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Abstract: Water sources are an indispensable resource for human survival. Monitoring the pollution
status of the surrounding environment is necessary to protect water sources. Research on the environ-
mental matrix of deep eutectic solvents (DESs) has expanded rapidly because of their high extraction
efficiency for various target analytes, controllable synthesis, and versatile structure. Following the
synthesis of hydrophobic deep eutectic solvents (HDESs), their application in aqueous matrices
broadened greatly. The present review conducted a survey on the pollutant extraction methods based
DESs in environmental matrices from two aspects, application methods and matrix types; discussed
the potential risk of DESs to the environment and future development trends; and provided some
references for researchers to choose DES-based extraction methods for environmental research.

Keywords: deep eutectic solvents; drinking water; environmental analysis; sample preparation;
green solvents

1. Introduction

New pollutants continue to appear with the development of society, many of which
cannot be decomposed in natural water as a source of drinking water [1]. The pollution
process of these pollutants in water sources is slow and hidden. They enter the human body
through drinking water and pose a threat to human health. In addition to the production
and life of human beings, pollutants in water sources migrate from contaminated soil
and the atmosphere into water bodies [2,3]. These pollutants have now been detected in
environmental matrices, such as surface water, sewage/sludge, soil/sediments, and indoor
air/dust. In order to further study their potential threat, the first step is to understand
their occurrence in environmental samples. However, the matrices are complex, and the
organic pollutant concentration is usually low to the nanogram level. Therefore, it is urgent
to explore an effective pretreatment method.

At present, the main pretreatment method is SPE, but it has disadvantages such as
high cost, complicated operation, and poor repeatability. Although LPME overcomes the
shortcomings of traditional pretreatment technologies, these methods have disadvantages
such as toxic and harmful solvents and poor biodegradability. Based on the concept of green
chemistry, Abbott et al. proposed a new type of green solvent called DES [4]. According
to the definition, DES is a liquid, and its melting point is lower than all its components.
The reason is that hydrogen bonds are formed between the components. Due to their
noteworthy properties, such as negligible vapor pressure, large polarity range, and high
thermal stability, DESs have been applied in separation processes, analytical chemistry,
synthesis, electrochemistry, etc. [5–8]. DES synthesis methods include heating, evaporation,
and freeze-drying. The heating method is currently the most commonly used method due
to its easy operation [9]. Some authors have developed alternative synthesis methods to
make DESs greener. For example, Gomez et al. [10] developed an MA method with a short
synthesis time (20 s) and low energy consumption.
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Analytical sample pretreatment is one of the emerging applications of DESs. Due to
their properties such as low cost, easy preparation and restructuring, and low toxicity and
biodegradability, DESs are preferable over conventional solvents. Additionally, interactions
between DESs and target analytes, including electrostatic, π–π, van der Waals (dispersion),
hydrogen bonding, hydrophobic, and dipole–dipole and ion–dipole forces, provide DESs
with high solubility to pollutants during pretreatment [11]. In addition, the density of DESs
is usually higher than water, which helps them separate from the water phase during the
extraction process. Thus, the number of reports on using DESs as extractants to concentrate
analytes has increased rapidly since 2012 (Figure 1) [5]. DESs have been applied in various
pretreatment techniques to extract different kinds of analytes (such as metal ions, fatty
and organic acids, volatile organic compounds, dyes and pigments, pesticides, peptides
and proteins, plant compounds) in real matrices, including water, air, soil, and biological
samples [9].
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With the increasing application of DESs in the analytical field, many review articles
have been published. For example, the review article by Makoś et al. [12] focused on HDESs
used in the microextraction method. The review article by Santana et al. [9] compiled two
aspects, sample preparation and analytical techniques, related to the application of DESs in
analytical chemistry in 2016–2020. A recent review by Tang et al. [13] paid attention to the
development of DES-based microextraction procedures. Some recent papers gave a focused
and comprehensive review of the applications of DESs during DLLME of pesticides in
food samples [14] and coastal zone environmental samples [15]. This review systematically
focused on recent applications of DESs in different environmental matrices to improve the
general understanding of the use of DESs in analytical chemistry.

2. Deep Eutectic Solvents
2.1. Classification of DESs

DESs are commonly classified into four types: Type I (quaternary salt and metal
halide), Type II (quaternary salt and hydrated metal halide), Type III (quaternary salt,
terpene, and hydrogen bond donor), and Type IV (metal halide and HBD) (Figure 2).
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Type I DESs are formed by quaternary ammonium salts and nonhydrated metal
halides. Although the types of nonhydrated metal halides that can form type I DESs are
limited, DESs vary with the molar fraction of nonhydrated metal halides, which is different
from ionic liquids consisting of independent anions such as BF−

4 and PF−
6 . This kind of

ionic DES is mainly used as a catalyst or to synthesize catalysts in the organic field [16].
Type II DESs are formed by quaternary salt and hydrated metal halide. Due to their

low cost and insensitivity to components, they are easy to synthesize. However, only a
few applications in extraction are available because of the toxicity of metal halide. Choi
et al. [17] developed an efficient lipid extraction method from Chlorella vulgaris using a DES
composed of [EMIM][OAc] and FeCl3·6H2O.

Type III DESs formed by quaternary salt or terpene with HBD are fundamentally
different from the former two types of DES. In type III DESs, the halogen anion X− forms
a hydrogen bond with ligand Y, which reduces the Coulomb force between the anion
and cation. Thus, these DESs possess excellent dissolution properties owing to their
ability to donate protons or accept electrons to form hydrogen bonds [18]. Regarding
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environmental analysis, it has been successfully applied to extract and isolate organic
compounds, inorganic analytes, pharmaceuticals, pesticides, and so on [9].

Moreover, DESs prepared from a combination of metal halide, generally with transition
metals, and organic ligands (HBD) are classified as Type IV [19]. This kind of DES is usually
used as an electroplating solution [20] in metal electroplating and a catalyst [21] in organic
reactions. Liu et al. [22] used a DES catalyst to convert cellulose into gluconic acid.

2.2. Hydrophilic and Hydrophobic DESs

The presence of hydrophilic functional groups in the components, such as hydroxyl,
carboxyl, or amino groups, will cause DESs to become hydrophilic (namely hydrophilic
DESs), such as Type I, II, IV, and some Type III hydrophilic DESs. The application range of
hydrophilic DESs is limited due to their instability in water. Conversely, hydrophilic DESs
have great advantages in the extraction of hydrophilic analytes from nonaqueous samples.
For example, phenolic compounds are extracted from a variety of plant samples [23–27],
and bioactive carbohydrates, such as polysaccharides [28,29] and pectin [30], are extracted
from plants. Although most bioactive compounds are hydrophilic, some lipid-soluble
bioactive compounds are hydrophobic. Hydrophobic solvents can enhance the extraction
efficiency of lipid-soluble bioactive compounds.

To expand the application of DESs, especially in aqueous samples, van Osch et al. [31]
proposed the first HDESs in 2015, which consisted of decanoic acid and long-chain quater-
nary ammonium salt. Later, a series of HDESs composed of a variety of fatty alcohols and
long-chain fatty acids combined with long-alkyl-chain quaternary ammonium salts were
synthesized [31]. Ribeiro et al. [32] proposed another type of hydrophobic deep eutectic
solvent consisting of DL-menthol as the HBA, which is a natural monoterpene, and several
short-chain acids (i.e., acetic, lactic, and pyruvic acids) as the HBD. Other terpenes can
also be used to synthesize HDESs, such as thymol [33], camphor [34], and lidocaine [35].
However, the presence of hydrophilic components will reduce the stability of HDESs. The
extent of influence on stability depends on the hydrophilicity of the components. It is
worth highlighting that although there is a leaching loss, the HDES-rich phase still exists
independently [12]. HDESs can be used to extract compounds in various matrices, such as
artemisinin from leaves [36], cannabinoids from raw cannabis plant [37], pesticides [38]
and antibiotics from water [39], drugs from human urine [40], and endocrine disruptor
compounds from water [41].

2.3. Toxicity of DES

Few reports on the potential toxicity of DESs are available. Generally, DESs synthe-
sized from sugars, alcohols, sugar alcohols, and amides are more eco-friendly, while, in
contrast, DESs synthesized from metal ions and organic acids are not “green” [42]. Studies
have shown that ChCl-based DESs combined with urea, glycerine, triethylene glycol, and
ethylene glycol have no toxic effect, but they do have cytotoxicity. The cytotoxicity of these
DESs is higher than their components [43]. Recently, different test organisms were used to
test the toxicity of ChCl-based DESs composed of organic acid and sugar. DESs combined
with organic acid and sugar had higher cytotoxicity than those combined with organic alco-
hol. However, the cytotoxicity of the components of the tested DESs was higher than that
of DESs [44]. In addition, the molar ratio of HBA and HBD, lipophilicity, and the Hofmeis-
ter effect can also affect the toxicity of DESs [45]. Recently, Torregrosa-Crespo et al. [46]
proposed that it is more accurate to confine the discussion to a certain concentration range
for the toxicity of DESs. Some studies used predictive computational models to evaluate
the cytotoxicity of DESs [42,47,48]. However, the results from toxicity tests are even more
convincing, and more factors need to be considered, including culture conditions, type of
culture media, and sterilization methods [46]. In future research avenues, more types of
test organisms should be considered to represent different functional levels. It can help us
fully understand how aquatic ecosystems are affected by DESs. Moreover, in order to have
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a more comprehensive understanding of the environmental sustainability of DESs, more
studies focusing on bioaccumulation and biodegradability are required.

3. Application Forms in Environmental Analysis

LLE is the process of separating and extracting components of liquid mixtures with
solvents. The volume of the extractant is usually the same as the volume of the water
sample. The type of DES used is determined based on the nature of the sample and analyte.
Some studies have applied this method to the extraction of volatile organic acids, metal
ions, and organic pollutants in environmental water samples. However, LLE is gradually
replaced by LPME due to the large volume of organic solvents and poor enrichment effect
(Table 1).

LPME is an extraction technology that greatly reduces the volume of the extractant
compared with LLE. Many methods have been developed to assist the extraction process,
such as vortex, heating, microwave, and ultrasonic. Some studies made the methods more
convenient and faster by reducing the number of steps, such as the synthesis of DESs [49,50].
At the same time, in order to more thoroughly separate the organic phase and the water
sample, researchers made the extractant magnetic and combined it with LPME [51]. The
analyte selectivity of DESs is higher than ordinary organic solvents such as methanol,
acetonitrile, and dichloromethane because of the special structure of DESs. Combined with
LPME, the method not only has the advantages of extraction technology but also reduces
costs and improves environmental friendliness. In general, LPME can be divided into three
categories: DLLME, SDME, and HF-LPME.
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Table 1. Extraction technique combined with DESs in environmental analysis.

Techniques
DES Sample

Other Features Analytes Instrumental
Analysis LOD (ug/L,g)

HBA HBD Molar Ratio Volume Type Volume

SLLE [52] N8881-Cl Octanol/octanoic
acid 1:2:3 2 mL Plant leaves 0.2 g Two DES phases were

involved

Flavonoids
Terpene trilactones

Procyanidin
Polyprenyl

acetates

HPLC-UV

LLE [53] Menthol Dodecanoic acid 2:1 Water

Lower alcohols
Ethanol

1-Propanol
1-Butanol

NMR

LLE [54] Dodecanoic acid
Octanoic acid
Nonanoic acid
Decanoic acid

1:3
1:3
1:2

2 mL Water 2 mL Bisphenol A UV–vis

DLLME [55] N8881-Cl Oleic acid 1:2 20 uL
Water and
biological
samples

5 mL Vortex assisted Nitrite HPLC-UV 0.2

DLLME [56] Quaternary
ammonium salt DL-menthol Aqueous samples Air assisted Benzophenone HPLC-UV

DLLME [57] ChCl Triethylamine 1:1
Biological and
environmental

samples
20 mL

Air assisted
Volume of

DES/triethylamine
(TEA) (1:1) is 100 uL.

Heavy Metals FAAS 0.31–0.99

DLLME [58] ChCl Phenol 1:3 450 uL Lake water 10 mL Ultrasound assisted Chromium
(III/VI) FAAS 5.5

DLLME [59] ChCl Phenol 1:3 1000 uL Soil, sediment,
and water 25 mL Ultrasound assisted Arsenic ETAAS 0.01

DLLME [60] N4444-Cl Decanoic acid 1:2 200 uL Liver
samples 10 mL

Ultrasound assisted
DES (ChCl-lactic acid)
is digestion solution

Copper MS-FAAS 4.00

HS-SDME [61] N4444-Br Dodecanol 1:2 1.5 uL Plant
samples 50 mg Terpenes GC-MS 0.87–86.40

HF-LPME [62] ChCl Phenylethanol 1:4 40 uL

Human plasma
urine and

pharmaceutical
wastewater

10 mL
Three-phase

(liquid–liquid–liquid)
microextraction

Antiarrhythmic
agents

Propranolol
Carvedilol
Verapamil

Amlodipine

HPLC-UV

N8881-Cl: trioctylmethylammonium chloride (TAC); MS-FAAS: microsample injection system coupled with flame atomic absorption spectrometer; HS-SDME: headspace single-drop
microextraction; SLLE: supported liquid–liquid extraction.
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3.1. DLLME

In DLLME, the extractant is dispersed by the dispersive solvent or other auxiliary
means to form small droplets, which are evenly distributed in the entire solution to increase
the contact area. Using DESs as extractants in DLLME can obtain better application
prospects [63]. Liu et al. [64] used the DES-DLLME method combined with HPLC-UV to
determine SAs in river water. However, hydrophilic DESs cannot exist stably in water, and
they can only be used for nonaqueous samples because water can break the hydrogen bond.
Therefore, HDESs that use long-chain fatty acids, quaternary amine salts, and terpenes as
HBD are applied as extractants for water samples. For example, Werner [65] established
the UA-DES-DLLME method for the green and efficient determination of aromatic amines
from environmental water samples. El-Deen et al. [66] extracted steroids in a water sample
through tetrabutylammonium bromide/acetic acid DES. Wang et al. [67] evaluated the in
situ applicability of HDESs for the extraction of UV filters dissolved in raw water samples
by DLLME. A new type of DLLME is AA-LLME. By pumping and injecting several times,
the extractant and water can be completely mixed. Lamei et al. [68] extracted methadone
from biological and water samples using this technique.

3.2. SDME

SDME has been recognized as one of the simple miniaturized sample preparation tools
for the isolation and preconcentration of several analytes from a complex sample matrix [69].
The application of DESs in SDME is rapidly growing in analytical practice for the extraction
and preconcentration of several analytes, owing to their unique physicochemical and
mechanical properties [70]. In SDME, droplets are commonly immersed in the sample. In
addition, the method of suspending extractant droplets on the tip of a syringe to extract
volatile compounds is called HS-SDME.

Yousefi et al. [71] used gel prepared from DES as an extractant in HS-SDME to con-
centrate volatile hydrocarbons from water and urine samples. Compared with traditional
solvents, DESs have higher thermal stability, higher viscosity, lower volatility, and ad-
justable miscibility and are more capable of forming stable droplets of HS-SDME. A novel
DES based on montmorillonite clay, Fe3O4-DL-menthol, and decanoic acid [51] is highly
hydrophobic, with lower viscosity and density than that of water, and can extract explo-
sive compounds from water and soil samples. Deep eutectic solvents were synthesized
by mixing tetrabutylammonium bromide (HBA) with various alcoholic molecules and
ChCl-urea with ChCl-lactic acid at different molar ratios [72] to analyze terpenes based on
the HS-SDME method.

3.3. HF-LPME

Pedersen-Bjergaard [73] established a new microextraction method in which the ex-
tractant exists in the form of a liquid film. In the HF-LPME system, the extraction phase is
usually SLM in the hollow fiber, which separates the target compound from the sample
and then enters the acceptor phase in the cavity of the hollow fiber.

In 2018, Khatael et al. reported three-phase HF-LPME based on n-dodecane and
DESs, which consisted of ChCl and MTPB as the acceptor phase of steroidal hormones
from biological fluids [74]. Rajabi et al. first adopted a completely eco-friendly and high
solubility HDES (ChCl/1-phenylethanol) for HF-LPME in biological and environmental
samples [62]. In 2021, Pedersen-Bjergaard et al. first reported that a hydrophobic NADES
(coumarin/thymol) was used as SLM for electromembrane extraction in a biological fluid
sample and almost completely extracted different polar compounds [75]. This paper proved
that DESs are very suitable for extraction in the form of SLM.

4. Applications in Environmental Matrix

When the analyte concentration is very low and the sample matrix is complex, the
most important and unavoidable step in the analytical process is extraction. Choosing the
right extractant can more efficiently analyze and determine the environmental matrix. DESs
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are novel, green, and designable solvents with high degradability and low cost. Therefore,
the number of studies on the application of DESs in environmental sample preparation
methods is rapidly increasing. As shown in Table 2, most methods using HDESs can be
used to detect targets in various types of matrices. Hydrophilic DESs are mainly used for
the extraction of active substances from plants and are rarely used for soil samples. The
reason is that when detecting the content of organic matter in soil, the target substance is
first extracted from the soil into the aqueous solution and then enriched and purified. This
will also depend on whether the target is hydrophilic or hydrophobic.

Table 2. Compilation of application of DESs in extraction from various types of environmental matrix.

Sample Matrix Analytes DES Composition
(Mole Ratio)

Method of
Extraction

Instrumental
Analysis LODs

Hydrophilic deep eutectic solvents
Waters (tap, lake,

waste) [58] Cr (III/VI) ChCl/phenol (1:3) UALME FAAS 5.5 ug/L

Switchgrass [76]
Cellulose-rich

pulp, lignin, and
xylose-rich liquor.

ChCl/glycerol (1:2) HPLC-RID, NMR,
ATR-FTIR, XRD

Tartary
buckwheat
Hulls [77]

Flavonoid (rutin) ChCl/glycerol (1:1) UAME HPLC-UV

Flower petals
[78] Anthocyanins Lactic acid/glucose

1,2-propanediol/ChCl UAE HPLC-DAD

Soil samples [79] As, Cr, Mo, Sb, Se
and V ChCl/oxalic acid UAE ICP-OES 0.009–0.1 ug/g

Sediment
samples [80] Cu ChCl/oxalic acid

(1.5:1) SLE ICP-OES 1.2 ug/L

Hydrophobic deep eutectic solvents
Wastewater and
human plasma

[81]

Amphetamine-
type

stimulants

ChCl/phenylethanol
(1:4) AA-EME HPLC-UV 2.0–5.0 ng/mL

Surface water
[49] Fluoroquinolones Thymol/Heptanoic

acid (2:1) In situ LPME HPLC-UV 3 ng/mL

Wastewater [82] Neonicotinoids DL-menthol/organic
acids LLE UV–vis

River water [56] BP, BP-1, BP-3,
BP-6, 4OH-BP

DL-menthol/decanoic
acid (1:1)

Air-assisted
DLLME HPLC-DAD 0.05–0.2 ng/mL

Water and soil
samples [51] Explosives DL-menthol/decanoic

acid (1:2)
Ferrofluid-based

LPME HPLC-UV 0.22–0.91,
0.01–0.04 mg/mL

Soil samples [83] Nitrotoluene Borneol/menthol MSPD HPLC-UV 0.12–0.33 ug/g
Water, soil, egg

yolk samples [84] Insecticide N4444-Br/decanoic
acid DLLME HPLC-UV 0.001–0.003 ug/mL

Water, and
biological

samples [55]
Nitrite N8851-Cl/oleic acid

(1:2)
Vortex-assisted

DLLME HPLC-UV 0.2 ng/mL

Biological and
indoor air

sample [85]
Formaldehyde

N8851-Cl/4-
cyanophenol

(1:1)
VA-LLME HPLC-DAD 0.2 ng/mL

AA-EME: air agitated-emulsification microextraction; MSPD: matrix solid-phase dispersion.

4.1. Extraction from Aqueous Samples

For aqueous applications, HDESs are desirable due to their stability in aqueous solu-
tion. HDESs are mainly divided into two categories according to the type of HBA/tetraalkyl-
quaternary-ammonium-based HDESs and terpene-based HDESs. Quaternary-ammonium-
based HDESs can extract metals. Ruggeri et al. [86] investigated HDESs based on tetrabuty-
lammonium chloride and decanoic acid and their application in the extraction of Cr(VI)
species from an aqueous phase. In addition to extracting inorganic metal ions, this type
of HDES can also be used to extract a variety of organic substances. Yousefi et al. [87]
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prepared a HDES consisting of TBAB and carboxylic acids and applied the synthesized
HDES in the analysis of PAHs in environmental water samples. Terpene-based HDESs
have also been applied to extract various organic analytes by liquid–liquid extraction. In
2015, HDESs consisting of DL-menthol (HBA) and various organic acids (HBD) were first
reported [32]. Lower alcohols, ethanol, propanol, and butanol could be enriched in menthol-
based HDESs [53]. In addition, the extraction of inorganic metals has been reported, and
In [88] and Cu [89] can be transferred to menthol and thymol-based HDESs [89].

For aqueous samples, hydrophilic DESs are generally not advisable as the extractant
phase for aqueous matrices unless other organic solvents (THF) are added to ensure phase
separation. This will reduce the greenness of the method since the volume of organic
solvents is increased. However, it should be noted that the efficiency of extracting water-
soluble analytes will be significantly improved when a hydrophilic DES is used as the
extractant. One of the most widely used hydrophilic DESs for the extraction of contaminants
in aqueous samples is formed by ChCl and phenol in different molar ratios. In this case,
the mixture of DES and water makes necessary the use of an emulsifier (aprotic solvent)
that achieves phase separation because of the self-aggregation phenomenon. Some studies
used choline chloride/phenol DES as an extractant and an aprotic solvent THF to separate
microcystin [90], BTRs, and BTs [91] from surface water samples. Sometimes, the role of
DES in the extraction process is not as an extractant but as an assistant agent to extract
steroids from river and tap water [66].

4.2. Extraction from Air Samples and Soil/Sediment Samples

Most applications of DESs in air samples are used as absorption solutions for CO2,
SO2, and NO [92]. However, only a few DESs have been used for the extraction and
determination of analytes from air samples up to now. HDESs have been used as extractants
using aqueous acid as an absorption solution in the VA-LLME method coupled with HPLC
for the selective enrichment and indirect determination of formaldehyde from indoor air
samples [85]. In the extraction and separation of analytes from solid samples, the choice of
DES is not limited by its own hydrophilicity and hydrophobicity. Therefore, the choice of
DES only depends on the solubility of contaminants in the DES when used as an extractant.
Following the extraction of solid samples, the suspensions obtained by centrifugation
usually need to be filtered before entering the instrument for analysis. The DES composed
of choline chloride and oxalic acid was used as a solvent for extraction of As, Cr, Mo, Sb, Se,
and V in real soil samples [79] and Cu in sediment samples [80]. Compared with the results
determined using the conventional acid digestion method, the method was found to be
accurate, precise, and eco-friendly. In addition, it can also be used for the extraction and
determination of organic pollutants from soil such as pesticides [84] and nitrotoluene [83].
Furthermore, some studies use DESs to prepare ferrofluid to extract explosives from soil
samples by suspended droplet microextraction [51]. The extraction procedure has a high
potential for application in complex matrices.

4.3. Extraction from Organism Samples

Compared to environmental water, soil/sediment, and air, the extraction of biological
samples based on DES is less explored. In applications related to the field of biological
sample analysis, according to the sample classification, it can be divided into three different
types: biological fluid, animal, and plant samples. Works related to biological samples
mainly focus on digestion methods based on DESs, for example: determination of Cu, Zn,
and Fe in fish samples [93]; Cu, Fe, Ni and Zn in marine biological samples [94]; As, Ca,
Cd, Cu, Fe, K, Mg, Mn, Na, P, and Zn in plants [95]; and polycyclic aromatic hydrocarbons
in biological samples [96]. In general, various methods have been applied in the extraction
of biological samples, such as heating [93] and microwave [94].

The air-assisted DLLME method was used to determine trace amphetamine and
methamphetamine in human plasma [81]. HDESs consisting of ChCl and phenylethanol
were used as the extraction medium during this microextraction process. Rastbood et al. [97]
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proposed ChCl:EG@SiO2@Fe3O4 ferrofluid as a sorbent for the magnetic SPME of the anti-
inflammatory drug meloxicam from human plasma and urine samples.

It is interesting to note that the application of DESs in plant samples to extract natural
active substances and natural pigments from the herbaceous plant safflower is more stable
in NADESs than in water [98]. Recently, Dai et al. [78] employed diverse NADESs to extract
anthocyanins from the purple and orange petals of Catharanthus roseus. Cao et al. [52]
suggested a two-phase DES system to extract and fractionate analytes of diverse polarity,
i.e., hydrophobic polyprenyl acetates and partially hydrophilic components (flavonoids,
terpene trilactones, and procyanidin) from ginkgo leaves. Compared with the traditional
acid digestion method, the reagent consumption of the DES-based extraction method is
greatly reduced, the required time is shorter, and the method is safer because neither high
pressure nor concentrated acid is involved.

5. Concluding Remarks

To control the pollution of drinking water sources, it is necessary not only to conduct
real-time detection of water samples in water sources but also to pay certain attention
to the nearby soil and atmosphere [99,100]. Extraction is an important and unavoidable
step in the environmental analysis process. DESs are ideal as extractants because of their
combination of simple and cost-effective preparation and task-specific design to meet the
needs of specific processes. Extraction based on DESs is a reliable analytical tool with wide
potential applications in environmental analysis. This review summarized recent studies of
DESs used in environment samples and briefly discussed the extraction modes and types of
environmental matrices, which is beneficial for researchers to understand DES applications
in environmental matrices.

Although DESs have been widely applied in the field of extraction and separation,
several challenges in DES-based extractants remain. Some DESs are composed of substances
with suspicious toxicity. Compared with a single component, the toxicity of the combination
of toxic and nontoxic compounds cannot be confirmed [46]. In order to use DESs more
safely in extraction technology, toxicity and the environmental impact of more types of
DESs need to be further studied. Another problem with HDESs is that although people
are more and more interested in the synthesis of HDESs, their number is still limited, and
further efforts are needed to synthesize new HDESs as extractants [101]. Furthermore,
the study of the physicochemical properties of DESs during the synthesis and extraction
mechanism also needs more attention because research on DESs is still at the application
level, and the changes in the microstructure and physical and chemical properties are not
clear [102]. Structural-related studies need to be designed to be more accurately applied to
different environmental samples. In the future, the great interest of many researchers will
promote the more sustainable development of extraction technology using DESs.
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Abbreviations

Abbreviations
AA Air assisted
BTRs Benzotriazole derivatives
BTs Benzothiazole derivatives
ChCl Choline chloride
DES Deep eutectic solvent
DLLME Dispersive liquid–liquid microextraction
DNA Deoxyribonucleic acid
[EMIM][OAc] 1-Ethyl-3-methyl imidazolium acetate
HBA Hydrogen bond acceptor
HBD Hydrogen bond donor
HDESs Hydrophobic deep eutectic solvent
HF-LPME Fiber-based liquid-phase microextraction
HPLC High-performance liquid chromatography
HS-SDME Headspace single-drop microextraction
LLE Liquid-liquid extraction
LPME Liquid-phase microextraction
MA Microwave assisted
MTPB Methyltriphenylphosphonium bromide
NADES Nature deep eutectic solvent
PAHs Polycyclic aromatic hydrocarbons
SAs Sulfonamides
SDME Single-drop microextraction
SLM Supported liquid membrane
SPE Solid-phase extraction
SPME Solid-phase microextraction
TBAB Tetrabutylammonium bromide
THF Tetrahydrofuran
UA Ultrasound-assisted
VA-LLME Vortex-assisted liquid–liquid microextraction
Nomenclature
– Dipole–dipole forces
ρ Density
– Ion–dipole forces
mp Melting point
S Solubility
– Polarity
η Viscosity
– van der Waals (dispersion) forces
– π–π forces
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