auxiliary data were compared in this study (Figure 8). The R2 value and the RMSE 
value of the EMD-LSTM model with auxiliary data within the validation set were 0.949 
and 0.295, respectively, while the R2 value and the RMSE value of the LSTM model within 
the validation set were 0.891 and 0.445, respectively. The different results indicated that 
the prediction accuracy of the EMD-LSTM model was better than that of the LSTM model. 
In addition, the prediction value of the LSTM model had hysteresis on the observation 
value. The results indicated that the LSTM model may not be perfect for the strong non-
linear and nonstationary data. 

The R2 and the RMSE values of the EMD-LSTM model within the validation set with-
out auxiliary data were 0.949 and 0.273, respectively. It demonstrated that the EMD-LSTM 
model still had good predicted results when only groundwater radon was used as the 
input data. 

 
Figure 8. The predicted results of different models, including the LSTM model with auxiliary data, 
the EMD-LSTM model without auxiliary data, and the EMD-LSTM model with auxiliary data. 

5.3. Mechanism in the Precursory Anomalies of Radon 
Although groundwater radon precursor anomalies can be effectively identified using 

the EMD-LSTM model, the anomalies’ mechanism still needs to be investigated. The var-
iation of the groundwater radon concentrations can be affected by the crustal stress and 

Figure 8. The predicted results of different models, including the LSTM model with auxiliary data,
the EMD-LSTM model without auxiliary data, and the EMD-LSTM model with auxiliary data.

The R2 and the RMSE values of the EMD-LSTM model within the validation set
without auxiliary data were 0.949 and 0.273, respectively. It demonstrated that the EMD-
LSTM model still had good predicted results when only groundwater radon was used as
the input data.

5.3. Mechanism in the Precursory Anomalies of Radon

Although groundwater radon precursor anomalies can be effectively identified using
the EMD-LSTM model, the anomalies’ mechanism still needs to be investigated. The
variation of the groundwater radon concentrations can be affected by the crustal stress and
strain because radon within the rock fissures can be dissolved into the groundwater or
volatilized from the groundwater to the fissures.

For example, seismic activity events (2) and (3) showed positive anomalies; that is,
the radon concentrations increased before the earthquake. Mollo et al. [38] found that the
radon emission rate increased within the rock after the cracks formed, leading to more
radon being dissolved in the groundwater. Therefore, the formation of cracks within the
rock mass and aquifer system played an important role in increasing the groundwater
radon concentration.

As shown in Figure 7, seismic activity events (5)–(7) showed significant negative
anomalies; that is, the radon concentration decreased before the earthquakes. The radon
concentration can be affected by numerous factors, such as the characteristics of the earth-
quake fault and the hydrogeological setting. These factors caused different anomaly charac-
teristics. When the radon concentration decreased before the earthquake, the volatilization
model can be used to explain this mechanism. It was hypothesized that the rate of the
rock masses dilation was faster than that of the groundwater flow into the newly formed
cracks; therefore, the radon volatilized from the groundwater to the fissures [39]. Well #32
was located at the junction of the Zemuhe fault and Anninghe fault; therefore, this unique
geological structure created favorable conditions for the volatilization model.

There were two contrasting radon anomaly types in same region and same geological
condition. This phenomenon still needed to be explained. The same phenomenon also
occurred in other observation wells. For example, Panjin observation well has recorded
positive anomalies before the Xiuyan Mw 5.1 earthquake and negative anomalies before
the Tohoku M 9.1 earthquake. Shao et al. [40] showed that the study area was in a state of
compression before the Tohoku M 9.1 earthquake and in a state of tension afterward. It
indicated that the endogenous factors that influence radon concentrations are primarily
related to stress state [41] (Zhou et al. 2020). In this study, the change in stress state may be
the main reason for the different anomalies.
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Although the EMD-LSTM model can effectively identify most anomalies, the seismic
activity events (1) and (4) still could not be detected. The occurrence of these precur-
sors was primarily related to factors, such as epicentral distance, earthquake magnitude,
and duration of the seismic activity [42]. These factors may be the main reasons for the
disappearance of the anomalies.

6. Conclusions

Radon concentrations within groundwater or soil reflected the changes in crustal stress
and strain levels, providing an effective method in predicting seismic activities. However,
radon concentrations in groundwater were easily affected by some environmental factors.
Therefore, it was challenging to identify the precursor anomalies. Based on the groundwater
radon data of well #32, the precursor anomalies were identified by the EMD-LSTM model
in this study. The results indicated: (1) the EMD-LSTM model efficiently identified the
possible precursor anomalies. Compared with the LSTM model, the EMD-LSTM model can
improve the prediction accuracy and eliminate the prediction hysteresis phenomenon of the
LSTM model; (2) the prediction accuracy of the EMD-LSTM model during seismic activities
had a significant deviation compared with the results during non-seismic activities; (3) the
EMD-LSTM model effectively identified five possible radon anomalies among the seven
selected seismic activity events. The results showed that the EMD-LSTM model was
a feasible method in the identification of groundwater radon precursor anomalies.
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