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Abstract: Water resource allocation aimed at sustainable watershed development suffers from
prominent challenges such as water pollution and scarcity, especially in water-deprived regions.
Based on analysis of water quality, use, and sectoral demands during the planning period in the
Fenhe River Basin, an improved inexact two-stage stochastic programming model with downside
risk control was built for optimal resource allocations for the four primary sectors (industry, domestic
use, agriculture, and the environment) in the basin. The principal constraints are river water quality
and available water resources under the three hydrological scenarios (low, medium, and high). The
results show that industrial, domestic, and agricultural water use in the middle and lower reaches
were significantly reduced by requiring improved water quality; agriculture suffered the greatest
water shortage and risk. As the level of risk control improved, the comprehensive watershed benefits
and agricultural risks were gradually reduced. Improving water reuse significantly reduces the risk
and increases the benefits. The model can effectively manage rational water allocations under the
dual constraints of water quality and quantity, meanwhile alleviating water competition caused by
different water benefits to provide support for coordinating the improvement of water quality and
socio-economic development in the basin.

Keywords: water resource allocation; dual constraints; water pollution; cross-sector competition;
two-stage stochastic programming; downside risk control

1. Introduction

Water resources play an essential role in human survival, sustainable socio-economic
development, and ecosystem and environmental security [1]. However, with the advance
of urbanization and industrialization, water pollution and water shortages have become
great challenges in northern China and worldwide [2–4]. Excessive water resource exploita-
tion, relatively inefficient utilization, increasing wastewater discharge, and discounting of
environmental water demand have reduced river flows, lowered groundwater levels, and
exacerbated the deterioration of the quality of the water environment [5]. The shortage of
water resources is especially pronounced in water-deprived regions and has become a criti-
cal constraint for watershed socioeconomic development [6,7]. Water pollution is the most
pressing issue in China, which experiences exacerbated water shortages and cross-sectoral
water competition (e.g., the environment, industry, domestic and agriculture). High-quality
development based on protection of the water environment and rational water resource
utilization is a developmental priority for a regional social economy. Therefore, optimal reg-
ulation of water resource consumption and regional and sectoral allocations for synergetic
development between the social economy and the environment are particularly significant.
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Studies on the coordinated relationship between the water environment and socio-
economic development in river watersheds indicate that adjusting the industrial structure
and technological progress is necessary to improve water-use efficiency and to achieve
harmonious economical and societal development [8]. The optimal allocation of water
resources is one of the most effective resolutions for addressing water pollution, water short-
ages, and rising water demand [9,10]. The many uncertainties in the water environment
system include stochasticity of available water resources caused by climate change [11–13]
uncertainties regarding plans and policies, and the complexity of interconnected processes
between the social economy and the environment (e.g., water utilization, wastewater treat-
ment, recycling, discharge, and water quality). These uncertainties generate enormous
challenges for water resources and water quality management.

Several optimization approaches have been developed for water resource alloca-
tion and water quality management with uncertainties [14–16]. The inexact two-stage
stochastic programming (ITSP) model integrates interval-parameter programming (IPP)
and two-stage stochastic programming (TSP) and addresses uncertainties expressed as
probability distributions and as discrete intervals. ITSP has been widely applied to address
different forms of multiple uncertainties in water resource allocation and water quality
management [17–24]. However, the ITSP model does not consider the variability of the
second-stage cost or benefit, only its expected value; this leads to an unbalanced alloca-
tion pattern. For example, managed water resources are primarily allocated to regions
and sectors with higher water benefits, which may lead to insufficient water supply for
regions or sectors with lower benefits [25], and the subjective will of decision makers such
as changes of development priority, pursuit of the largest economy benefits or balanced
development, and enhancement of environment protection, which all significantly influ-
ence optimal strategies. Moreover, most studies do not sufficiently consider watersheds
with severe water pollution and water scarcity problems, such as the Fenhe River basin in
Shanxi province, northern China. The Fenhe River Basin has a semi-humid climate and
experiences common water resource shortages, with a water resource per capita of 378 m3,
18% of the national average. The utilization rate of water resources has long exceeded
70%, leading to serious water conflicts between the social economy and the environment,
which means unbalanced water utilization and necessary regulation (e.g., optimization of
water resource allocation, improvement of water efficiency, pollutants reduction), and it is
impossible to meet the water demands of each sector at the same time presently. The Fenhe
River increasingly suffers from environmental problems, such as serious water pollution
and ecological damage; and more than 80% of the river segments do not meet national
water quality targets, which exacerbates watershed water shortages and cross-sectoral
water competition. Thus, an effective approach for dealing with severe environmental
problems and water shortages in river basins must be explored.

Previous studies have found that the downside risk method is an advantageous mea-
sure that balances benefits and resource allocation by minimizing the risks for all parties
under certain conditions [26]. The downside risk method can integrate a programming
model with a scenario-based description of problem data and generates a series of solutions
that help decision-makers quantitatively evaluate trade-offs between the system economy
and stability [27–30]. Xie and Huang [25] developed and applied an inexact two-stage
stochastic downside risk-aversion programming (ITSDP) model to support regional wa-
ter resource allocation and water quality management problems with uncertainties in a
hypothetical case with one municipal, three industrial, and two agricultural sectors. The
ITSDP model effectively addressed water competition and balance system benefits through
downside risk control.

This study aims to improve the ITSDP model to address water conflicts and rational
water resource allocation under the dual constraints of water pollution and water scarcity
in the Fenhe River Basin. The model combines water benefits with water environment
protection, which resolves the water resource conflict between the environment and pro-
duction sectors. Water resource utilization and pollutant emissions must meet water quality
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standards, and water resource allocation strategies for different watershed divisions and
sectors should be optimized to ensure coordinated development. Figure 1 presents the
general framework of the ITSDP model for optimal water management in the Fenhe River
Basin with uncertainties for integrating water quality management and water resource
allocation. The application of the model could help optimize and regulate regional water
resource allocation strategies and pollutant discharge levels under the constraints of water
quality and resource security. Furthermore, the results could be useful for supporting
watershed decision-makers to establish and to improve water-based industrial structures
and layouts.
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Figure 1. Framework for the inexact downside risk control and two-stage stochastic programming model.

2. The Study Area

The Fenhe River (110◦30′ E–113◦32′ E, 35◦20′ N–39◦00′ N) is located in central and
southeastern Shanxi Province, China. The river originates in Ningwu County and flows
through six cities: Xinzhou, Taiyuan, Jinzhong, Lvliang, Linfen, and Yuncheng, before
flowing into the Yellow River in Hejin County.

The Fenhe River is the second largest branch of the Yellow River and the largest river
in Shanxi, with a total length of 694 km and a watershed area of approximately 39,471 km2,
which accounts for 25.5% of the total area of the province. The Fenhe River Basin has a semi-
arid and semi-humid transitional climate and is located in the mid-latitude continental
monsoon zone. The inter-annual variation in rainfall is large, and the distribution is uneven
during the year; 70% of the annual precipitation is concentrated from June to September.
The multi-year (1956–2010) average rainfall of the entire basin is 504.8 mm (with a ten-year
decreasing trend), and the water surface evaporation is 900–1200 mm. The total available
water resources (from 1956–2010) of the Fenhe River Basin are 2.656 billion m3, of which
surface water and groundwater account for 1.482 and 1.885 billion m3, respectively.

The Fenhe River Basin occupies a pivotal position in the social and economic devel-
opment of Shanxi, which is highly urbanized and agriculturally developed. The Basin
contains 40.83%, 44.02%, and 64% of provincial population, gross domestic product, and
agricultural output, respectively. However, the Fenhe River Basin is a relatively severely
water-deprived region and with overexploited water resources. The utilization rate of
surface water development is 75.91%, and the average utilization rate of groundwater
development reaches 85%. Moreover, due to over-exploitation, uneven allocation, and low
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utilization efficiency of water resources, excessive pollutant discharge (especially ammonia
nitrogen) has caused serious environmental problems in the Fenhe River. Therefore, devel-
oping effective approaches to coordinate and optimize the distribution of water resources
and to improve the quality of the water environment is imperative for achieving sustainable
and high-quality development in the basin.

In this study, the scope of the Fenhe River Basin was determined using the hydrological
analysis module of ARCGIS and includes the upstream, midstream, and downstream areas
of the river and 16 units with the corresponding water quality sections (Figure 2).
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3. Method and Data
3.1. Model Development

This study considers long-run programming. The planning horizon covers 15 years
divided into five-year periods (i.e., 2019–2023, 2024–2028, and 2029–2033) and consid-
ers three hydrological scenarios (low, medium, and high) that reflect different available
water resources and water environmental capacities. The ITSDP model for integrating
water resource allocation and water quality management in the Fenhe River Basin can be
formulated as follows:

max f± = f±1 − f±2 − f±3 − f±4 − f±5 − f±6 (1)
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where f± is the total benefit of water resource utilization in the basin (104 CNY) over the
planning period.

(1) Water benefits:

f±1 =
16

∑
i=1

4

∑
k=1

3

∑
t=1

Lt ·UNB±ikt ·
(

IAW±ikt +
3

∑
h=1

ph · RW±ikth

)
(2)

where i denotes the control unit; k denotes the water sector (k = 1 for industry, k = 2 for
domestic, k = 3 for agriculture, and k = 4 for the environment); t denotes different periods
in the planning horizon (t = 1 is 2019–2023, t = 2 is 2024–2028, and t = 3 is 2029–2033); Lt
denotes the length of period t, and the values are fixed at 5 years; UNB±ikt represents the
water-use benefit for each sector (104 CNY/104 m3); IAW±ikt represents the pre-allocation of
water resources for each sector (104 m3/year); and RW±jkt represents reused water resources

for each sector (104 m3/year).
(2) Water shortage penalties:

f±2 =
16

∑
i=1

4

∑
k=1

3

∑
t=1

3

∑
h=1

Lt · ph · PNB±ikt · DIAW±ikth (3)

where h denotes various water resource scenarios in each period (h = 1, 2, and 3 for low,
medium, and high levels, respectively), ph denotes the occurrence probability of scenario
h, PNB±jkt represents the reduction of net benefit per unit of water resource not delivered

(104 RMB/104 m3), and DIAW±ikth represents the allocation deficit of water resources for
each sector (104 m3/year).

(3) Water supply cost:

f±3 =
16
∑

i=1

4
∑

k=1

3
∑

t=1
Lt ·

(
IAW±ikt −

3
∑

h=1
ph · DIAW±ikth

)
· CW±ikt

+
16
∑

i=1

4
∑

k=1

4
∑

t=1

3
∑

h=1
ph · Lt · RW±ikth · CRW±ikt

(4)

where CW±jkt represents the cost of the water supply in each sector (104 RMB/104 m3), and

CRW±jkt is the cost of reused water supply for each sector (104 RMB/104 m3).
(4) Wastewater treatment cost:

f±4 =
16

∑
i=1

4

∑
k=1

3

∑
t=1

Lt ·
(

IAW±ikt −
3

∑
h=1

ph · DIAW±ikth

)
· α±ikt ·

(
CWW±ikt + ξ±ikt · CRWT±ikt

)
(5)

where CWW±jkt represents the costs of wastewater treatment (104 CNY/104 m3), and

CRWT±jkt denotes the costs of wastewater reclamation (104 CNY/104 m3).
(5) Water-compensation costs:

f±5 =
16

∑
i=1

3

∑
t=1

3

∑
h=1

Lt · ph · GW±ith · CEW±it (6)

where GW±ith is the environmental water compensation (i.e., ecological water flow must
meet water quality targets); high values of GW±ith denote less production water; and CEW±it
is the cost of water compensation.

(6) Downside risk constraints:

f±6 = ω ·
16

∑
i=1

4

∑
k=1

3

∑
t=1

DRisk±ikt (7)
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where ω represents the risk level; DRisk±ikt is the downside risk of each sector.
Constraints:
(1) Water supply constraints:

4

∑
k=1

(
IAW±ijkt − DIAW±ijkth

)
≤ AWQ±it ; ∀i, t, h (8)

16

∑
i=1

4

∑
k=1

(
IAW±ikt − DIAW±ikth

)
+ GW±ith ≤ TAWQ±t ; ∀t, h (9)

DIAW±ikth ≤ IAW±ikt; ∀i, k, t, h (10)

where AWQ±it denotes available water resources (104 m3/year).
(2) Water sector demand constraints:(

IAW±ikt − DIAW±ikth
)
+ RW±ikth ≥WD±minikt; ∀i, k, t, h (11)(

IAW±ikt − DIAW±ikth
)
+ RW±ikth ≤WD±maxikt; ∀i, k, t, h (12)

where WD±minikt represents the minimum water resources requirement, and WD±maxikt
represents the maximum water resources requirement (104 m3/year).

(3) Regional wastewater treatment capacity constraints:

3

∑
j=1

(
IAW±ijkt − DIAW±ijkth

)
· α±ikt ≤ ATW±ikt, ∀i, t, h, k = 1, 2 (13)

where αikt is the wastewater emission coefficient, and ATW±ikt represents the wastewater
treatment capacity (104 tons).

(4) Regional wastewater reuse capacity constraints:

(
IAW±ikt − DIAW±ikth

)
· α±ikt · ξ

±
ikt ≥

4

∑
k=1

RW±ikth, ∀i, t, h (14)

where ξ jkt is the wastewater reuse rate.
(5) Constraints for total water pollutant emissions:

3

∑
k=1

3

∑
j=1

(
IAW±ijkt − DIAW±ijkth

)
· α±ikt ·

(
1− ξ±ikt

)
· EC±krt ≤ TED±irt, ∀i, r, t, h (15)

where r is the controlled water pollutant (r = 1 for chemical oxygen demand, r = 2 for ammo-
nia nitrogen (NH4-N)), EC±ikrt represents the concentration of pollutants after wastewater
treatment (mg/L), and TED±irt represents the total amount of pollutant (tons).

(6) Water environment carrying capacity constraints:

3
∑

k=1

3
∑

j=1

(
IAW±ijkt − DIAW±ijkth

)
· α±ikt ·

(
1− ξ±ikt

)
· EC±krt · IDRkrt

−
(
CS±irt − C0±irt

)
· GW±ith ≤ ALD±irth, ∀i, r, t, h

(16)

where IDRkrt represents the river load ratio of different pollutants, and ALD±irth is the
environmental capacity (tons) of different pollutants.

(7) Downside risk
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PRW±ith = Lt ·



4
∑

k=1
UNB±ikt ·

(
IAW±ikt + RW±ikth

)
− PNB±ikt · DIAW±ikth

−
4
∑

k=1

[(
IAW±ikt − DIAW±ikth

)
· CW±ikt + RW±ikth · CRW±ikt

]
−

4
∑

k=1

(
IAW±ikt − DIAW±ikth

)
·
(
α±ikt · CWW±ikt + α±ikt · ξ

±
ikt · CRWT±ikt

)
−GW±ith · CEW±it


, ∀i, t, h (17)

Delta±ith =

{
Ω±it − PRW±ith, PRW±ith < Ω±it
0, PRW±ith > Ω±it

, ∀i, t, h (18)

DRisk±it =
3

∑
h=1

ph · Delta±ith, ∀i, t (19)

where PRW±ith represents the actual benefit, Ω±it represents the expected regional benefit,
Delta±ith represents the positive deviation from the expected benefit, and DRisk±it represents
the downside risk.

(8) Others:
DIAW±ikth, RW±ikth ≥ 0 (20)

The objective is to maximize the total benefits in the river basin; including those of
pre-allocated water resource sectors; penalties for undelivered allocations; and the costs of
water supply, wastewater treatment, wastewater reclamation, and purification of excess
pollutants. The constraints are for the relationships between decision values and water
quality requirements, including available water resources, regional total amount controlled,
environmental water carrying capacity, and downside risks.

Using an interactive algorithm, the ITSDP model can be transformed into two de-
terministic sub-models that correspond to the lower and upper bounds of the desired
objective function value. The DIAW−ikth, RW+

ikth, GW−ith, DRisk−ikt and DIAW+
ikth, RW−ikth,

GW+
ith, DRisk+ikt sub-models are solved to form the final ITSDP model solution: [DIAW−ikth,

DIAW+
ikth], [RW−ikth, RW+

ikth], [GW−ith, GW+
ith], and [DRisk−ikt, DRisk+ikt].

3.2. Datasets

Table 1 lists the available water resources in the upper, middle, and lower reaches of
the Fenhe River, including surface water, groundwater, and transferred water from the
Yellow River. These were calculated based on water resource evaluation results (1956–2010)
combined with regional water resource planning and management policies.

Table 1. Available water resources in the Fenhe River Basin (104 m3/year).

Water Resources Periods
Scenarios

h = 1 h = 2 h = 3

Surface water
t = 1 [14,716, 18,395] [22,640, 28,300] [41,163, 51,454]
t = 2 [14,872, 18,590] [22,880, 28,600] [41,600, 52,000]
t = 3 [15,028, 18,785] [23,120, 28,900] [42,036, 52,545]

Groundwater
t = 1 [2560, 3200] [2560, 3200] [2560, 3200]
t = 2 [2560, 3200] [2560, 3200] [2560, 3200]
t = 3 [2560, 3200] [2560, 3200] [2560, 3200]

Transferred water
t = 1 [1800, 2250] [1800, 2250] [1800, 2250]
t = 2 [2400, 3000] [2400, 3000] [2400, 3000]
t = 3 [3000, 3750] [3000, 3750] [3000, 3750]

Surface water
t = 1 [38,480, 48,100] [59,200, 74,000] [107,636, 134,545]
t = 2 [39,988, 49,985] [61,520, 76,900] [111,854, 139,818]
t = 3 [41,496, 51,870] [63,840, 79,800] [116,072, 145,090]
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Table 1. Cont.

Water Resources Periods
Scenarios

h = 1 h = 2 h = 3

Groundwater
t = 1 [49,600, 62,000] [49,600, 62,000] [49,600, 62,000]
t = 2 [47,120, 58,900] [47,120, 58,900] [47,120, 58,900]
t = 3 [44,640, 55,800] [44,640, 55,800] [44,640, 55,800]

Transferred water
t = 1 [76,800, 96,000] [76,800, 96,000] [76,800, 96,000]
t = 2 [86,400, 108,000] [86,400, 108,000] [86,400, 108,000]
t = 3 [96,000, 120,000] [96,000, 120,000] [96,000, 120,000]

Surface water
t = 1 [18,096, 22,620] [27,840, 34,800] [50,618, 63,272]
t = 2 [18,096, 22,620] [27,840, 34,800] [50,618, 63,272]
t = 3 [18,096, 22,620] [27,840, 34,800] [50,618, 63,272]

Groundwater
t = 1 [24,600, 30,750] [24,600, 30,750] [24,600, 30,750]
t = 2 [22,880, 28,600] [22,880, 28,600] [22,880, 28,600]
t = 3 [21,160, 26,450] [21,160, 26,450] [21,160, 26,450]

Transferred water
t = 1 [54,840, 68,550] [54,840, 68,550] [54,840, 68,550]
t = 2 [59,920, 74,900] [59,920, 74,900] [59,920, 74,900]
t = 3 [65,000, 81,250] [65,000, 81,250] [65,000, 81,250]

Table 2 lists the pre-allocation strategies of water resources in the Fenhe River Basin,
which were calculated based on the latest regional water resource consumption in each
sector and development planning and policy analysis in the river basin.
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Table 2. Initial water resource allocation in the Fenhe River Basin (104 m3/year).

Units

Periods and Sectors

t = 1 t = 2 t = 3

Industry Domestic Agriculture The Envi-
ronment Industry Domestic Agriculture The Envi-

ronment Industry Domestic Agriculture The Envi-
ronment

Unit1 [196, 221] [715, 869] [10,351, 10,778] [870, 937] [200, 246] [698, 977] [11,234,
12,042] [1132, 1313] [204, 274] [683, 1099] [11,940,

13,175] [1471, 1838]

Unit2 [181, 213] [314, 377] [4623, 4817] [282, 303] [179, 237] [310, 423] [4584, 4918] [366, 425] [177, 264] [305, 474] [4568, 5047] [476, 595]
Unit3 [695, 799] [267, 343] [2883, 3004] [60, 64] [735, 933] [258, 395] [2938, 3152] [78, 90] [777, 1089] [249, 457] [2931, 3238] [101, 126]
Unit4 [1973, 2310] [1708, 2132] [1378, 1435] [379, 408] [2010, 2634] [1661, 2431] [1399, 1501] [493, 572] [2049, 3004] [1616, 2772] [1398, 1545] [641, 801]
Unit5 [5356, 6947] [2844, 3646] [5650, 5886] [778, 803] [4598, 7179] [2705, 4140] [5716, 6133] [1206, 1285] [3946, 7420] [2572, 4701] [5723, 6322] [1869, 2056]

Unit6 [2104, 2738] [26,940,
32,755] [6210, 6470] [7213, 7445] [1807, 2839] [26,015,

36,369] [6131, 6578] [11,180,
11,913] [1552, 2943] [25,122,

40,383] [6214, 6865] [17,329,
19,061]

Unit7 [898, 1023] [5213, 6336] [18,921, 19,440] [3681, 3800] [889, 1113] [5045, 7049] [19,946,
20,893] [5707, 6081] [881, 1210] [4882, 7841] [21,356,

22,806] [8845, 9729]

Unit8 [905, 1050] [387, 476] [1951, 2033] [425, 438] [885, 1143] [374, 534] [1942, 2083] [658, 702] [866, 1244] [361, 598] [1932, 2134] [1021, 1123]
Unit9 [553, 657] [583, 738] [1361, 1418] [650, 670] [558, 749] [558, 834] [1340, 1438] [1007, 1073] [562, 855] [533, 943] [1340, 1481] [1561, 1717]

Unit10 [3751, 4497] [2072, 2587] [15,084, 15,716] [2298, 2372] [3758, 5129] [1986, 2906] [14,852,
15,936] [3562, 3796] [3766, 5851] [1903, 3264] [14,853,

16,412] [5522, 6074]

Unit11 [4064, 4743] [3127, 3801] [33,468, 34,386] [2210, 2281] [4148, 5406] [3025, 4226] [35,777,
37,475] [3426, 3650] [4235, 6162] [2926, 4699] [38,039,

40,622] [5310, 5841]

Unit12 [3882, 4532] [5591, 7453] [34,208, 35,393] [3415, 3605] [3868, 5044] [5189, 8492] [35,295,
37,418] [6148, 6850] [3854, 5615] [4815, 9676] [36,034,

39,142]
[11,067,
13,016]

Unit13 [3403, 3842] [1003, 1302] [24,856, 25,718] [603, 636] [3474, 4276] [941, 1473] [25,824,
27,377] [1085, 1209] [3546, 4759] [883, 1667] [26,274,

28,540] [1954, 2298]

Unit14 [502, 567] [1912, 2355] [14,062, 14,550] [1119, 1182] [500, 616] [1828, 2615] [14,209,
15,064] [2015, 2245] [499, 670] [1748, 2903] [14,659,

15,923] [3628, 4267]

Unit15 [1920, 2207] [715, 978] [15,135, 15,655] [137, 144] [1983, 2517] [656, 1123] [16,235,
17,204] [247, 275] [2048, 2871] [602, 1289] [17,232,

18,706] [444, 523]

Unit16 [6176, 7469] [1624, 2082] [18,600, 19,239] [301, 318] [6293, 8718] [1524, 2334] [20,021,
21,215] [543, 605] [6412,

10,175] [1431, 2616] [21,213,
23,028] [978, 1150]
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4. Results and Discussions
4.1. Downside Risks

In this study, the optimal results were obtained without the downside risk control
constraints through the ITSP model for an ω value fixed at 0. Further, values of 5, 15,
30, and 50 were selected to reflect different risk levels and corresponding changes in
optimization strategies.

Table 3 lists the benefits of water resource utilization at different risk levels in the
Fenhe River Basin. The table shows that the benefits decrease slightly as the ω values
increase, which is similar to previous studies [25]. For example, in period 1, the benefits
are CNY [5.97, 6.74], [5.97, 6.73], [5.95, 6.73], [5.92, 6.70], and [5.89, 6.62] × 106 million. The
weak changes might be caused by more pre-allocation of water resources and to relatively
conservative expected benefit to some sectors or units in this study. The risks also decrease
gradually. For example, in period 1, the risks in the entire basin are CNY [5.78, 12.79], [5.53,
11.99], [5.45, 11.72], [5.35, 11.65], and [5.12, 11.56] × 104 million for ω of 0, 5, 15, 30, and
50, respectively. A higher ω value indicates a stronger risk control requirement. As the ω
values increase, the ITSDP model optimizes the water resource allocation strategies for
units and sectors based on factors, such as water efficiencies, pollutant emission intensities,
and regional industry structures. Units and sectors have significantly different risks. Risks
in the upstream area of the Fenhe River Basin (units 1–4) are significantly lower than in
the other areas; the industrial and domestic risk values in these units are zero in periods 1
and 2, except for low risks for industry (in period 3) and agriculture. These results indicate
sufficient water resources and excellent environmental status in the upstream area. Risks
primarily appeared in the downstream areas (units 12–16), with values of CNY [1.94, 5.28],
[1.81, 4.54], [1.81, 4.54], [1.73, 4.47], and [1.49, 4.42] × 104 million under different risk levels.

Table 3. Benefits of water resource utilization at different risk levels in the Fenhe River Basin (CNY
106 million).

Risk Levels
Periods

t = 1 t = 2 t = 3

ω = 0 [5.97, 6.74] [8.46, 10.53] [10.96, 15.49]
ω = 5 [5.97, 6.73] [8.45, 10.52] [10.88, 15.42]

ω = 10 [5.95, 6.73] [8.41, 10.52] [10.82, 15.23]
ω = 20 [5.92, 6.70] [8.39, 10.47] [10.72, 14.98]
ω = 30 [5.89, 6.62] [8.32, 10.37] [10.71, 14.83]

Risks show similar changes by sector (Figure 3). For example, in period 3, industry
and agriculture risks were CNY [25.34, 56.17], [20.25, 56], [20.16, 49.02], [19.96, 47.19], and
[19.95, 47.45] × 104 million and CNY [7.62, 15.84], [6.95, 15.72], [6.02, 15.62], [5.53, 15.56],
and [5.23, 15.56] × 104 million for ω values of 0, 5, 15, 30 and 50, respectively; this showed
a downward trend as risk levels increased. However, domestic risks were CNY [14.08,
85.33], [13.14, 80.68], [12.46, 87.11], [11.86, 93.21], and [11.85, 93.79] × 104 million with an
increasing upper bound for ω values of 15, 30, and 50, respectively. The upper bound of
the risks corresponds to the lower bound of water resources, and the ITSDP model aims
to maximize the total benefit by transferring water resources to higher benefit sectors and
units to decrease the total risk in a water-deprived scenario. Taking the downstream area
under these three risk control levels for further analysis revealed that for an increase in
ω value from 15 to 30, the upper bounds of the total industry, domestic, and agriculture
risk values change from CNY 47.38, 53.46, 7.27 × 104 million to CNY 45.55, 57.97, and
7.22 × 104 million, respectively; the values in different units change from CNY 42.26, 17.04,
11.52, 9.39, and 27.9 × 104 million to CNY 42.73, 17.66, 11.97, 11.59, and 26.78 × 104 million,
reflecting reallocations between units and sectors. However, the upper bound of the total
risk would be CNY 108.12, 110.73, and 111.11 × 104 million, showing an upward trend as
the risk control level increased. The downstream areas were set as relatively independent
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areas in this part of the study; therefore, opposite results correspond to the methodology of
the ITSDP model. Further analysis of optimal water resource allocations reveals an increase
in ecological water supply; thus, pollutant emissions exceed the water environmental
carrying capacity. The supply of additional water resources to purify water quality reduces
water available for production and increases risks. The strong water quality constraint
plays a decisive role in the optimal allocation of water resources in this study.
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Figure 3. Downside risks in the Fenhe River Basin at different risk levels.

4.2. Water Resource Allocation

Table 4 lists the ecological water supplied for purifying pollutants in the Fenhe River
Basin, and Figure 4 shows the variation tendencies. As the risk level increases, the ecological
water supplies decrease slightly; for example, in period 3 under scenario 3, the amounts of
ecological water were [68,971.33, 71,230.94], [65,884.16, 70,614.86], [62,650.05, 67,134.40],
[61,506.59, 66,346.23], and [61,444.22, 66,287.66] × 104 m3, with significant variations by
period and scenario. The amount of supplied ecological water decreased slightly from
period 1 to period 2 and increased significantly in period 3. For example, the amounts
under scenario 1 were [45,908.44, 58,926.27], [41,948.42, 56,463.97] and [53,467.22, 72,236.61]
× 104 m3 in the three periods with an ω value of 15; the decrease in period 2 is influenced
by improved water use efficiency and emission standards, and the increase in period
3 is primarily due to incoordination between higher water quality requirements and
conservative of technology improvement forecasts. Ecological water supply from scenario
1 to 3 in periods 1 and 2 decreases significantly, primarily because more available water
resources translate to higher environmental carrying capacities. However, in period 3,
increased ecological water supply in scenario 2 shows that more water resources should
be first allocated to production sectors to meet the expected benefit targets as available
water resources increase; this premise is based on the need to reach the established water
quality standard.
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Table 4. Ecological water supply at different risk control levels in the Fenhe River Basin (104 m3).

Periods Scenarios
Risk Control Levels

ω = 0 ω = 5 ω = 15 ω = 30 ω = 50

t = 1

h = 1 [47,269.97,
58,799.61]

[46,747.57,
58,926.27]

[45,908.44,
58,926.27]

[45,728.61,
58,907.33]

[45,400.36,
57,794.33]

h = 2 [46,082.49,
49,339.46]

[46,086.85,
49,148.65]

[46,037.42,
49,142.83]

[45,431.45,
49,068.19]

[45,192.69,
48,222.94]

h = 3 [29,090.81,
32,107.98]

[29,015.05,
32,015.54]

[29,015.05,
32,015.54]

[29,015.05,
32,015.54]

[29,015.05,
31,993.50]

t = 2

h = 1 [43,125.79,
56,352.63]

[42,926.20,
56,463.97]

[41,948.42,
56,463.97]

[41,931.07,
56,437.83]

[41,717.47,
55,641.02]

h = 2 [38,890.91,
46,190.99]

[38,994.84,
46,433.57]

[38,064.14,
46,424.53]

[37,789.90,
46,354.70]

[37,038.71,
46,126.27]

h = 3 [27,892.07,
30,590.55]

[27,695.09,
30,477.29]

[27,695.09,
30,477.29]

[27,695.09,
30,446.99]

[27,695.09,
30,049.19]

t = 3

h = 1 [53,122.47,
76,779.17]

[53,137.32,
75,701.38]

[53,467.22,
72,236.61]

[53,636.18,
72,058.48]

[53,714.90,
70,143.08]

h = 2 [64,159.80,
77,143.92]

[64,601.49,
76,199.71]

[63,690.30,
72,770.01]

[63,823.77,
72,600.84]

[63,847.15,
72,525.75]

h = 3 [68,971.33,
71,230.94]

[65,884.16,
70,614.86]

[62,650.05,
67,134.40]

[61,506.59,
66,346.23]

[61,444.22,
66,287.66]
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Figure 4. Water compensation for the Fenhe River Basin.

Figures 5–7 show the differences between the upstream, midstream, and downstream
areas of the river in the three periods, respectively. The upstream area contains a small
ecological water supply purifying excessive pollutant emission, whereas the midstream
and downstream areas have large supplies. For example, in period 1 and scenario 3, the
amounts of ecological water supplies are 0, [24,925.12, 27,376.22], and [4089.93, 4639.32]
× 104 m3 for an ω value of 30. Therefore, despite relatively sufficient water resources
and environmental carrying capacities, concentrated industries and a dense population
associated with regional social economic development negatively impacts the water envi-
ronment in the midstream and downstream areas. Consequently, socio-economic planning
and water resource allocation should be subject to environmental water quality and water
resources constraints.
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Figure 5. Water compensation by region in the Fenhe River Basin in period 1.
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Figure 6. Water compensation by region in the Fenhe River Basin in period 2.
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Figure 7. Water compensation by region in the Fenhe River Basin in period 3.

Figures 8–10 show water resource deficits for different sectors and regions caused by
water shortages in different scenarios. Deficits primarily appear in the agriculture sector. In
period 1, scenario 1, the industrial, domestic, agricultural, and environmental water deficits
in the upstream area for an ω value of 30 were [233.02, 859.33], [11.36, 63.98], [3234.05,
8424.18], and [30.31, 380.93] × 104 m3, respectively. Due to relatively low benefit, the water
resources are prioritized for high benefit and environmental sectors to ensure the minimum
water demands formulated by decision-makers. As ω values increase, water deficits
generate different changes by sector. When all other conditions in the abovementioned
analysis remain unchanged, ω values of 15 and 50 yield industrial, domestic, agricultural
and environmental water deficits of [100.75, 498.28] and [233.02, 499.18]× 104 m3, [0, 96.84]
and [11.368, 63.98] × 104 m3, [3846.21, 8577.93] and [3170.95, 8366.48] × 104 m3, and [30.31,
395.47] [380.93, 395.86] × 104 m3, respectively. Industrial, domestic, agricultural, and
environmental water deficits fluctuate, remain unchanged, significantly decrease, and
significantly increase, respectively. Risk analysis reveals that the positive deviation from
the expected industrial, domestic, and environmental benefits remains stable. Additionally,
the agricultural values decrease significantly, which translates to decreases regional risk.
Although the industrial water deficit increases, the total water resources used for industry
could be replenished by recycled water. Additionally, decreasing the benefit does not imply
increasing risk, due to sufficient pre-allocation of water resources or relatively conservative
expected benefits. Consequently, the ITSDP model can adjust the water resource allocations
for risk control.
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Figure 8. Water resource deficit by region in the Fenhe River Basin in period 1.
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Figure 9. Water resource deficit by region in the Fenhe River Basin in period 2.
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Figure 10. Water resource deficits by region in the Fenhe River Basin in period 3.

Figures 11–13 show reused water resources by sector and region. Reused water re-
sources are primarily allocated to industrial and domestic use, and the amounts increase
with time. Reused water resources for the Fenhe River Basin in scenario 1 for ω values
of 0, 15, and 30 were [12,084.09, 12,206.67], [11,920.16, 12,233.1], and [11,851.42, 12,169.68]
× 104 m3 in period 1; [18,120.25, 18,162.71], [17,600.76, 18,274.65], and [17,592.03, 18,274.65]
× 104 m3 in period 2; and [15,809.45, 19,577.92], [15,881.99, 18,438.54], and [15,891.47,
18,378.19] × 104 m3 in period 3, respectively. As ω values increase, the amount of reused
water decreases, perhaps because water resources are allocated to the agricultural and
environmental sectors to decrease regional risks and to balance socio-economic develop-
ment, because these sectors have few renewable water production capacities. Moreover, the
allocation of water resources by sectors varies by region, indicating optimal regulation of
water resources among sectors using the ITSDP model. Reused industrial water resources
in period 1, scenario 1 for ω values of 0, 15, and 30 were [465.83, 620.13], [435.66, 645.74],
and [229.59, 588.67] × 104 m3; 181.51, 76.45, and [69.96, 258.9] × 104 m3; and [4.62, 58.17],
[101.92, 295.54], and [101.92, 281.01] × 104 m3, respectively (Figure 11). Similar sectoral
changes at different risk control levels do not occur for domestic and agricultural water
resources. Furthermore, as available water resources change, water resource allocation
strategies generate various regulations. As available water resources increase in period 1
for ω of 50, the reused industrial and domestic water amounts of [229.59, 223.13], [229.59,
283.14], and [128.84, 283.14] × 104 m3 and [258.9, 69.96], [258.9, 386.37], and [386.37, 386.37]
× 104 m3 increase. Conversely, the amounts of reused environmental water ([281.01,
467.47], [281.01, 71.61], [155.47, 71.61] × 104 m3) decrease. Thus, for severe water resource
deficiency, fresh water should be first allocated to production sectors to ensure regional
development and to provide enough renewable water resources to the environmental
sector.



Water 2021, 13, 1318 17 of 24

Water 2021, 13, x FOR PEER REVIEW 18 of 26 
 

 

× 104 m3 in period 2; and [15,809.45, 19,577.92], [15,881.99, 18,438.54], and [15,891.47, 
18,378.19] × 104 m3 in period 3, respectively. As ω  values increase, the amount of reused 
water decreases, perhaps because water resources are allocated to the agricultural and 
environmental sectors to decrease regional risks and to balance socio-economic develop-
ment, because these sectors have few renewable water production capacities. Moreover, 
the allocation of water resources by sectors varies by region, indicating optimal regulation 
of water resources among sectors using the ITSDP model. Reused industrial water re-
sources in period 1, scenario 1 for ω  values of 0, 15, and 30 were [465.83, 620.13], [435.66, 
645.74], and [229.59, 588.67] × 104 m3; 181.51, 76.45, and [69.96, 258.9] × 104 m3; and [4.62, 
58.17], [101.92, 295.54], and [101.92, 281.01] × 104 m3, respectively (Figure 11). Similar sec-
toral changes at different risk control levels do not occur for domestic and agricultural 
water resources. Furthermore, as available water resources change, water resource alloca-
tion strategies generate various regulations. As available water resources increase in pe-
riod 1 for ω  of 50, the reused industrial and domestic water amounts of [229.59, 223.13], 
[229.59, 283.14], and [128.84, 283.14] × 104 m3 and [258.9, 69.96], [258.9, 386.37], and [386.37, 
386.37] × 104 m3 increase. Conversely, the amounts of reused environmental water ([281.01, 
467.47], [281.01, 71.61], [155.47, 71.61] × 104 m3) decrease. Thus, for severe water resource 
deficiency, fresh water should be first allocated to production sectors to ensure regional 
development and to provide enough renewable water resources to the environmental sec-
tor. 

 
Figure 11. Reused water resources by region in the Fenhe River Basin in period 1. 

  

0

1000

2000

3000

4000

5000

6000

7000
h 

= 
1

h 
= 

2
h 

= 
3

h 
= 

1
h 

= 
2

h 
= 

3
h 

= 
1

h 
= 

2
h 

= 
3

h 
= 

1
h 

= 
2

h 
= 

3
h 

= 
1

h 
= 

2
h 

= 
3

h 
= 

1
h 

= 
2

h 
= 

3
h 

= 
1

h 
= 

2
h 

= 
3

h 
= 

1
h 

= 
2

h 
= 

3
h 

= 
1

h 
= 

2
h 

= 
3

h 
= 

1
h 

= 
2

h 
= 

3
h 

= 
1

h 
= 

2
h 

= 
3

h 
= 

1
h 

= 
2

h 
= 

3

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

upstream midstream downstream

Re
us

e 
w

at
er

 re
so

ur
ce

s (
10

4 m
3 )

ω = 0 (lower bound) ω = 5 (lower bound) ω = 15 (lower bound) ω = 30 (lower bound) ω = 50 (lower bound)

ω = 0 (upper bound) ω = 5 (upper bound) ω = 15 (upper bound) ω = 30 (upper bound) ω = 50 (upper bound)

t = 1

Figure 11. Reused water resources by region in the Fenhe River Basin in period 1.
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Figure 12. Reused water resources by region in the Fenhe River Basin in period 2.
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Figure 13. Reused water resources for by region in the Fenhe River Basin in period 3.

4.3. Policy Interventions and Analysis

This study demonstrates that water resources are insufficient to support regional
socio-economic development and to ensure environmental quality in the Fenhe River Basin;
furthermore, reused water is a key factor for addressing the water shortages. To reflect
optimal regulation under severe water shortage conditions, we consider an ω value of
15 and low water resource level (h = 1) as the baseline scenario (S1). In another policy
scenario, S2, the water reuse rate gradually increases to at least 0.4, in period 3.

Finally, the risks (Table 5) are CNY [0.09, 0.18] and [0.08, 0.16]× 106 million in period 1,
CNY [0.08, 0.39] and [0.05, 0.37]× 106 million in period 2, and CNY [10.22, 14.67] and [10.36,
14.77] × 106 million in period 3. The results indicate that an improved water reuse rate
(S2) could increase benefits and control regional and sectoral risks. Additionally, improved
water reuse rates could provide support for decision-makers for the optimal regulation of
water resources in the Fenhe River.

Table 5. Benefits of water resource utilization and risks in the Fenhe River Basin (106 million).

Periods
Scenarios

S1 S2

Benefits
t = 1 [5.89, 6.68] [5.91, 6.69]
t = 2 [8.23, 10.46] [8.25, 10.51]
t = 3 [10.22, 14.67] [10.36, 14.77]

Risks
t = 1 [0.09, 0.18] [0.08, 0.16]
t = 2 [0.08, 0.39] [0.05, 0.37]
t = 3 [0.54, 2.07] [0.51, 1.94]

Figure 14 shows water resource deficits in different scenarios. The significant decrease
of the agricultural water deficit means the alleviation of water shortages in this sector. For
example, in period 1, the agricultural water deficit in the midstream area decrease from
[7840.42, 29,532.58] × 104 m3 to [7851.50, 25,973.52] × 104 m3. Additionally, the domestic
value decreases from [1774.86, 3130.60] × 104 m3 to [1555.35, 2863.89] × 104 m3; therefore,
more reclaimed water can be allocated for these sectors. However, the few industrial
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changes denote less water compensation for the environment; therefore, improving the
water reuse capacity can alleviate water resource shortages and reduce pollution emissions.
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Figure 14. Water resource deficits in the Fenhe River Basin by scenario.

Figure 15 shows reused water resources in different scenarios. The water deficits
analysis revealed a synergetic change in water resource allocation for the environmental
sector. In period 1, the environmental water deficits were [30.31, 395.47] and [67.29, 537.90]
× 104 m3, and the reused water resources were [101.92, 295.54] and [137.90, 438.69] × 104

m3; the same values apply to the midstream and downstream areas and other periods.
These results could be caused by not considering the benefits of the environment sector and
to the strong water demand in this study. Additionally, S2 has a higher reused water rate;
thus, the environmental demand in this scenario was supplied by reused water resources.
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Figure 15. Reuse water resources in the Fenhe River Basin by scenario.

Figure 16 shows that improving the water reuse capacity reduces pollution emissions.
The water compensation in the midstream area in S2, period 1 is significantly lower
([31,367.80, 42,790.44] × 104 m3) than that in S1 ([34,046.38, 46,012.89] × 104 m3); the
same is true of the upstream and downstream areas. The results show that appropriate
policy interventions, such as improving reclaimed water use, would further optimize water
resource allocation and effectively alleviate water shortages and water pollution in the
Fenhe River Basin.
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Figure 16. Water compensation in the Fenhe River Basin under different scenarios.

5. Conclusions

The irrational use of water resources has exacerbated serious problems, such as en-
vironmental water shortages and cross-sector competition for water resources in many
river basins, and water resource allocation aimed at sustainable watershed development
suffers from the dual challenges of water pollution and scarcity. In this study, an improved
ITSDP model was built to optimize water resource allocation strategies under the dual
challenges and uncertainties in the Fenhe River Basin, which is a highly urbanized, densely
populated, but typical water-deprived area with a high degree of contamination. The
proposed model simultaneously addresses the uncertainties presented as interval values
and probability distributions by integrating the IPP and TSP methods. The introduction of
the downside risk method effectively avoids possible sectoral risks caused by uneven water
resource allocation, and different risk levels and with different policy interventions (S2) all
reflect the preference of decision makers for regional socio-economic development, envi-
ronmental protection, regional planning and policy-making. By solving the ITSDP model,
optimal water resource allocations for the primary water use sectors were determined
for the planning periods under different scenarios. Additionally, we obtained the water
compensation strategies for purifying excessive pollutant emissions subject to strong water
quality constraints. These results suggest that the ITSDP model is applicable to address
the complexity of water resource management and reflect the attitude of decision makers,
it can be used for providing support for optimizing desired water resource allocation
strategies and resolving the sectoral water conflicts and environmental problems in the
Fenhe River Basin.

The aim of this study was to use the ITSDP model to develop an effective approach to
determine and optimize water resource allocations, and the coordination of water quality
protection and socio-economic development could support the further establishment of
water-based industrial structures and layouts. Although the results suggest that this
approach is applicable and effective to address such dual constraints and water conflicts in
the Fenhe River Basin and could also be applied in other contexts or water-stressed areas,
there is still space for improvement of the model. This model does not fully consider the
role of human agency in conflicts. In addition, details such as interaction between water
utilizations and climate change were not addressed in this model, and the finally pollutant
emissions based the optimized water allocation strategies should be deeply analyzed for
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providing a basis for a regional emission permit system. Further studies are needed to
address these limitations.
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