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37005 České Budějovice, Czech Republic; michal.tuser@hbu.cas.cz
3 Department of Physical and Environmental Geography, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece; dterzopo@physics.auth.gr
4 Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;

sgardeli@bio.auth.gr
5 Department of Statistics and Operational Research, Faculty of Sciences, School of Mathematics,

Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; iantonio@math.auth.gr
* Correspondence: triaperi@bio.auth.gr

Abstract: DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution
imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual
or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature
of the recordings, tools and techniques from the field of computer vision can be applied in order
to facilitate the relatively involved workflows. Furthermore, machine learning techniques can be
used to minimise user intervention and optimise for specific detection and tracking scenarios. This
study explored the feasibility of combining optical flow with a genetic algorithm, with the aim of
automating motion detection and optimising target-to-background segmentation (masking) under
custom criteria, expressed in terms of the result. A 1000-frame video sequence sample with sparse,
smoothly moving targets, reconstructed from a 125 s DIDSON recording, was analysed under two
distinct scenarios, and an elementary detection method was used to assess and compare the resulting
foreground (target) masks. The results indicate a high sensitivity to motion, as well as to the visual
characteristics of targets, with the resulting foreground masks generally capturing fish targets on
the majority of frames, potentially with small gaps of undetected targets, lasting for no more than a
few frames. Despite the high computational overhead, implementation refinements could increase
computational feasibility, while an extension of the algorithms, in order to include the steps of target
detection and tracking, could further improve automation and potentially provide an efficient tool
for the automated preliminary assessment of voluminous DIDSON data recordings.

Keywords: acoustic imaging; computer vision; hydroacoustics; fisheries research; image segmenta-
tion; image classification; foreground extraction

1. Introduction

For reasons primarily pertaining to ecological sustainability, but also for a number of
practical and safety-related reasons, there is an increase in the trend of monitoring inland
water bodies [1–4]. Scientists, stakeholders and decision-makers that are responsible for
water resource management have adopted an approach, which is based on ecological
principles, and have included ecological objectives in their management goals, as this
renders freshwater body protection more efficient [5]. Fish are considered an essential
element for the determination of water quality (Water Framework Directive 2000) and
biotic integrity [6] of freshwater bodies. In that frame, fish species richness, abundance and
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composition are among the most common indices used. Acoustic techniques are standard-
ised, non-capturing methods [7] and are often applied within monitoring programs, with a
multitude of sonars being available and widely used [8], as they provide data on different
components of the fish community, where capture techniques are inefficient.

Acoustic cameras are recent technological achievements in the field of Underwater
Acoustics that combine the capabilities of the existing sonars with optical systems [9].
Acoustic cameras can provide video-like acoustic frame sequences in real-time. The re-
sulting images are characterized by higher resolutions than those of other sonars, and the
resulting image sequences also have a high refresh rate [10].

An acoustic camera DIDSON (Dual-frequency IDentification SONar), developed by
the Applied Physics Lab, University of Washington, U.S.A., is a multibeam high-frequency
sonar capable of producing high-resolution images through a unique adapted acoustic lens
system [10,11]. The DIDSON generates a 30◦×14◦ (horizontal × vertical) acoustic array,
horizontally divided into 96 single beams, and provides 512 samples per frame for each
beam. Two emission frequencies are available, the high-frequency mode with 1.8 MHz
(96 beams) and the low-frequency mode with 1.1 MHz (48 beams). A more detailed
description of DIDSON specifications can be found on the manufacturer’s website [12].
The most widespread applications of DIDSON in the field of fisheries research concern the
study of fish counting [13,14], fish sizing [15,16], fish behaviour [17,18] and monitoring fish
populations [19,20].

Recordings and acquisition of DIDSON data often take place in heterogeneous envi-
ronments, and as a result, environmental factors may vary among hydroacoustic recordings.
Therefore, the performance of processing algorithms is situation-specific and efficient anal-
ysis software is required to handle and process DIDSON data at high speeds. To date,
several analysis software applications have been developed, which are capable of enu-
merating and sizing fish and investigating fish behaviour from DIDSON data. Namely,
DIDSON software (Sound Metrics Corp., Bellevue, WA, USA), ECHOVIEW (Myriax Pty
Ltd., Hobart, TAS, Australia) and Sonar5-Pro (CageEye AS, Oslo, Norway) have been used
among diverse groups of scientists for various objectives such as fish stock assessment,
fish monitoring, and environmental management. On the other hand, as the DIDSON
data can be properly converted to an image-snapshot stream similar to a video, most
modern methodologies employ computer vision techniques [21] to resolve motion patterns
from image sequences. While having substantial success [22,23], many of these methods
necessitate human intervention in order to refine the final results by removing artifacts or
other random effects. Furthermore, while automation is practically attained, procedures
are typically based on extensive parameterization, and it takes significant expertise and
experience to suitably fine-tune all processing parameters for an optimal result.

Typically, segmentation is the first and most complex step for the automation of the
aforementioned procedures. The subsequent steps, including detection, tracking and target
length determination, are based, to a large degree, on the quality and accuracy of the
segmentation. The variability of DIDSON data can affect the segmentation results by
producing a correspondingly variable output, depending on the input data. Therefore,
the automation of the segmentation process would have to be based on an adaptive
methodology that could optimise the results by providing feasible parameter values. A
suitable formulation of the segmentation problem, which can provide an adaptive solution,
is through the use of optical flow [24]. A relatively recently established computer vision
technique, optical flow, works by detecting the areas of more pronounced motion, as well
as the direction of motion on an input video sequence [25]. Due to the increased complexity
of the mathematical formulation of the overall problem, a way to guide the solution based
on externally defined criteria would be useful. In this context, genetic algorithms have been
used to trace global extrema even in very complex solution landscapes and have shown
promising results in segmentation algorithms [26].

In this frame, the main objective of this study was to formulate and test the efficiency of
optical flow to optimise the detection of fish targets in DIDSON data. Aiming to minimize
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user intervention in the fine-tuning of the algorithmic process, the optical flow-based fish
target detection workflow was combined with a genetic algorithm.

2. Methods
2.1. Data Collection

The DIDSON data were obtained from a stationary acoustic recording conducted in the
Vltava River, Czech Republic [27]. A DIDSON was deployed at one site on the Vltava River
in the area of the Šumava National Park (48◦48.52115′ N, 13◦56.77817′ E), approximately
two kilometres upstream of the river mouth to the Lipno reservoir (Figure 1). In particular,
a cross profile of the river was selected, where the depth was evenly increasing from the
right to the left river bank, up to the deepest part, which was in the second half of the
riverbed, and from where it rose again slightly towards the left bank. In addition, the
riverbed at that location consisted of a finer gravel/sandy substrate, thus creating a smooth
bottom surface without major obstacles. This shape of the riverbed is almost ideal for
acoustic monitoring, where an acoustic device is placed in a shallower part of the riverbed,
emitting a gradually expanding acoustic beam towards deeper parts of the opposite bank.
In this way, almost the entire profile of the river is covered. The DIDSON acoustic beam
had a cross-sectional orientation with respect to the river current, and its lower edge of the
beam horizontally followed the bottom from the shallowest and deepest part of the river.
Two guiding fences were used to guide fish away from the shore, where their detection
by the acoustic camera would be difficult. In addition, a small fence (30–40 cm high) was
placed along the bottom between the two guiding fences in order to prevent fish from
passing over just above the bottom.
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Figure 1. The site studied for monitoring fish upstream migration was located on the Vltava River,
Czech Republic, approximately 2 km upstream off the Lipno reservoir (upper enlargement) and the
DIDSON acoustic camera was placed on the right bank of the river (lower enlargement).

The data was collected in 2015, during the fish spawning period. To achieve optimal
footage, the DIDSON acoustic camera was operated in the high-frequency mode (i.e., using
all 96 single beams) and recorded 8 frames per second across a 10 m range (~2 cm range
resolution) from 1.2 m off the camera. A 1000-frame excerpt from the footage (125 s) was
used in this study.

2.2. Workflow

To extract the desired information from the DIDSON data, a multi-step procedure
was designed (Figure 2), which consists of two main parts. The first part involves the
fixed process of extracting and pre-processing the data with the aim of geometrically
reconstructing and smoothing the frames of the raw DIDSON images, merging them into a
continuous stream (video) and removing the effect of the background (Sections 2.2.1–2.2.3).
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The second part is an iterative process that aims to extract the optimal foreground mask,
with respect to the motion that is detected in the video with the help of the optical flow,
based on custom criteria for the evaluation of the output (Sections 2.2.4 and 2.2.5). The
mask extraction is achieved through the use of a genetic algorithm to detect a locally
optimal parameter set for the calculation of an optical flow field to assist in the extraction
of the fish target mask. The process was carried out in MATLAB® (MathWorks, Natick,
MA, USA) with the use of available open-source scripts, while custom scripts were also
developed as needed.Water 2021, 13, x 5 of 20 
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Figure 2. Flow chart depicting the proposed procedure for fish-target mask extraction from raw
DIDSON data, i.e., the data pre-processing step and the iterative part, which utilizes the optical
flow calculation and a genetic algorithm to extract an optimal foreground mask for subsequent
target detections.
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2.2.1. Data Extraction

An open-source script (ARIS Reader by Nils Olav Handegard, at https://github.com/
nilsolav/ARISreader (accessed on 20 April 2019)) for MATLAB® was adapted and used to
extract and geometrically reconstruct the raw DIDSON data into a video sequence that can
further be analysed using computer vision algorithms and techniques. The data extraction
pipeline involves parsing the raw data, converting samples to dB (decibels), building the
frame-arrays and reconstructing images from the arrays through a suitable mapping from the
sample space to the image (“real”) space (Figure 3).
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Encoded raw data values were converted to backscattering volume SV [28], based on
the instrument specifications. As the DIDSON echosounder did not apply a time-varied
gain to the signals, data values were converted by applying a simple range-correction term:

Sv = Vr + 20× log10(r) (1)

where r represents the range, and Vr represents the recorded data value. Taking into account
that r = 10 × (i/512), as 512 samples span a total range of 10 m, the expression becomes:

Sv(i, j) = Vr(i, j) + 20× log10

(
10

i
512

)
(2)

with (i, j) representing the row and column indices in a data sample array of a single frame
recorded by a ping. Pixels outside the recorded range were padded as white.

2.2.2. Pre-processing of Reconstructed Frame Sequence

The extracted raw images were subjected to Gaussian temporal smoothing using
a time window of one second (8 frames) in order to minimize the effects of noise and
subsequent mis-detections. The duration of the smoothing window was chosen so as to
reach a balance between a more profound smoothing effect and an adequate contrast of
fish target motion in the observed speeds. Longer time windows led to a higher smoothing
effect that, however, also smoothed out fish targets moving at slower speeds. Shorter time
windows, on the other hand, would maintain a relatively high fish target motion contrast
at the expense of potentially inadequate noise-filtering.

2.2.3. Background Subtraction—Foreground Extraction

As the instrument was stationary, the largest part of each frame did not change with
time. Therefore, the background for any frame at time t was modelled through a time-
lag, as the difference between each frame and the frame at a previous time, based on the
predetermined time difference (tlag):

B(i,j,t) = H(i, j, t−tlag) (3)

where B represents the background frames, and H represents the frames of the original
video. The indices i and j correspond to the row and column of each pixel on the recon-
structed frame (Figure 3). The foreground, F, was, therefore, calculated for each frame as:

F(i,j,t) = H(i,j,t) − B(i,j,t) = H(i,j,t) − H(i, j, t−tlag) (4)

with the obvious omission of the first few frames (where t−tlag < 0). Adapting for the
observed fish target motion speeds and in order to achieve adequate clarity and reliability
of the resulting foreground, the time-lag was chosen to be one second of recording time
(8 frames).

2.2.4. Foreground Masking using Optical Flow

Thresholding with Otsu’s method [29] was used for the segmentation of the image
into foreground and background classes and the determination of the foreground mask. As
this method is dependent on the degree of bimodality of the image histogram, any factor
that degenerates bimodality technically limits the efficiency of this method. Typical cases
are [30,31]:

• Imbalanced background-to-foreground pixel number ratios.
• High variances in the foreground and background pixel values.
• Small mean difference between foreground and background pixels.

To mitigate those problems, a large portion of the background was excluded in advance
using the optical flow field of the video sequence in order to constrain the candidate fish
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target pixels in the close proximity of areas with detected motion. This way, the image
was separated into small areas, where histogram bimodality was adequately pronounced
(Figure 4). In cases like the example of Figure 4, the largest part of the frame had been
attenuated through the background-removal step, with targets capturing a very small and
relatively low-intensity area. Limiting the segmentation analysis in the close vicinity of the
target was crucial to the successful application of Otsu’s method.
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This confinement of the candidate foreground regions was based on the optical flow
field of the DIDSON video sequence, using the built-in MATLAB® implementation of the
Farnebäck algorithm [24]. The output of the optical flow calculation used was the velocity
field, from which the velocity magnitudes (irrespective of direction) were calculated and a
multi-pass thresholding method was used in order to improve the foreground mask. The
multi-pass thresholding steps performed for each frame were:

• First threshold on the optical flow field output frame using Otsu’s method to get the
optical flow mask. The background detected in this step for this frame is ignored in
further calculations.

• Detect connected components of the optical flow mask. Each component corresponds
to a location of more pronounced motion on the frame.

• For each connected component, retrieve the pixel intensity values of the original
frame and perform thresholding using Otsu’s method on the component using those
intensity values.

• The final segmentation per connected component of the optical flow mask frame
represents the overall fish target mask for that frame.

The calculation of the optical flow field is dependent upon the following parame-
ters [24]:
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• The number of scales to use for the multi-scale optical flow component estimation
(pyramid levels).

• The down-sampling factor between scale levels for the scales used in the iterative
calculation (pyramid scale).

• The typical size of each neighbourhood that is polynomially approximated at each
step in pixels.

• The size of the Gaussian filter used to average displacement values estimated from
different iterations in pixels.

For the application of the algorithm in the analysis, three scales were used with a
down-sampling factor equal to 0.5, i.e., resolution was doubled at each level. The filter size
and neighbourhood size were not specifically chosen but were instead used as parameters
for optimisation using a genetic algorithm approach.

2.2.5. Genetic Algorithm—Conditionally Optimal Mask

The optical flow field calculation result is non-linearly dependent on the filter size sf,
as well as the neighbourhood size sn. Optimal values for those parameters are, generally, a
function of the expected target size, as well as the motion speed and directionality. As a
result, their choice is usually a time-consuming iterative process. Additionally, their values
are constrained to be integers in the context of image processing, as they represent image
pixel units. For this reason, values for these parameters were determined by the use of a
constrained genetic algorithm in MATLAB®, with a bounded solution space constrained to
the integers. The following options were employed:

• s f ∈ (3, 70)
• sn ∈ (3, 70)
• Population size: 6 individuals.
• Generation limit: 5 generations.

To investigate the sensitivity of the genetic algorithm, as well as to compare the
suitability of different decision criteria, two different scenarios were used to guide the
algorithm, in the form of two different penalty functions:

• Average number of masked pixels per frame.
• Constant penalty per very small or very large object.

The first of these choices is expected to guide the genetic algorithm towards producing
sf and sn parameters that lead to the tightest possible average mask per frame. The
reasoning behind this choice is the minimization of the effect of large objects, such as
irregularly dispersed shapes or shadows. In order to avoid convergence to unreasonably
low mask pixel counts, such as empty masks, which, nevertheless, would optimize such a
penalty function, a lower bound of 3 pixels was set for both the sf and the sn parameter. As
the main difference of the scenarios, in terms of the output, was related to the filter and
neighbourhood size parameters, the scenarios were named based on the optimal calculated
parameter pair for the optical flow calculations, in the form of “sf–sn”.

The reasoning behind the second choice was that the detected objects should be neither
too small nor too large. This was based on observations and external knowledge of the fish
target behaviour and the overall situation occurring in the location of the recordings. In
specific, objects with an area < 10 px applied a penalty that is inversely proportional to
their size, while objects with an area > 5000 px applied a very large constant penalty. This
heuristic intended to minimize noisy detections while eliminating very large objects that
would only be observed in unsuitable parameter choices or extreme processing artifacts.

2.3. Output and Evaluation

The evolution of the penalty value of the best solution of each generation determined
by the genetic algorithm was plotted across generations for each scenario. The multiple
automatically detected thresholds for each frame were accumulated, and their overall
distribution was plotted in the form of a histogram for the optimal scenario in order to
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study the characteristics of the various moving targets of the video sequence. The threshold
between low- and high-intensity pixels on a filtered, background-subtracted image sub-
area indicates the contrast of the targets within this area against the background. Therefore,
the threshold distribution can reveal information about target types, as well as give insight
into the characteristics of the background. Furthermore, strips of consecutive frames were
created from the resulting masks of the two scenarios, as well as from the original frames,
in order to provide some insight into the nature of the analyses.

To perform a relative evaluation of the two solutions, the resulting masks were evalu-
ated through a semi-automated target detection process, where the results were compared
to those from a manual detection. Elementary automated target detection was employed
for each frame, only counting targets with a total pixel area of 50 px < area < 350 px. This
served as a minimum complexity baseline detection algorithm, in order to compare the
performance of the two scenarios to each other by identical standards. For each scenario,
a frame-pair video sequence was composed, juxtaposing the original frame, along the
corresponding masked frame with the automatically detected targets. An experienced sci-
entist observed the videos to manually detect the fish targets based on their motion across
each frame. To evaluate the scenarios, each frame was assessed separately. The expert
noted the number of targets correctly detected by the semi-automated process (correct
detections), as well as the number of identified targets not corresponding to actual fish
targets (misdetections). This way, the success rate and false detections were measured and
compared between the two scenarios. The percentage of frames for each distinct detection
success rate (percentage of correct targets included in the mask) and false detection rate
(percentage of targets incorrectly included in the mask).

3. Results

The evolution of the penalty decreased within the evolutionary progression of 5 con-
secutive generations in both the first (average mask pixels per frame as the total penalty,
Figure 5) as well as the second scenario (constant penalty applied to targets > 5000 px
and a size-dependent penalty applied to targets < 10 px, Figure 6). The genetic algorithm
was successful in significantly optimising the corresponding purpose of each scenario
by minimising the assigned penalty function. The optical flow parameters determined
for scenario 1 were sf = 5, sn = 12, whence it was named 5–12, while for scenario 2, the
determined optimal parameter values were sf = 33, sn = 14, whence it was named 33–14.
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The difference threshold histogram for the optimal solution of scenarios 33–14 was
approximately bimodal and revealed two peaks at pixel intensity difference values of ap-
proximately 8 and 18. The distribution of thresholds for areas with optical-flow-detected
motion was scattered, with a significant drop in pixel intensity difference threshold values
of approximately 25 and above, as well as below 4. The two peaks indicate the existence
of a group of targets that have a relatively higher contrast to the background (higher differ-
ence threshold), as well as a group of targets that have a lower contrast to the background
(Figure 7). The calculated threshold values correspond to Otsu’s segmentation thresholds of
intensity distributions within the areas roughly identified as motion by the optical flow. Since
the pixel intensities have undergone smoothing and background subtraction, these threshold
values are directly representational of the target residual signal strength and, consequently, its
discernibility, with a perfect zero almost definitively indicating the background.
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One interpretation of the lower threshold values is their correspondence to lower
reliability of detection, whereby the specific targets are considered as borderline foreground
or, potentially, present the character of occasional occlusions of the background. Another
interpretation might lie within the assumption that the detected targets exhibit variability in
their acoustic characteristics, with some species producing stronger backscatter than others,
with this observation manifesting into the relatively wide observed range of possible
thresholds with respect to the proximal background of each target. In the case of the
present study, the specific recording layout and the relative shallowness of the river, the
lower-contrast targets, represented by the histogram region close to and around the lower
peak, are most likely the detections of fish target shadows. Those are reflected on the river
bottom and bank areas, which generally consist of lower pixel intensities after background
subtraction, thereby producing the moving background occlusion patterns that present as
lower intensity targets. The assumption of variable acoustic characteristics manifesting
as correspondingly variable target-to-background segmentation thresholds remains valid
but cannot adequately account for the wide range of observed thresholds. The most
likely explanation for the wide range is the strong interference of the background onto the
targets due to the recording layout and situation, whereby the relatively small distances
of the targets from the riverbed lead to varying target contrasts throughout the analysed
frame sequence.

Generally, the optical flow-determined magnitudes provided more diffuse motion-
sensitive masking (Figure 8), while the subsequent adaptive thresholding served to clarify
and intensify the edges between actual targets and the background (Figure 9). Additionally,
the finally calculated mask provided relatively decent segmentation between moving
targets and background for the optimized parameter choices, while execution of the optical
flow-based mask extraction algorithm (excluding the genetic-algorithm-driven penalty-
based optimization) using a randomly selected test input parameter set of sf = 25 and
sn = 30 provided a result containing many highly noisy mask frames, thereby highlighting
the sensitivity of the masking process to the optical flow input parameters (Figure 10).
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A special layout for the manual detection and evaluation was used to assess the
performance of the optimal solution for each of the two scenarios (Figure 11) under the
elementary detection process outlined in 2.3 (i.e., detections of 50 px < area < 350 px).
The percentage of match between manually and automatically detected fish targets (i.e.,
detection success rate) was calculated for each frame and frames were grouped per success
rate. Scenario 33–14 outperformed scenario 5–12 with a higher percentage of perfectly
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(100% success rate) detected frames, i.e., 19% for scenario 33–14 vs. ~14% for scenario 5–12.
At the same time, scenario 33–14 also exhibited fewer totally missed frames (0% success
rate) with 12.5% for scenario 33–14 vs. ~19.5% for scenario 5–12. False detection rates
were also recorded for each frame in terms of absolute numbers, and frames were, again,
grouped by false detection counts. Scenario 33-14 exhibited slightly higher false detection
rates, with fewer than 23% perfect frames (0 false detections) vs. 27.5% for scenario 5–
12. Both scenarios, however, exhibited at least 50% of the frames with at most a single
falsely detected target. Overall, in 22.3% of the total analysed frames, the 33–14 scenario
outperformed the 5–12 scenario with a higher success rate (more correct detections), while
the opposite was true in 11.8% of the frames. The correct detections were identical in the
largest part of the analysed frames, namely 65.9% (Figures 12 and 13, Table 1).
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Table 1. Direct comparison between scenarios. The table indicates the percentage of frames for which
each scenario outperformed the other in terms of correct detections, including the percentage of
frames where performance was equal.

Comparison Percentage of Total Frames

33–14 > 5–12 22.3 %

33–14 < 5–12 11.8 %

33–14 = 5–12 65.9 %
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4. Discussion

Machine learning techniques have been widely used to tackle both water resource
management problems [32,33] as well as fisheries management problems [34]. However,
there is limited literature regarding the use of these techniques in data mining from certain
types of datasets, such as DIDSON recordings. Fuzziness in the data, minimum and
maximum expected target size, average single-target shape and average target separation
distance are, among others, just a few of the variables that can affect the capability of
algorithms to detect and track single targets throughout a DIDSON dataset [19,21,35]. This
study introduces a novel approach to the automatic classification of fish targets in DIDSON
recordings, which minimises human intervention. The algorithm combines tools from the
fields of machine learning and computer vision with more widely used image processing
and segmentation techniques with the aim of conditionally optimising the characteristics
of the resulting foreground mask.

An exploratory application of the proposed workflow in a specific sample exhibited
promising results for the masking of moving targets. The threshold value distribution
indicated a wide variety of target-to-background contrasts, demonstrating the ability of
the algorithm to detect objects of heterogeneous visual characteristics in the reconstructed
video sequence (hence, acoustic characteristics in the original recordings), even within
the same frame. Identifying the most frequent contrast thresholds and the corresponding
target groups may be vital in determining a single threshold or a cut-off contrast threshold
value for the exclusion of undesired masked objects such as, in the context of this study,
reflections of fish target shadows on the background (river bottom and bank). An elemen-
tary automated object detection algorithm also revealed relatively high success rates, while
the level of observed missed and false detection rates should not be unmanageable for
relatively sophisticated state-of-the-art tracking algorithms to fill the gaps.

Regarding the sensitivity of the workflow to the input parameters, the filter size (sf)
and the neighbourhood size (sn), both used for the calculation of the optical flow field from
the DIDSON image sequence, were confirmed to significantly affect the finally calculated
mask. A (sf—sn) choice of (5–12) was shown to conditionally minimise the total masked
pixels for each frame, while a choice of (33–14) conditionally minimised the total number
of very small or very large discrete connected components (targets). The overall algorithm
strongly depends on an efficient formulation of a penalty function. While being one of the
strong points of the proposed methodology, as it allows the researchers to freely express the
intended criteria in terms of the result, a proper formulation of the penalty function is not
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always intuitive. Additionally, it often needs to reflect intelligent criteria in a deterministic
manner, which sometimes further complicates things.

Data mining from large datasets is intimately tied to the nature of the knowledge to
be extracted, i.e., the specific patterns to be discovered. Fayyad et al. [36] define a pattern
as “an expression in some language describing a subset of the data or a model applicable
to the subset.” A pattern may not always be possible to search for without accordingly
sophisticated tools. As an example, tools for image segmentation aimed at single-frame
target detection cannot utilize information from preceding or following frames in case
the target is known to be moving across frames. Thus, expressing existing (potentially
empirical) knowledge into a pattern recognition algorithm in order to improve solutions
depends on the flexibility of the definition, as well as the algorithm itself. Deterministic
tools are easier to understand and use but offer less flexibility in integrating specialised
knowledge about the problem. While automatic thresholding techniques, such as Otsu’s
method, involve single frames, the optical flow inherently integrates the understanding
of patterns such as cross-frame target displacement, effectively incorporating this knowl-
edge into the solutions. Furthermore, its parameters express more intuitive, higher-level
concepts, such as the neighbourhood size, which refers to a sliding sub-window within
an image, whereinto assess for overall target motion. Perhaps more importantly, a genetic
algorithm offers the flexibility of a fully customisable pattern, expressed in a mathematical
form in terms of the expected result, which the algorithm then works to indiscriminately
minimise or maximise.

An important family of computational techniques, collectively identified with the term
soft computing [37], specifically as opposed to hard computing (i.e., using precisely defined
calculations), provides a paradigm with the potential of tackling problems, such as that of
target identification and tracking from fuzzy input. This paradigm embraces limitations
inherent to the problem definitions, such as, among others, imprecision, data holes or
fuzziness and approximations [38]. The field of soft computing has recently resurfaced into
the spotlight of scientific research, following the technological advances and breakthroughs
of the last few decades, which have allowed easier access to implementation tools and
resources [38]. Various studies already published in other fields, such as [39], have already
demonstrated the feasibility and benefits of soft computing techniques in real-world
applications. In this context, the present study can also be considered an attempt to model
the problem of motion detection and target identification and tracking in DIDSON data
without circumventing its imprecisely defined elements and devise a way to tackle it with
soft computing methodologies.

The most important point of this study was the demonstration of the synergy between
deterministic mathematical tools, higher-level machine learning and computer vision
techniques, as well as expert knowledge, in order to tackle a complicated problem in
the field of fisheries acoustics. Modelling the problem as a statement can probably best
demonstrate how the tools were employed to build a consistent workflow. Therefore, the
problem of detecting targets motivated the distinction between a foreground (moving
targets) and a background, which was tackled through thresholding. The knowledge that
these targets are moving on a video was the motivation for employing the optical flow. The
expert knowledge that those targets may have different acoustic characteristics and may,
consequently, have different visual characteristics on the reconstructed video sequence
was the motivating factor behind the choice of adaptive piecewise thresholding, combined
with the optical flow. Finally, the piece of knowledge regarding the fact that too small or
too large targets most often represent noisy detections was integrated into the algorithm
through a penalty function to be minimised by an appropriately set-up genetic algorithm.

The effect of the penalty function on the convergence of the genetic algorithm to
an optimal solution is also reflected in the calculations used in the study. According to
the employed optical flow algorithm [24], larger filter sizes make motion detection more
blurred but also more robust to noise. The penalty function of the second scenario was
expressed, in part, in a way that penalises the detection of very small objects. Based
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on expert knowledge, very small detections are, effectively, interpreted as noisy results;
therefore, the penalty function was an indirect expression aimed at minimising what would
be considered as noise. As a result, the genetic algorithm, in turn, converged to a solution
that minimises this formulation by employing a larger filter size, which is known to make
flow determination more robust to noise by smoothing the motion magnitudes over each
neighbourhood. This observation serves to highlight the translation of knowledge through
the penalty function into the finally determined solution.

A test run of the algorithm on a sequence of 4000 frames of the original recordings,
reconstructed to a 717 × 400 px video was also conducted to acquire insight into its
computational complexity. A complete single-threaded (no parallel execution) run of the
main algorithm on this dataset took approximately 5 h on a Windows 10 System with an
Intel® Core™ i7-9750H (2.6 GHz) processor (Intel Corporation, Santa Clara, California, U.S.)
and 32GB of available RAM. This highlights the necessity for potential implementation
of specific improvements, especially the parallelization of the applied algorithm, which
could lead to multiple reductions in run-time, especially in the light of modern multi-core
processor availability.

Fish target detection on a recorded video, regardless of the original source, is usually
relatively easy to perform by plain visual review. However, not all visually contributing
parameters can be integrated into an automated pattern recognition algorithm for target
classification. Potential improvements to most typical workflows could be based on the
combination of empirical observations, as well as a better knowledge of fish behavioural
patterns [22]. Further work could be carried out in order to improve the quality of the
output of the proposed algorithm or fine-tune its workflow by assessing its performance on
a different dataset, which would include different fish stock compositions, signal-to-noise
ratios and exposure to different environmental factors. Missed detections can always
be minimised through the use of suitable tracking methodologies, while the employed
machine learning and computer vision techniques could be further extended to encompass
steps involved in the tracking techniques as well. Since a number of specialised software
packages for the processing of DIDSON datasets already exist, which offer customised
tools for target detection and tracking, the proposed methodology could be combined
with such packages for the integrated processing of DIDSON recordings. Naturally, any
potential adoption of the proposed algorithmic techniques, or variations thereof, would
have to be preceded by extensive validation on multiple diverse dataset samples, possibly
under a suitable formal evaluation framework.
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