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Abstract: Electric resistivity sounding and tomography, as well as electromagnetic sounding, are
the classical methods frequently used for hydrogeological studies. In this work, we propose the
development and implementation of an original integrated approach using the unconventional
hydro—geophysical methods of gravity and seismic reflection for the fast, large—scale characteriza-
tion of hydrogeological potential using the Ain El Beidha plain (central Tunisia) as an analogue.
Extending the values of vintage petroleum seismic reflection profiles and gravity data, in conjunction
with available geological and hydrogeological information, we performed an advanced analysis to
characterize the geometry of deep tertiary (Oligocene and Eocene) aquifers in this arid area. Residual
and tilt angle gravity maps revealed that most gravity anomalies have a short wavelength. The
study area was mainly composed of three major areas: the Oued Ben Zitoun and Ain El Beidha
basins, which are both related to negative gravity trends corresponding to low—density subsiding
depocenters. These basins are separated by an important NE-SW trend called “El Gonna-J. El
Mguataa—Kroumet Zemla” gravity high. Evaluation of the superposition of detected lineaments
and Euler deconvolution solutions” maps showed several NE-SW and N-S relay system faults. The
3D density inversion model using a lateral and vertical cutting plane suggested the presence of
two different tectonic styles (thin VS thick). Results from the gravity analysis were in concordance
with the seismic analysis. The deep Oligocene and Eocene seismic horizons were calibrated to the
hydraulic wells and surrounding outcrops. Oligocene and Eocene geological reservoirs appear very
fractured and compartmented. The faulting network also plays an important role in enhancing
groundwater recharge process of the Oligocene and Eocene aquifers. Finally, generated isochron
maps provided an excellent opportunity to develop future comprehensive exploration surveys over
smaller and more favorable areas’ sub—basins.
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1. Introduction

In arid and semi-arid regions, surface water resources are limited. These areas present
a growing need for potable and irrigation water, and the population is obliged to use
groundwater. In most cases, groundwater is not used sustainably.

The increasing need for groundwater supply has induced a mounting trend in the
application of hydro—geophysics all over the world. However, because of their limited
investigation depth, the commonly used near-surface hydro-geophysical methods such
as electrical resistivity sounding (SEV), electrical resistivity tomography (ERT), and time
electromagnetic sounding (TEM) do not allow for precise geometry or the extension of
many interesting regional deep and poorly exploited groundwater tables.

Deep geophysical survey methods such as gravity and seismic, commonly used for
petroleum exploration, can play an important role in improving the understanding of
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a regional tectonic framework and characterizing water-bearing geological formations.
This will facilitate the quantification and assessment of deep groundwater resources. Data
integration studies are widespread in geophysics. However, only a few studies using joint
gravity and seismic investigations have been conducted for deep aquifer assessment in arid
zones [1,2]. A more recent study [3] has integrated several findings obtained from a single—
source/single—sensor seismic profile with gravity data. These studies were performed
to detail the tectonic settings and characterize the subsurface, water-bearing formations
of the Al Jaww plain, one of the most important groundwater reserves of the United
Arab Emirates.

In Tunisia, not far from our study area [4], geophysical data combined with the
geological and hydrogeological data of the Sidi Bouzid region have been analyzed to
characterize the geometry of the water tables. The obtained results refined the geostructural
schema and outlined the extension deep sub-basins of the two locations, Oued El Hajel
and Ouled Asker. Another investigation in northwest Tunisia [5] has highlighted the
contribution of gravity and seismic data in understanding the geometry of the Zouaraa-—
Ouchtata dune and its hydrogeological implications.

This work aims to use regional gravity and seismic reflection data, complemented by
geological /hydrogeological background information, to detail the deep tectonic settings of
Oligocene and Eocene groundwater reservoirs. The comprehension of the deep structuring
of these reservoirs will make an important contribution to delineate the hydrogeological
behavior of the Ain El Beidha basin.

The Ain El Beidha plain is situated in central Tunisia (Figure 1), as part of the Tunisian
Atlas and Merguellil/Kairouan basin that contains the biggest agricultural zones in central
Tunisia. It is imbricated between two major structural elements in central Tunisia:

To the east, the north-south axis [6-8], or N-S axis (Figure 1), is composed of folded
Mesozoic deposits from J. Touila [9,10] in the south to J. El Houareb in the north [7,8,11];

To the northwest, lies the NE-SW Labaiedh-Trozza—Cherichira trend with the J. Trozza
thrust belt, which is formed of reefal Aptian carbonates [12-18].

Surface water stock (El Haouareb dam supplied by Oued Ben Zitoun and Oued
Merguellil rivers (Figure 1)), as well as groundwater resources (Mio-Plio-Quaternary and
Miocene aquifers), show quantitative and qualitative degradation [19]. During the last
few decades, The Ain El Beidha plain has changed due to a fast and dynamic evolution in
human and agricultural activities, leading to an increase in the demand for potable and
irrigation water.

In this arid area, Oligocene siliciclastic and Eocene carbonate layers are the most
interesting and strategic deep aquifers [19,21,22]. In order to perform a significant and
meaningful hydrogeological study of the water potential for these aquifers, it is necessary
to define the subsurface structuring beneath the Ain El Beidha plain.
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Figure 1. (A). Regional situation of Tunisia. (B) Geological and hydrogeological setting of the Ain El Beidha plain located in
central Tunisia (Geological data adapted from [11,20] UTM projection WGS84 N32. (1) Quaternary and Mio-Plio-Quaternary.
(2) Miocene (Sbiba graben). (3) Miocene (Ain El Beidha plain). (4) Oligocene. (5) Eocene. (6) Upper Cretaceous. (7) Lower
Cretaceous. (8) Triassic. (9) Major mapped faults. (10) Dip. (11) River. (12) Boreholes. (13) Seismic line. (14) L1 and L2
seismic lines. (15) Limit of 1km*1km used gravity survey. (16) Hydrogeological well correlation. (17) Groundwater flow
direction. (Adopted from [19]). (18) Position of the picture. (C) General view of the Ain El Beidha plain.
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2. Geological Setting

Geological outcrops surrounding the Ain El Beidha plain are characterized by the
presence of Triassic to Miocene deposits (Figure 1) [7,8,11,17,23]. In the northwestern part of
the study area, the J. Trozza presents a reefal Aptian outcrop affected by a radial fracturing
system [17,24]. To the west, the ]. Trozza anticline is linked to Labaiedh anticline by a
Triassic salt corridor along the eastern part of Sbiba graben [25,26]. The Miocene, Oligocene,
and Eocene deposits can be recognized in the western side of the N-S axis (Figure 2).
Alternance of the paleogeographic areas from marine to shelf deposit paleoenvironment
indicates Miocene siliciclastics of Beglia, Saouaf, Grijima, and Messiouta formations and
shales and carbonate of Mahmoud, Ain Ghrab, Oued Hammam, and Haouaria Formations.
The fluvio—deltaic siliciclastic paleoenvironment indicates Oligocene thick sandstone bars
and clays of the Fortuna and Korbous formations, and the carbonate platform defines
the Eocene deposits as the Cherahil and El Gueria formations (Figure 2) [11,20]. The
substratum of tertiary deposits is composed of Paleocene clays of the El Haria formation
and Campanian—-Maastrichtian limestones of the Abiod formation [6,11,20].

Formation Age
Saouaf ___Tortonian
Beglia Serravalian
Mahmoud
g
3
2. Ain Ghrab Langhian
- ——————r
$ IoTTIio
.“E; SRS Oued Hammam .
& =
@ Burdigalian §
s 2
8 [FEETE Grijima -
S -
4
2
=
% Messiouta
A Aquitanian
<
‘=
B S | Sidi Bou Ali
e
-~ s
Ain Atrouss
A
-
o3 - Ol
&g Korbous gocene
o o
8 «
=
' § Upper Priabonian E i
‘ 3 Lower Lutetian o PR
o = O = 4
‘5 E_ = El Gueria Ypresian = - )
T F==06
= El Haria up- Dan'l;.m Paleocene| iz g
A Inf. | Thanitian . .
) Abiod Campanian Upper l;‘z;z 9
Maastrichtian  Cretaceous (I 10

Figure 2. Lithostratigraphic column of the tertiary series in the Ain El Beidha plain (adapted from the
J. Touila tertiary series description [17]) and associated hydrogeological systems. (1) Clay. (2) Sandy
clay. (3) Sand. (4) Sandstones. (5) Clayey sand. (6) Sand and clay alternances. (7) consolidated and
fossilized Sandstones. (8) Siliciclastic deposits. (9) Dolomites. (10) Limestones.
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The Ain El Beidha plain was impacted by numerous tectonic phases during the
Mesozoic and Tertiary paroxysms [27-29]. Although the plain appears to be a simple
large syncline (Figure 1A,B), a more thorough and accurate examination revealed some
geomorphological elements, such as the following:

(1) changes in river direction (Oued Ben Zitoun river), and
(2) the presence of an Eocene outcrop at the center of the plain.

Consequently, the plain’s structure is complex and probably compartmented by hid-
den faults and discontinuities beneath the Quaternary deposits (Figure 1). From the west
to the east, we can distinguish:

—  The NE-SW Oued Ben Zitoun syncline, limited to the west by the Sbiba graben and
the Trozza anticline (Figure 1). This syncline is composed essentially of a thick Mio—
Plio-Quaternary cover (siliciclastic and alluvium Segui formation). Miocene outcrops
could also be noticed near the eastern border of the Trozza anticline (Figure 1).

—  The NE-SW faulted axis of J. Bateun Damous-El Gonna-J. El Mguataa—Kroumet
Zemla. This axis is composed of folded Upper Eocene marls around J. El Mguataa,
(The dip varies from 35° to 70°) and Miocene series (Figure 1). It is also affected by
surface NE-SW and NW-SE faults.

—  The N-S axis from J. Touila to J. El Houareb is characterized by the presence of
allochthonous Triassic layers and Cretaceous series along its western side.

3. Hydrogeological Setting

The hydrological and hydrogeological aspects of the Ain El Beidha basin have been
previously studied [19,30-32]. The Oued Ben Zitoun river represents the major developed
river in the Ain El Beidha plain. It supplies the Merguellil river (the most important river in
the Kairouan zone) and the Haouareb dam. The Tertiary folded series of the Ain El Beidha
plain are covered by Plio-Quaternary deposits. The different piezometric surveys in the
study area [19,31,33] revealed a regional groundwater flow from southwest to northeast
(Figure 1A).

Alluvial Mio-Plio-Quaternary and Miocene aquifers are currently over—exploited.
The deep Oligocene siliciclastic and Eocene carbonates aquifers were explored by few wells.
These aquifers represent an invaluable water resource in the region. The natural recharge
is thought to be from outcrops surrounding Ain El Beidha (Figure 1).

The exploitation of Eocene limestone (Cherahil Formation) groundwater is over
1.31 Mm3/ year (Figures 1 and 2), with mostly good water quality (average of 1.15 g/L). Ex-
ploitation of Oligocene sandstone (Korbous Formation) groundwater is over 1.56 Mm?/ year
(Figures 1 and 2), with good water quality (average of 1.2 g/L) [34].

We performed a hydrogeological cross section (Figure 3) from the east to the west using
information on the outcrops and deep well data obtained from the Ain El Beidha plain.
Two depocenters were clearly delineated with the thickening of the Miocene and Oligocene
aquifers in the Oued Ben Zitoun and Ain El Beidha areas. The hydraulic threshold is
materialized by J. El Mguataa fold, as a part of the regional NE-SW J. Bateun Damous-El
Gonna-J. El Mguetaa—Kroumet Zemla axis. It could also be distinguished in the center
of the plain neighboring the W3 well. This structure represents a “demarcation line” and
recharge area for shallow and deep tertiary aquifers in the Ain El Beidha plain.



Water 2021, 13, 1310

60of 18

Altitude (m)

350

3004

250+

200+

1504

100+

50

-100

150

w
Toward J. Trozza

v
4 AINENBId

1)

“ N-S Axis
—

0

O&t‘e‘d Ben Zitoun @ KroumetZemla wmp

GL: -24.30 m

S: 1.87 g/ J. El Mguataa
WF: 101/s w3

T GL:-54.55m Ain El Eeldha Al Jelall
Ll S e - GL: -39.40
ety B * % ‘.:p’l'. . o y
B D N jd S: 05491 WigL:-21.36m
PO ¥ b . WF: 425I1is S:0.85g/
i~ P4 WF: 71.42 lis
S

Toward El Houareb

|

\6
\7

2,000 4,000 6,000 8000 10,000 12,000 14,000
Distance (m)

Figure 3. Hydrogeological wells correlation crossing the Ain El Beidha plain. (1) Quaternary and Mio-Plio-Quaternary.

(2) Miocene (Ain El Beidha plain). (3) Oligocene. (4) Upper Eocene. (5) Lower Eocene. (6) Fault. (7) Water table level. GL:

groundwater level. S: salinity. WF: water flow.

4. Gravity and Seismic Data

We carried out an advanced analysis of gravity data to map structural elements in the
plain. Results were compared to seismic reflection profiles to define “Oligocene/Eocene

hydrogeological prospects” for prospective deep exploration.
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Seismic reflection data for the study area were obtained from the national petroleum

company in Tunisia (ETAP) (Figure 1). Migrated seismic profiles were analyzed to correlate
seismic and stratigraphic horizons recognized in the calibration well boreholes obtained
from the general direction for water resources in Tunisia (DGRE). First, we corrected and
homogenized the datum plane. Next, we verified the spatial coherence by controlling the
values of the two—way travel time (TWT) of the seismic horizons in the different profiles’
intersections. Then, we digitized the tops of the Oligocene and Eocene aquifers. Finally, we
generated isochron and thickness maps using a mapping software.

The gravity data were obtained from the national mining company of Tunisia (ONM).

The gravity survey was achieved using a homogenous data network (one station per Km?).
Free—air corrections of the Bouguer anomaly were executed using the 1967 formula with
2.40 as a density correction.

5. Gravity Data Analysis

The produced Bouguer gravity map (Figure 4) yielded two main results:

A regional gravity field is clearly defined with a general NE-SW isoline direction.
Gravity values, increasing from west to east, are explained [35] as the effect of
crustal thinning.

The existence of several NE-SW lineament corridors of positive (El Gonna-]J. El
Mguataa—Kroumet Zemla) and negative anomalies (Oued Ben Zitoun and Ain El
Beidha). These corridors are also divided into sub—anomalies probably limited by
transverse deep discontinuities.
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Figure 4. Interpreted Bouguer gravity map of the Ain El Beidha plain. (1) Limits of the major gravity anomalies.
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After subtraction of the regional gravity field (first order polynomial regression), the
residual gravity map (Figure 5) could better specify the mapping of subsurface structures.
Three major axes were recognized:
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Figure 5. Interpreted residual gravity map of the Ain El Beidha plain. (1) Limits of major gravity anomalies. (2) Major

positive gravity anomaly axis. (3) Major negative gravity anomaly axis. (4) Northern and southern limits of the Ain El

Beidha plain.

Oued Ben Zitoun negative corridor (N1). Separation lines between the N1 Oued Ben
Zitoun anomaly could be seen: (1) the N2 Merguellil negative anomaly to the North, and
(2) the Hajeb Layoun N5 negative anomaly to the South (Figure 5). These separation lines
draw the subsurface limits of the Ain El Beidha plain.

El Gonna-J. El Mguataa—Kroumet Zemla positive gravity axis composed of three
prominent positive gravity anomalies, P1, P2, and P3

The Ain El Beidha negative gravity axis was comprised of two distinguished sub—
negative anomalies, N3 and N4. The northwestern and southeastern borders of the Ain El
Beidha plain are constituted of positive gravity anomalies P4 and P5, respectively. They
are related to the J. Trozza folded structure and J. Touila anticline as part of the N-S axis.

To better understand the structuring of these corridors, we applied the tilt angle
filter, which highlights short wavelength anomalies [36]. This map (Figure 6) revealed
the following:

—  the Oued Ben Zitoun negative corridor (N1) is formed of a succession of different
negative gravity anomalies (N1.1, N1.2, N1.3, N1.4). This variation can be explained
by thickness changes in the Mio-Plio—quaternary and tertiary deposits along this
corridor;
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- the El Gonna-J. El Mguataa-Kroumet Zemla positive gravity main axis corresponds
to a series of positive gravity anomalies (P1, P2.1, P2.2, P2.3, P3.1, P3.2) probably
affected by an important faulting network;

- the Ain El Beidha negative gravity axis is clearly individualized by numerous negative
gravity anomalies (N3, N4.1, N4.2, N4.3).

550000 552000 554000

556000 558000 560000 562000 564000 566000 568000

g \
e
:

:

3928000

8

3

S

®

(=}

8

S

3

g O" Scale 1:100,000
g Vi 2
&

2 (meters)

Rad

0009€6€  0008E6E

0002€6€  000VE6E

000826€

000926€

BN OOV NNONAWWNROS A NWARNONNOOOOO=SNW

0000€6€
DRALLAALAE000600656065660000000000000 222

000226€  000¥Z6€E

550000 552000 554000

556000 558000 560000 562000 564000 566000 568000

Figure 6. Interpreted tilt angle map of the Ain El Beidha plain. (1) Major positive gravity anomaly axis. (2) Major negative

gravity anomaly axis. (3) Northern and southern limits of the Ain El Beidha plain.

To identify the faulting network and the discontinuities affecting the Ain El Beidha
plain appearing as gravity lineament corridors on the residual gravity map, we produced
the magnitude of horizonal gravity derivative map [37]. This map highlighted three major
elements (Figure 7):

—  The presence of a N-S corridor affecting the El Gonna-J. El Mguataa area and repre-
senting the western extension of the N-S axis. This trend played an important role in
the structuring of the Ain El Beidha plain.

—  The existence of a NE-SW fault system along the Kroumet Zemla area and the J.
Trozza anticline.

—  The occurrence of a relay fault system, mainly between the N-S and NE-SW directions.
These districts had guaranteed movement transfer during different tectonic phases.
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Figure 7. Interpreted magnitude of horizontal gravity gradient map of the Ain El Beidha plain. (1) Lineaments.

To generate a detailed lineament map, we applied the “source edge detect” or SED

filter to the magnitude of horizonal gravity derivative map (Blackely and Simpson, 1986)
(Figure 8). We also calculated the Euler deconvolution solutions [38] for the depth to
source estimation using a structural index of 0, window size of 10x 10, and a maximum
percentage of depth tolerance of 15%. The superimposition of the SED lineament map,
Euler deconvolution solutions, and previously identified gravity anomaly axis permitted
us to define the following (Figure 8):

1)
@)

A tectonic framework constituted essentially of NE-SW and N-S faults. These faults
played an important role in the control of groundwater flow pathways.

The El Gonna-J. El Mguataa—Kroumet Zemla fold axis represents an example of a
N-S and NE-SW relay system. We perceived the same relay system in the western
part of the plain (J. Trozza).

The estimated depth solutions from the Euler deconvolution method vary signifi-
cantly.

We therefore defined two types of faults:

those which constitute the cover faults affecting the central part of the plain essentially
and associated with the Gonna-J. El Mguataa—Kroumet Zemla fold axis, and

those which are fairly deep (more than 1750 m depth), affecting the eastern (N-5 axis)
and western (J. Trozza) plain borders.
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Figure 8. Detailed lineament map of the Ain El Beidha plain. deduced from the SED filter and Euler deconvolution solution
results. Depth to source estimation was performed using a structural index of 0, a window size of 10*10, and a maximum
percentage of depth tolerance of 15%. (1) Major positive gravity anomaly axis. (2) Major negative gravity anomaly axis. (3)
Northern and southern limits of the Ain El Beidha plain. (4) Major fault/discontinuity corridors.

To better define the deep architecture of the Ain El Beidha plain, we chose to generate a
3D density model (Figure 9) by inversing the residual gravity anomalies using a 3D module.
The uploaded data had been previously prepared to include the tomographic variations
and define the 3D mesh constructor window. The inversion model was generated using a
smoothness constrained inversion method, with 10 iterations, 2.4 as a background density,
and an RMS error over 1%.

The 3D density inversion model using the lateral cutting plane (Figure 9) was in
concordance with previous deductions. Inheritance of N-S axis faults (J. Touila, J. Houareb)
and the NE-SW J. Trozza fault were identified. The Kroumet Zemla fault system represents
an example of the thin—skinned tectonic associated with the Tertiary folding phase. This
3D model is in favor of a superimposition of two tectonic styles: thin— and thick-skinned
tectonic styles.



Water 2021, 13, 1310

12 0f 18

Figure 9. Interpreted 3D density inversion model using the lateral cutting plane of the Ain El Beidha plain. (A) Lateral

cutting across El Gonna and Touila structures. (B) Lateral cutting across Oued Ben Zitoun, Kroumet Zemla and Ain El

Beidha. (C) Lateral cutting across southern Trozza Mountain, northern Oued Ben Zitoun syncline and northern Kroumet

Zemla fold. (D) Lateral cutting across Trozza Mountain and northern Ain El Beidha plain.

6. Seismic Data Analysis

Seismic data sets were calibrated and interpreted using existing boreholes and outcrop
geological information. NW-SE seismic profile L1 was calibrated to the W7 and W2 wells
and the J. El Mguataa—Kroumet Zemla outcrops (Figure 1A).

The deep structure revealed by this profile (Figure 10) was in perfect agreement with
previous gravity analysis results.

The El Gonna-J. El Mguataa—Kroumet Zemla fold axis is associated with a faulting
corridor and a thrust structure to the SE (Figure 10). The Oued Ben Zitoun and Ain El
Beidha basins represent the hanging wall and the footwall of this fault corridor, respectively.
The Oued Ben Zitoun hanging wall area, to the NW, is more strongly subsiding than the Ain
El Beidha basin in the eastern part of the plain. Tertiary and Quaternary seismic horizons
show an important deepening to the NW, and the seismic sequences show significant
thickening. This subsidence is also attested to by the thick Mio-Plio-Quaternary deposits,
recognized in hydrogeological boreholes (Figure 3). NE-SW seismic profile L2 (Figure 1A)
was calibrated to the W5 and W6 wells and the ]J. El Mguataa—Kroumet Zemla outcrops
(Figure 11). On this profile, a second tectonic style related to the raised and collapsed blocks
could also be seen (Figure 3).
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Figure 10. Interpreted seismic reflection profile L1. (1) Top. Oligocene. (2) Top. Eocene. (3) Top. Upper Cretaceous.
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Figure 11. Interpreted seismic reflection profile L2. (1) Top. Oligocene. (2) Top. Eocene. (3) Top. Upper Cretaceous.

(4) Major fault.

The L2 seismic line shows in its center the N-5 faulting that was highlighted by gravity
analysis. This line exposes the uplifting of the Mguataa—Kroumet Zemla structure. It also
confirms that the higher block extends to the SW in the Ech Chouicha area. Eocene and
Oligocene—Aquitanian reservoirs outcrop in this block. To the SW, only two meters of soil
cover the Oligocene deposits in the Ech Chouicha area, which constitutes a good recharge
zone for these aquifers. To the SW of the Ain El Beidha plain, the seismic analysis shows
that the Eocene and Oligocene—-Aquitanian horizons are affected by the NW-SE normal
fault corridor that we called the El Gonna corridor (Figure 11). This fault corridor has
not been previously described prior to this work and is responsible for collapsing the
Cretaceous and Tertiary sedimentary deposit horizons. Furthermore, we distinguished the
first and second order faulting network implicated in the recharge process of deep aquifers.

Isochron maps of the Oligocene and Eocene tops (Figures 12 and 13) presume that the
sources of previously analyzed gravity anomalies were caused by a structural framework
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characterizing the Ain El Beidha plain. As suggested by the above gravity analysis, isochron
maps precisely and accurately revealed the boundaries and shapes of the Oued Ben Zitoun
and Ain El Beidha basins containing the well-developed Oligocene and Eocene aquifers.
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Figure 12. Isochron map of the top of the Oligocene aquifer. (1) Major positive gravity anomaly axis. (3) Major negative
gravity anomaly axis. (4) Northern and southern limits of the Ain El Beidha plain. (4) Major fault/discontinuity corridors.
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Figure 13. Isochron map of the top of the Eocene aquifer. (1) Major positive gravity anomaly axis. (3) Major negative gravity
anomaly axis. (4) Northern and southern limits of the Ain El Beidha plain. (4) Major fault/discontinuity corridors.
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The Oligocene TWT thickness map (Figure 14) suggested that the developed sili-
ciclastic sequences are essentially located in numerous interesting sub—basins for deep
exploration. The dimensions and positions of these targets will help to prioritize future
water exploration planning in the Ain El Beidha plain.
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Figure 14. Thickness TWT map of the Oligocene aquifer. (1) Major positive gravity anomaly axis. (3) Major negative gravity

anomaly axis. (4) Northern and southern limits of the Ain El Beidha plain. (4) Major fault/discontinuity corridors.

7. Conclusions

In the Ain El Beidha plain (central Tunisia), the alluvial Mio-Plio-Quaternary deposits
contain the major groundwater table resources for drinking and irrigation.

These aquifers are currently over—exploited, which motivated this study. We high-
lighted the geometry of deep siliciclastic Oligocene and carbonate Eocene aquifers. These
aquifers are naturally recharged from outcrops surrounding the plain.

The Ain El Beidha plain is strongly structured due to its location between the north—
south axis (a major N-S tectonic corridor in central Tunisia) to the east, and the NE-SW
Trozza Atlasic thrust to the west. To perform a detailed subsurface mapping of the structural
elements, an advanced gravity data analysis was performed. Seismic reflection profiles
were also used to confirm the gravity results and to produce isochron maps of the Oligocene
and Eocene aquifers. The combined interpretation of the gravity and seismic reflection
results complemented the geological and hydrogeological background information, and
distinguished three NE-SW major areas with local structuring:

(1) Oued Ben Zitoun, a very subsiding and elongated depocenter associated with thick
Miocene and Oligocene series;

(2) The El Gonna-]J. El Mguataa—Kroumet Zemla trend, representing a complex faulted
folding structure and an important groundwater “partition line” in the study region;
and

(3) The Ain El Beidha basin, showing Oligocene and Eocene deposit thickening.
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The total horizontal gravity gradient associated with the source edge detect filter and
Euler deconvolution solutions indicated that this plain is affected by N-S and NE-SW
major faults with depths reaching over 1750 m. Interpretation of the 3D inversion of the
residual anomalies and the analysis of the seismic reflection profiles confirmed the fault
inheritance and the position of the hydrogeological basins and sub-basins in relation to
deep accidents (such as the foot wall and hanging wall areas). Finally, isochron maps thus
generated (isobath maps of the Oligocene top and Eocene top layers and the thickness
map of the Oligocene aquifer) were compared to the previously obtained results from
gravity anomalies and analyzed for a selection of promising sub-basins for the deep water
exploration of Oligocene and Eocene aquifers.

The present work highlighted the advantage of combined gravity and seismic investi-
gation to reliably characterize deep bearing water formations in a tectonically complicated
context, and to determine their regional extension, as well as their depth and thickness.
This approach has a great advantage for the better recognition of groundwater resources,
their availability, and their vulnerability. It provides great insights for policy making for
appropriately regulating the use of these rare resources, especially in a climate change
context.
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