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Abstract: Data collected by gauges represent a fundamental force in most hydrological studies. On
the basis of sensor type and recording system, such records are characterized by different aggregation
time, ta. In this review paper, a comprehensive rainfall database of rain gauge networks operative
worldwide is used to determine the temporal evolution of ta. As a second step, issues related to the
limited and heterogeneous temporal resolution of rainfall data are discussed with regard to avoiding
possible errors in the analysis of historical series. Particular attention is focused on quantifying
the effects on the estimation of extreme rainfalls that play a crucial role in designing hydraulic
structures. To this aim, algebraic relations for improving a correct determination of extreme rainfall
are also provided.

Keywords: rainfall data measurements; rainfall time resolution; extreme rainfall; annual maximum
rainfall depths; depth–duration–frequency curves; trend analysis

1. Introduction

As is widely recognized, rainfall data is necessary for the mathematical modelling
of extreme hydrological events, such as droughts or floods [1], as well as for evaluating
surface and subsurface water resources and their quality.

The phase, quantity, and elevation of generic hydrometeors in the atmosphere [2–6]
can be estimated by ground-based radars. Satellites can provide images with visible
and infrared radiation, and they can also serve as platforms for radiometers to derive
the quantity and phase of hydrometeors [7–14]. Radars and satellites provide spatial
information on precipitation at wide scales, avoiding many problems connected to local
ground measurements, including those for the areal inhomogeneity of a network [15].
However, direct rainfall observations at point scale can be obtained only by rain gauges
installed at the soil surface.

Direct rainfall data can be automatically recorded or not. Typically, non-recording
gauges are open receptacles with vertical sides, where the rainfall is derived by human
observation on a graduated cylinder. Recording gauges automatically acquire precipitation
depths at specified time steps and can be of different types: weighing, float, or tipping
bucket gauges. A more recent device is the disdrometer, which can detect the size distribu-
tion and speed of falling hydrometeors. A weighing-type rain gauge records the weight of
the receiving container and the accumulated rainfall with a spring mechanism or a system
of balance weights. A float-type rain gauge consists of a chamber containing a float that
rises vertically when the water level increases. A tipping-bucket-type rain gauge works by
means of a two-bucket system. The exchanging motion of the tipping buckets generates a
signal, corresponding to a rainfall depth equal to the ratio between the water volume that
produces a tipping and the surface area of the collector. The signal is recorded, providing a
very accurate measure of rainfall depth. In fact, most tipping bucket sensors are set up to
obtain one signal for each 0.1 or 0.2 mm of rainfall.
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When the direct local rainfall was recorded by means of human observation, a manual
transcription of the total depth accumulated, typically in the previous 24 h, was performed.
With the spread of automatic recordings, first on paper rolls (e.g., [16]) and later on digital
supports, a higher temporal aggregation (or time resolution), ta, of rainfall observation was
achieved. Historical series of rainfall data are characterized by different ta, due to the rain
gauge type used, adopted recording system, and specific interests of the data owner.

From this historical background, it is clear that until the introduction of digital data
loggers, rainfall data were characterized by coarse aggregation time, which may have
influenced the results obtained by different kinds of analyses. As an example, several
researchers evaluated the effect of coarse time resolution in estimating annual maximum
rainfall depths, Hd, with fixed timescales, d [17–28]. All these studies showed that for d
comparable with ta, the actual values of Hd may be considerably underestimated by up
to 50%. Thus, long series of Hd values typically include a relevant number of possible
underestimated values deriving from rainfall data with coarse ta, grouped with elements
obtained from high-time-resolution data recorded in the last two to three decades. This
issue, together with other crucial elements (relocation of stations, use of different rain
gauge types, and change of station surroundings), may determine relevant effects on many
related investigations, such as those related to the determination of rainfall depth–duration–
frequency curves [28] and the evolution of extreme rainfall trends [29].

The problem of underestimated annual maximum rainfall depth could be solved
for durations greater than 1 h by adopting one of the methodologies suggested by the
scientific literature [17–28], while the same cannot be easily done for the analysis of heavy
rainfalls characterized by sub-hourly durations. In fact, long Hd series for d < 1 h are
rarely available for most geographical areas [29]. The number of rain gauges operative
worldwide is approximately in the range 150,000–250,000 [30–34]. As networks of different
geographical areas have specific histories and management objectives, the time resolution
of the available rainfall data may differ.

The main objective of this review paper is to address the aforementioned issues,
regardless of the equally important problem of measurement errors, to improve the use of
historical extreme rainfall series through their homogenization with respect to ta. Particular
attention is reserved for the correction of Hd series, with the aim of avoiding distortions in
climate change detection and hydraulic structures design.

Specifically, first, the history of the time resolution of rainfall records at the global scale
is presented. Secondly, the length of Hd series required to estimate an average corrector
factor is defined in order to reduce the original error of each series element characterized
by a given temporal aggregation. Lastly, a methodological approach producing homo-
geneous series of Hd from data derived through different ta is provided. Two additional
issues of relevant interest are also investigated: the sensitivity of rainfall depth–duration–
frequency curves to Hd corrections, and the effects of underestimated Hd values on trend
analyses directed to check if climate change is affecting the intensities and frequencies of
extreme rainfalls.

Finally, independently of the main objective of this paper, we note that well-known
measurement errors (e.g., the amount of rainwater lost during the tipping movement of
the bucket, wind influence on precipitation measurements due to interaction between the
gauge body and the airflow, debris in the bucket, inappropriate location of the sensor)
remain mostly ignored, and the historic information contained in the archived rainfall
series continues to be affected by significant biases and uncertainties. Such errors propagate
in the derivation of rainfall statistics related to the expected frequency of rainfall events, the
calculation of design rainfall for engineering works, and other hydrological applications.
The same is true in the field of climatology, where the quality and homogeneity of historic
rainfall records is imperative to ensure that the assessment of possible climatic trends is
correctly substantiated.
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2. Rainfall Data Characteristics

Rainfall data available in several geographic areas are characterized by different
temporal aggregation, mainly due to the specific network scope manager and to the
technology of the devices used. At present, most rainfall data are continuously recorded in
digital data loggers, allowing the adoption of any aggregation time interval, even equal to
1 min (Figure 1).

Figure 1. Rain gauge with digital data logger correctly working at Perugia (central Italy).

Until the 1990s, rainfall observations were recorded on paper rolls (see Figure 2)
typically with ta = 30 min or 1 h. In addition, before the Second World War, the time
resolution of rainfall was daily, with manual recording once a day at a fixed time (see
Figure 3).

Figure 2. A typical mechanical recorder with paper rolls.
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Figure 3. Transcription of manual recording of daily rainfall data during two decades of January 1922 for some rain gauge
stations located in central Italy.

3. Rainfall Data Time Resolution at Global Scale

A database with information about the time resolution of rainfall data in different
geographic areas of the world was recently published [35]. It provides, for each of the
25,423 rain gauge stations considered from 32 study areas, the complete ta history and
the site geographical coordinates (see Figure 4). The main characteristics of the available
rainfall observations, grouped by continent, are shown in Table 1.

As is deducible from Table 1, the collected stations are not evenly distributed around
the world, but they can be considered a good sample of different monitoring records
that can be found in the world (for details see [35]). In a limited number of study areas
considered in [35], the length of rainfall data series with known ta is close to 200 years (see
Figure 5), while in most areas it is about 100 years. In addition, in a few cases, the ta history
is available for recently installed stations.

Figure 4. Geographical position of the rain gauge stations considered by Reference [35].
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Table 1. Main characteristics of the available rainfall recordings for the rain gauge stations included in the database set up
by Reference [35] grouped by continent.

Continent Rain Gauges
(Number)

Record Length
min/max
(Years)

Beginning of
Records
(Year)

Ending of Records
(Year)

Time Resolution
min/max

(Minutes)

Africa 30 9/41 1968 2010 1440
America 5779 1/153 1867 2019 1/1440

Asia 148 5/112 1879 2019 1/1440
Australia 17,768 1/180 1805 2019 1/1440
Europe 1642 1/184 1805 2019 1/43,200

Figure 5. Year of beginning of manual, mechanical, and digital rainfall recordings for the study areas
considered in [35].

In many study areas, especially in cases of very old rain gauge stations, recording
started by human observation (Figure 5) with coarse time resolution—typically of 1 day
but sometimes of 1 month or 1 year. The oldest rainfall data recorded in manual mode (San
Fernando station, Spain, since 1805) exhibits ta equal to several days.

Except for a few cases, mechanical recording on paper rolls started in the first decades
of the 20th century. For instance, mechanical recordings with ta = 60 min have been
carried out at Alghero station (Sardinia region, Italy) since 1927 and at Campulung station
(Romania) since 1949.

The introduction of digital data logging took place in the last decades of the 20th
century. As a consequence, the investigations of climate change effects on short-duration
(sub-hourly) heavy rainfalls are unreliable in almost all geographic areas due to the short-
ness of rainfall series. Currently, through tipping-bucket sensors, rainfall amounts are
recorded in data loggers for each tip time associated with a fixed rainfall depth (0.1 or
0.2 mm). Then, rainfall data can be aggregated with any ta (also equal to 1 min). Borgo
S. Lorenzo station (Tuscany region, Italy) and Valletta station (Malta) are two examples
of digital data characterized by ta = 1 min recording since 1991 and 2006, respectively.
Exceptionally long series of high-resolution rainfall (e.g., Malaysia) were taken out by
automatic systems from strip charts of tipping-bucket gauges [16].
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Due to the heterogeneity of the database stations, it is hard to synthesize by unique
figures and tables the history of all the study areas considered in [35]. In some countries, the
history of a single rain gauge is available, as in the case of the Madrid station, while in some
others, a network with thousands of rain gauges is involved, as in the case of Australia and
Colorado (United States). In any case, Figure 6 attempts to solve the problem by showing
the percentage of rain gauges with specific ta for all the stations except those of Australia
and Colorado (United States), whose huge numbers would make the plot confusing. From
Figure 6, it is possible to deduce that about 50% of stations today have adopted ta = 1 min
due to the spread of continuous recording, while data with ta = 1440 min are going to
disappear in the near future.

Figure 6. Percentage of rain gauge stations with specific temporal aggregation, ta, as a function of
time. All the stations included in the analysis by Reference [35], except those located in Australia and
Colorado (United States), are considered.

By the analysis of [35], it is evident that the registration methods of the rain gauge
stations changed over time, passing first from daily manual recordings to mechanical
recorders with ta equal to 30 min or 1 h, and then to continuous recording with digital data
loggers. The changes from one recording type to another were not simultaneous, as both
Figures 5 and 6 show.

4. Effect of Rainfall Time Resolution on Estimating Annual Maximum Depths

Errors in the estimates of extreme rainfalls due to different values of d for a specific ta
have been widely investigated in the scientific literature. Specifically, it has been shown
that for d close to ta, the actual maximum rainfall depth may be underestimated [17–28].
Some useful approaches have been published to adjust for this underestimation. For
example, Reference [18] observed that for d = ta the results obtained from an analysis
based on actual maxima were closely approximated through a frequency analysis of Hd
with values multiplied by 1.13. Reference [19], using a probabilistic methodology under
the hypothesis of a constant rainfall over the duration of interest, provided a relationship
between the sampling ratio, ta/d, and a sampling adjustment factor (SAF). This last quantity
is defined as the average ratio of the real maximum rainfall depth for a given d to the
maximum one deduced by a fixed recording interval. Reference [25], on the basis of high-
temporal-resolution data from 15 rain gauges located in the Kansas City metropolitan
area, proposed an empirical relationship between SAF and sampling ratio that provided
corrections coherent with other experimental studies (e.g., [36]). However, the limited
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length of the available rainfall series (in the range 5.3–14.9 years, with average value of
9.6 years) made it impossible to obtain general conclusions. Reference [26] extended the
probabilistic methodology used in [19] to temporally variable rainfall distributions and
found it to be significantly related to the SAF. A procedure to produce quasi-homogeneous
annual maximum rainfall series involving data derived from different time resolutions
was recently presented [28]. The authors proposed an algebraic relation that expresses the
average underestimation error with the ratio ta/d useful to correct the Hd values. All the
aforementioned investigations show that the SAF depends on the sampling ratio as well as
on d because the duration influences the shape of the rainfall’s temporal distribution.

4.1. Hyetograph Shape and Hd Underestimation

Following [37,38], indicating by x(t) the rainfall depth observed at time t at a specific
site, the cumulative rainfall recorded over a time period d, xd(t), is expressed as:

xd(t) =
∫ t+d

t
x(ξ)dξ (1)

and the annual maximum rainfall depth over a duration d is given by:

Hd = max[xd(t) : t0 < t < t0 − d + 1year] (2)

where t0 is the starting time of each year.
To estimate Hd for each year, the availability of rainfall observations with ta ≤ d is

necessary. When d = ta, independently of the rainfall distribution shape, the Hd value can
be correctly estimated (Figure 7a) or underestimated (Figure 7b,c) with errors up to 50%.

Figure 7. Schematic representation of a generic temporal distribution of rainfall with duration d = ta:
(a) condition where a correct evaluation of Hd is possible; (b) condition with a generic underestimate
of Hd; (c) condition with the maximum underestimate of Hd (equal to 50%). ta and Hd denote the
temporal aggregation and annual maximum rainfall rate of duration d, respectively.

A quantification of the accuracy of a given Hd value is not available, but it is possible
to represent the average error for a temporal series with a large number of elements.
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For each duration d, this average error depends on both ta and the shape of the rainfall
hyetographs. In the case of rectangular shapes, the average underestimate is equal to 25%,
because each error value in the range 0–50% has the same probability of occurrence. This
result is in accordance with the analysis by [26]. However, as is widely recognized, the Hd
values typically belong to heavy rainfalls of erratic shape [39–41].

For example, under the hypothesis of a triangular rainfall shape with duration d, the
total rainfall depth, Rpd, is:

Rpd =
dh
2

(3)

with h equal to the rainfall intensity peak.
In case of ta = d, the underestimation error of a single Hd is still in the range 0–50%,

but the associated average value, Ea, derived by integrating through the rainfall duration
(see also [26]) becomes:

Ea =
1

12
tah (4)

This quantity, expressed in terms of rainfall depth percentage, is expressed as:

Ea% = 100
Ea

Rpd
(5)

such that for ta = d is equal to 16.67%, in accordance with the results in [26].
Experimental evidence from different rain gauge stations and d values indicate a

steeper trend of rainfall before and after the peak; thus, the actual values of Ea% should
assume values lower than 16.67%.

In any case, independently of the adopted ta, underestimation errors in determining
the Hd values cannot be eliminated. The average error Ea% decreases if the ratio ta/d
decreases. Specifically, from Equations (3) and (5), it can be expressed as:

Ea%(d = nta) =
1
n

Ea%(d = ta)n = 1, 2, . . . (6)

becoming negligible for sufficiently small ta/d.
On this basis, for d = ta = 1 min, in the case of an extreme rainfall with rate of 300 mm/h,

the underestimation error is lower than 1 mm. In addition, as the durations of interest for
Hd are generally ≥5 min, rainfall observations with ta = 1 min may be considered to have
negligible error.

4.2. Correction Procedure for Hd Series

When rainfall records are characterized by coarse time resolution, the underestimation
error in the determination of the annual maximum rainfall depth for a fixed d can be
considered as a random variable following an exponential probability distribution with
entity inversely correlated to Hd [42]. Correction through the use of the average error has
relevant effects only if it involves a large number of underestimated values. For example,
Reference [28] proposed a lower limit of 15–20 years for the series length to obtain a reliable
estimate of the average error, especially when d ≈ ta, because for shorter series the error
exhibits an irregular trend. The last outcome is in contrast with the analysis by Young and
McEnroe [25], who considered rainfall depth series of about 10 years in length.

An overall analysis of the available studies suggests that:

- On a specific value, the underestimation error has a random behaviour and is within
50%;

- The average error depends on both ta/d and d;
- The average error can be approximately supposed independent from the device

location;
- The largest value of the average error occurs for d = ta and is theoretically less than or

equal to 16.67%;
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- In the case of d = nta, the average error is less than or equal to (1/n) × 16.67%.

The aforementioned error considers the effect of time resolution on Hd values, either
for a single year or for historical series. The described procedure allows for an increase
in the homogeneity of Hd data series deriving from rainfall observations characterized by
very different temporal aggregations.

Figure 8 shows the relationships proposed in [19,25,28] to quantify the average un-
derestimation with variable ratio ta/d. Reference [19] originally proposed the function
expressed as:

Ea% = 12.501
ta

d
(%) (7)

and considered a probabilistic approach assuming a constant rainfall rate through the
duration, while Young and McEnroe [25], by using Hd observed series, derived the follow-
ing relation:

Ea% = 100 − 100

1 + 0.13
(

ta
d

)1.5 (%) (8)

Figure 8. Average underestimation error of the annual maximum rainfall depth for different values of the ratio between
time resolution, ta, and duration, d, obtained by Equation (7) [19], Equation (8) [25], and Equations (9)–(11) [28]. In this last
case, symbols “a”, “b”, and “c” stand for d ≤ 30 min, d in the interval between 30 and 180 min, and d ≥ 180 min, respectively.

Lastly, on the basis of the relationship between d and the rainfall shape that affects the
error entity [26], Reference [28] proposed the following relations:

Ea% = 6.14
(

ta

d

)2
+ 5.69

ta

d
(%) d ≤ 30 min (9)

Ea% = 6.7
(

ta

d

)2
+ 4.72

ta

d
(%) 30 min < d < 180 min (10)

Ea% = 5.2
(

ta

d

)2
+ 5.57

ta

d
(%) d ≥ 180 min (11)

Relations (9–11) make it possible to correct the Hd series derived from data with coarse
ta as a function of d and ta/d.
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In principle, the relations by Reference [28] should be more effective because they
make it possible to also consider the shape of the temporal distribution of rainfall in
determining the correction factor. Along this line, Figure 8 shows that the equation from
Reference [19] mainly produces larger average errors for intermediate values of the ratio
ta/d. On the contrary, the equation of Young and McEnroe [25], although also calibrated
with very short data series, provides results comparable to those of Reference [28].

5. Role of ta in Hydrological Applications

The observed heterogeneity in the ta characteristic as a function of the considered
geographic zone and epoch can affect further analyses based on Hd values, such as the
determination of intensity–duration–frequency curves.

Specifically, the usage of long Hd series with underestimated elements for the determi-
nation of rainfall depth–duration–frequency curves produces errors of variable magnitude
(up to 10%) with different return periods and rainfall duration [28]. These errors become
relevant when the Hd series contain elements derived from a temporal aggregation much
greater than 1 min. In addition, when designing hydraulic structures or restructuring exist-
ing ones, the effects on heavy rainfalls produced by climate change have to be considered,
taking into account possible distortions due to the above errors in the Hd series.

In this context, [29] highlighted that the coarse time resolution of rainfall observations
can substantially influence the results of widely used statistical techniques applied to
check the possible effects of climate change on extreme rainfalls, such as, e.g., the least-
square linear approach, the Mann–Kendall test, the Spearman test, and Sen’s method. The
following major insights were derived:

- Underestimation errors caused by coarse time resolution produce significant effects
on least-squares linear trend analysis. The usage of a correction factor for the Hd
values, independent of the selected approach, can make the trend sign change from
positive to negative, and the effects are more evident for series with larger numbers of
elements with ta/d = 1.

- The non-parametric Mann–Kendall test [43,44] and the Spearman rank correlation
test [45], with significance level equal to 0.05, exhibit a negligible sensitivity to under-
estimation errors on the Hd values.

- The application of Sen’s method [46] gives different outcomes depending on whether
uncorrected or corrected Hd values are considered.

- Because analysis of possible climatic trends requires data series at least 60 years long
to include the effect of large-scale climate oscillations (see also [47]), it is not feasible to
consider only rainfall data with ta = 1 min that have historical series of only two/three
decades in most geographic zones (see also [35]).

- Common homogeneity tests such as the standard normal homogeneity test for a single
break point [48] or the Pettitt test [49] are not capable of detecting discontinuities in
Hd series determined by different time resolutions. This result can be justified with
the hypothesis that for annual maximum rainfall data, underestimation errors do not
produce sufficiently relevant break points.

6. Conclusions

Rainfall observations are available with different time resolutions, with typical values
between 1 min and 1 day, due to the development of recording systems over time. This
review paper firstly analyses the history of ta on the basis of a database that collects
information on rain gauge networks working in many geographic areas of the world. The
data collection illustrates that the rain gauge networks installed in the 19th century or at the
beginning of the 20th century began recording in manual mode with coarse time resolution
(from 1 day to 1 month), while mechanical recordings on paper rolls, with ta typically in
the range 30 min–1 h, were introduced in the first half of the 20th century. Digital data
loggers were installed at the end of the 20th century, allowing any temporal aggregation
(up to 1 min). At present, about 50% of stations have these characteristics. Many historical
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rain gauge networks changed their registration systems over time, sometimes more than
once, from manual to mechanical and lastly to digital.

This paper also shows that, due to the coarse time resolution of rainfall data, the use of
series of “uncorrected” Hd values in determining rainfall depth–duration–frequency curves
can lead to underestimates of about 10%. In addition, it can affect the results of the most
common techniques applied to check climatic trends in extreme rainfalls. It is important to
note that there are other sources of error (e.g., the amount of rainwater that is lost during
the tipping movement of the bucket, wind influence on precipitation measurements due to
interaction between the gauge body and the airflow, debris in the bucket, inappropriate
location of the sensor) that can produce a wider distortion in the results.

By using specific algebraic relations between the average underestimation error and
the ratio ta/d, each Hd value can be adjusted, obtaining homogeneous Hd series that are
usable for every kind of analysis.
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