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Abstract: Industrial developments in the oil and gas, petrochemical, pharmaceutical and food
sector have contributed to the large production of oily wastewater worldwide. Oily wastewater
pollution affects drinking water and groundwater resources, endangers aquatic life and human health,
causes atmospheric pollution, and affects crop production. Several traditional and conventional
methods were widely reported, and the advantages and limitations were discussed. However,
with the technology innovation, new trends of coupling between techniques, use of new materials,
optimization of the cleaning process, and multiphysical approach present new paths for improvement.
Despite these trends of improvement and the encouraging laboratory results of modern and green
methods, many challenges remain to be raised, particularly the commercialization and the global
aspect of these solutions and the reliability to reduce the system’s maintenance and operational
cost. In this review, the well-known oily wastewater cleaning methods and approaches are being
highlighted, and the obstacles faced in the practical use of these technologies are discussed. A critical
review on the technologies and future direction as the road to commercialization is also presented to
persevere water resources for the benefit of mankind and all living things.

Keywords: oil; wastewater; methods; emergent nanotechnology; commercialization; performance

1. Introduction

Clean water and sanitation were one of the sustainable development goals (SDG) set
by the United Nations General Assembly in 2015. According to the UN, water scarcity
could displace 700 million people by the year 2030, and in 2017, 2.2 billion of the world’s
population still lacked access to safe drinking water. Rapid urbanization and industrial-
ization have made matters worse by the discharge of large volumes of wastewater, which
needs to be treated carefully before being released to natural water bodies [1].

Wastewater from industry can contain toxic chemicals, heavy metals, microorganisms,
biological substances, microplastics, oil and viruses [2]. The United Nations Educational,
Scientific and Cultural Organization (UNESCO) reported that more than 80% of this
wastewater is not being treated at all before being released to the water body [3]. Wastewa-
ter treatment is not being properly adopted by industries due to high wastewater treatment
facility setup costs, high operational cost, large space requirement in the area near the
industry, less legislative enforcement of discharge limit and less technical understand-
ing of wastewater treatment systems. Some countries have taken a serious approach to
water-saving and water pollution control. For instance, in China, a Water Pollution Control
Action Plan was enforced starting January 2015, where the focus was given on water
resources conservation and protection. Industry must comply with this plan by designing
wastewater treatment systems to separate pollutants from water, recycle the water and
reuse [4].
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In the EU, reclaimed wastewater usage is included in the circular economy strategy
and governed by Water Framework Directive (2000/60/EC) (WFD). WFD has led to the
secondary treatment of 88% of EU wastewaters, but the reuse is still low [5]. In Latin
America and the Caribbean, the World Bank, through its “Wastewater: From Waste to
Resource “initiative, had created awareness among governing parties on the potential of
converting wastewater to valuable resources, such as energy, reusable water, nutrients and
bio-solids [6]. Oily wastewater is one of the major constituents of wastewater discharged
by industry. A large volume of oily wastewater is being generated by food and beverage,
but the majority of oil mixed in water is coming from petrochemical and metal processing
industries, in terms of fats, hydrocarbons, and petroleum fractions like diesel oil, gasoline,
and kerosene. These constituents exist in the form of oil-in-water emulsions [7]. In 2002,
U.S National Research Council reported that 1.3 million tons of oil were released to the sea
annually from known sources [8].

Oily wastewater is carcinogenic and mutagenic to human health and could also
inhibit plant growth. Oily wastewater discharge without proper treatment can increase
the biological oxygen demand (BOD) and chemical oxygen demand (COD) of the water
body, reduce sunlight penetration into the water by forming a layer on the water surface
and thus disrupt the aquatic ecosystem [9]. Thus, treatment of oily wastewater is crucial
to reduce its effect on the environment and humans; recovery of oil from oily wastewater
treatment could also provide economic benefits [10–13]. The overview of oily wastewater
resources, impact and benefit of treatment are summarized in Figure 1.
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Many technological advances in wastewater treatment have been achieved in the
past three years from 2018 onwards. The main reasons for these achievements are the
multidisciplinary approach, advancement in material science, particularly in nanomaterial
and integration of technology. In this paper, a comprehensive review of the work done
using conventional technologies and the advancement in modern technologies from the
period of 2018 onwards are being discussed in detail. The review also includes future
directions in the development of modern technologies for further commercialization. The
review is expected to benefit researchers and industry to identify the gaps for practical use
of oily wastewater treatment systems and lead their effort in the right direction for better
output of treatment.
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2. Oily Wastewater Problem

Nowadays, many industries generate a great quantity of oily wastewater, which causes
various adverse impacts on the surrounding environment and sanitary conditions [14,15].
In fact, oily wastewater adversely affects our drinking water, groundwater resources,
aquatic resources, human health, and crop production. Many countries are setting regula-
tory limits on the maximum oil concentration in oily wastewater discharge to be within the
5–100 mg/L range. Some of the region-specific limits are being listed in Table 1. Thus, the
development of an effective strategy and less expensive means to treat oily wastewater is a
crucial environmental need [16].

Table 1. Region-specific oil discharge in wastewater.

Bodies or Regulation Being Followed Limits of Oil Discharge Reference

Oslo–Paris (OSPAR) Convention in North
Sea region Upper limit to the sea: 30 mg/L [17]

Paris Convention
Upper limit to the sea: 40 mg/L

Upper limit to offshore fields and on-land fields:
5 mg/L

[18]

Environmental Protection Agency (EPA)
in United States Upper limit: 72 mg/L [19,20]

Department of Environment, Environment
Quality Act 1974 in Malaysia Oil and grease discharge limit: 10 mg/L [21]

China Government Upper limit: 10 mg/L [22]

UAE Environmental Regulation Oil and grease content of industrial effluent:
100 mg/L [23]

Central Pollution Board of India (CPCB) Permissible limit for oil and grease: 35 mg/L [24]

3. Traditional Methods to Clean Oily Wastewater

To clean oily wastewater, many methods are forecasted and classified into chemical,
physical, mechanical and biological approaches. In the following paragraph, the principle
of several methods is presented, and its viability is discussed.

3.1. Physical Methods

Gravity separation (GS) and dissolved air flotation (DAF) can be classified as physical
methods to clean oily wastewater. GS system is based on the difference of density between
oil and water. A great density difference between oil and water is required to promote
good separation [25]. Currently, GS is being used as the first stage separation process for
dispersed and floating oil, and it is not applicable for the separation of emulsified oil [26].
In the 1990s, many studies had been conducted to evaluate the effectiveness of gravity
separators in oil spills, and these studies focus on the efficiency of the separators after the
weathering effect on the oil spills [27], mathematical modeling of the mechanism in the
separators [28] and the design of separators to warrant ease of operation for variable fluids
and operating conditions [29]. GS is a very simple system, but it has many disadvantages
like limited separation capacity, requires a large area for setup and complex management
and operation [30,31]. Thus, not much research had been reported from 2018 to recent
times on the development of this system.

The principle of DAF is to introduce air under pressure at the bottom of an open basin,
and as the air bubbles rise to the top of the basin, it will bring along pollutants. The concept
of attachment of pollutants on the air bubbles is illustrated in Figure 2 [32]. Conventional
DAF generates microbubbles with sizes ranging from 20–100 microns. The microbubbles
stick to the oil droplets and increase the droplet’s buoyancy to move upward. In the DAF
process, pressure and saturation of air in the wastewater are two important parameters
to be monitored. For the microbubbles to be generated and float to the surface of the
system, the pressure must be reduced to atmospheric conditions with an excess amount of
dissolved gas [31].
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As compared to the GS method, DAF produces treated water with higher quality because
it is capable of removing emulsified oil [33]. The system operates with improved surface
loading and requires smaller and shallower treatment facilities [34]. However, this method
has few disadvantages, which include high operating cost due to the need to generate a
constant stream of bubbles, especially when current research works reported that ultrafine
bubbles are preferred due to their large surface area. This is because the size of microbubbles
ranges from 20 to 100 micron, while the size of emulsified oil is 20 micron and below, thus the
microbubbles cannot remove the emulsified oil efficiently. DAF with nanobubbles (NB) was
developed and showed capability for more than 90% oil removal from wastewater [35].
High capital cost to construct holding tanks and purchase of pump for ultrafine bubble
generation are challenges that need to be overcome by this system for practical application.

The recent trend of studies related to physical oily wastewater cleaning methods is
listed in Table 2. Most of the recent works are focused on DAF system design and effort
to reduce the surface tension of oil by adding a surfactant to the DAF system. These
approaches had yielded more than 90% of oil separation efficiency compared to 50–60%
separation efficiency in the traditional DAF system.

Table 2. The recent improvement of physical oily wastewater cleaning methods from 2018 to the present.

Reference Research Focus Research Findings

[36]

A DAF-bio surfactant integrated system was used for the treatment of
oily wastewater from a thermoelectric plant. The biosurfactant was
isolated from Pseudomonas cepacia CCT6659 and Bacillus cereus
UCP1615. Microbubbles are generated from the DAF system.

The efficiency of the DAF system alone was only 53.74%
but could be increased up to 98.55% using biosurfactant.

[37]
The relationship between the three phases in DAF, aggregates
(bubbles with oil), solids (sedimentation) and liquid, was established
in steady-state operation through an operational chart.

The flow of all three phases in the DAF system was
modeled and simulated with several inlets and outlets.

[38]

A novel bicyclone flotation column was developed. Cyclonic
separation and floatation separation were combined to treat
wastewater from the enhanced oil recovery process (EOR). The
wastewater contains fine oil droplets, surfactants, alkali and
polymers). The computational fluid dynamic (CFD) method was
utilized to determine flow field parameters for the construction of
the system.

The larger oil droplets are separated through the floatation
system, while the fine droplets are separated by the
bicyclone section. Field testing of the column produced
treated effluent with a final oil concentration below
50 mg/L and fulfill the requirement for discharge.
Conventional DAF system produces treated effluent with
final oil concentration between 62.78 mg/L to 76.28 mg/L.
This effluent cannot be discharged into the environment.

[39] DAF system combined with biosurfactant produced from
Pseudomonas aeruginosa UCP 0992.

The biosurfactant was found to be stable when exposed to
various temperatures, exposure time, pH values and
salinity. Oil separation efficiency increases from 65 for the
DAF system to 95% by using DAF-biosurfactant.

[40]

DAF system combined with biosurfactant produced from Bacillus
methylotrophicus UCP1616. 0.2 wt % potassium sorbate was added to
improve the stability of the biosurfactant. The focus of the study is
more on long-term stability for 180 days. The performance of the
biosurfactant was determined at different pH (5, 7 and 9) values,
temperature (40 and 50 ◦C) and salinity.

The biosurfactant emulsification activity was maintained at
100% at all pH values after 180 days. However, the
biosurfactant emulsification activity reduces to 95% after
30 days and further reduce to below 50% after 70 days. The
DAF-biosurfactant combined system has an oil removal
efficiency of 92%.
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3.2. Chemical Methods

Flocculation and, most recently, electrochemical (ET) technologies are among the
popular chemical methods employed for oily wastewater cleaning.

In the flocculation method, flocculants are added into wastewater to neutralize nega-
tive charges of the oil suspension or emulsion and bridge the particles together to form
flocs [41]. This method is very popular in the treatment of oily wastewater from palm oil
mill effluent (POME). The efficiency of this method is largely dependent on flocculants type
and dosage, initial concentration of oil and the temperature and pH of the wastewater [11].
Figure 3 illustrates the flocculation mechanism of modified chitosan in the treatment of
diesel containing oily wastewater.
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Copyright 2020 Elsevier B.V. (a) oil removal rate of modified chitosan flocculants with cationic monomers such as ethylacrylyl
oxygen ethyl trimethyl ammonium chloride (MC1), dimethyl diallyl ammonium chloride (MC2) and dodecyl polyglucoside
(MC3); (b) oil removal rate of modified chitosan flocculants with hydrophobic monomer such as photo-initiators 2-hydroxy-
2-methyl phenylacetone (MC4), benzoin dimethyl ether (MC5) and sodium lauryl sulfate (MC6).

The physical and chemical properties of flocculants play a major role in the successful
separation of oil from water using this approach [43]. The common types of flocculants
used in oily wastewater treatment include inorganic flocculants and organic polymeric
flocculants. Compared to methods such as membrane filtration, DAF and biological tech-
nologies, flocculation is easier to operate and has lower capital and operational costs [44].
However, the main drawback of this method is related to the flocculants. The inorganic
flocculants, such as aluminum sulfate, polymerized ferrous sulfate, and poly-(aluminum
chloride) (PAC), are cheap and easy to use but exhibit low flocculating efficiency [45].
Adjustment of pH is required when using inorganic flocculants. Organic polymeric floc-
culants, such as polyacrylamide has higher flocculation ability at a lower dosage and
workable in all ranges of pH, but possess health and environmental hazard due to its
incapability to biodegrade [46]. Many research studies have also reported neurotoxic and
neurodegeneration effects on humans when both these substances are left out in treated
water [47,48]. Another major drawback of inorganic and organic polymeric flocculants
is the creation of a large volume of sludge during the treatment process, which needs
secondary treatment [49].

To overcome the problems related to traditional flocculants, the current trend of
research is focused on the establishment of natural polymeric flocculants, such as chitosan
and extracellular polymeric substances (EPS), which does not generate toxic residue and
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can reduce sludge formation or produce sludge that could biodegrade using microbes [50].
However, due to lack of confidence in natural flocculants and the effectiveness study is still
at the initial stage, the natural flocculants are mainly used as flocculation aid together with
organic polymeric flocculants.

ET can be classified into systems of electroflotation, electrocoagulation and electrofloc-
ulation. These systems can be used separately, but often yield lower efficiency in oily
wastewater treatment thus it is commonly combined together. All these methods involve
the application of electrochemical cells, where electrodes are dipped into oily wastewater,
and a determined difference of potential is being applied [51]. In the ET system, oily
wastewater is treated either using electrochemical oxidation (EO) by direct anodic oxida-
tion or indirect electro-oxidation (EIO) with strong oxidants formed during electrolysis [52].
The aim is to oxidize the oil to CO2, H2O and biodegradable byproducts [53]. Figure 4
illustrates a combination of all these three systems for oily wastewater treatment [54].
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Electrofloculation and electrocoagulation are a combination of the oxidation and
flocculation processes. The electrochemical cell in this system has sacrificial electrodes,
which are commonly made of aluminum or iron. Through redox reaction, Al3+ or Fe3+

cations are produced by anode electrode, and these cations undergo spontaneous reaction
with -OH formed by cathode to produce hydroxides and polyhydroxides. Polyhydroxides
have a large surface area and act as flocculants to adsorb emulsified oils [55,56]. The flocs
are then removed by floatation or sedimentation [57]. Microbubbles of H2 gas are also
generated in this system, which assists the flotation of flocculated particles.

In electroflotation, oxygen and hydrogen gases are produced at the anode and cathode.
These gasses form small bubbles, which can attach to oil droplets and then carry together
the oil droplets to the water body’s top. The interaction between the bubbles and the oil
droplet occurs in four distinct steps. First, the bubbles collide and attach themselves to
the oil droplets. Then, agglomerates are formed, and more bubbles are entrapped into the
agglomerates to form flocs. Finally, the flocs sweep the water body upward [58].

The main advantages of ET include versatility and energy efficiency, where the method
is practical to be used in small, medium and large-scale [59,60]. Many works in the literature
also reported ET to be relatively low cost, could be fully automated and require a minimum
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amount of chemicals [61,62]. This system’s efficiency is influenced by the electrode type,
design, shape and arrangement [63], density and type of current [64] and mode of operation,
either to be in batch or continuous. The major problem faced in the commercialization
of this technology is the electrodes’ corrosion when the oily wastewater contains other
corrosive components, such as chloride ions. Corrosion of the electrodes causes a reduction
in the system efficiency over some time [65].

The latest three years’ research findings related to chemical methods are listed in
Table 3. From these research works, it can be concluded that the optimum amount of
oil removal through the flocculation method is around 91–92% efficiency, while in the
ET system, up to 99% of oil removal efficiency could be achieved. The research in the
flocculation method is mainly focused on improving the flocculant’s properties so that
they can be used in a wider application window and improve the removal of flocs after
treatment. At the same time, an improvement in the operating system and parameters for
practical application had been extensively studied for the ET method.

Table 3. Recent developments in oily wastewater treatment systems using chemical methods from 2018 to present.

Reference Research Focus Research Findings

[66,67]

Flocculation method. In both research work,
chitosan natural flocculants were grafted with
cationic groups to increase their electrical
neutralization and hydrophobic abilities.

Cationic and hydrophobic groups promote adsorption of
the flocculants molecular chain on the oil droplets through
electrostatic attraction and hydrophobic interaction. More
than 90% oil separation efficiency was achieved, and the
modified chitosan perform effectively in a wider range of
pH from 2 to 10 compared to a pH range of 2–6 for
unmodified chitosan.

[68,69]

Flocculation method. Magnetic flocculants were
synthesized by grafting PAC and PAM on
magnetic seeds (Fe3O4) to treat oily micro polluted
surface water (OM-PSW) and POME, respectively.

Floating flocculants are hard to be separated from treated
water. Magnetic flocculants form sediment on the bottom of
the tank and could be separated easily. The settling time was
also reduced tremendously by using magnetic flocculants.

[70,71]

Flocculation method. Both studies focus on the
improvement of PAM flocculants performance by
concentrating cationic charge distribution and
introducing additional features, such as
thermo-thickening to the flocculants.

The main aim of these works is to widen the application
window of PAM flocculants and improve its hydrophobic
association, charge neutralization and adsorption bridging
mechanism with oil droplets.

[72–74]

ET method. In all these reports, the effect of
different operating parameters, such as the type of
power supply, applied current, introduction of
aeration and agitation on the efficiency of the ET
system, had been studied.

The type of current was found not to influence the efficiency
of the system, but AC recorded less energy cost compared to
DC. Agitation and aeration were found to increase the
efficiency of the system due to the creation of turbulence
around the electrode, which sweeps the ions from the anode
and promotes collision of the ions with oils at a faster rate
and higher momentum, which leads to the formation of
bigger flocs. The relationship between applied current and
the efficiency of the system is found to be proportional up to
a level and then drop when it exceeds the optimum level.

[75,76]
ET method. The studies focus on the design of
reactors with a new configuration of
electrode arrangements.

The novel design of reactors and arrangement of electrodes
influences the effective surface area for the generation of
ions and gas bubbles, which then affects the oil
removal efficiency.

3.3. Demulsification Methods

Demulsification is used to separate oil-in-water suspension and oil-in-water emulsion.
Conventional demulsification can be divided into three operational stages; destabilization
of the oil–water interface followed by aggregation of oil and gravitational separation [77].
Demulsification of oil in water could be executed using three approaches; physical, chemical
or biological.
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In the conventional chemical approach, substances such as ethylene oxide, silicone
surfactant, ethylcellulose polymers and formaldehyde, are used as demulsifiers [78]. Re-
cently, carbon-based nanomaterials, such as magnetic graphene oxide, reduced graphene
oxide (rGO), and polyvinyl alcohol grafted carbon black, are being used as demulsification
chemicals with oil removal efficiency reported being more than 99% within a time less than
30 min [79–81]. However, the major disadvantages of the chemical demulsification method
are the creation of byproducts and secondary pollution [82].

In the biological approach, the microbial cell is used for demulsification. The proteins
and lipids in microbial cell surface and biosurfactant produced by the cell could be used
to demulsify oil at a wide range of pH, temperature and salinity [83]. The common
microorganism used for this purpose is of terrestrial origin or marine microorganisms. The
major disadvantages of this method are the long cultivation time of the microbes and the
unstable demulsification effect [84].

Physical demulsification is carried out by separating oil and water through mechanical
action, such as centrifugation or stirring. In centrifugation, the oil-in-water emulsion is
separated through a difference in density. High centrifugation force and high, stirring
speed are required to perform effective demulsification. The process is energy-intensive
and not economical [85].

A more recent approach in demulsification is chemical emulsion breaking (CEB). CEB
is mainly dependent on the adsorption of emulsified oil on chemicals. The particles used for
adsorption must be able to change the physicochemical properties of the natural elastic film
known as asphaltenes, which form around the stable oil emulsion in water [86]. Activated
carbon is one of the most popular inorganic substances studied as an adsorbent because
it has a large specific surface area and contains microspores. Yet, its application in oily
wastewater treatment is limited because of weak adsorption selectivity, expensive and
difficult regeneration [87].

Thus, many researchers had worked on improving the performance of adsorbents,
such as activated carbon, by introducing functional groups into the structure of adsorbents.
Two parameters that need to be improved to achieve optimum absorbance are adsorption
capacity and adsorption selectivity. In many recently reported works, the CEB approach is
coupled with physical methods, such as membrane separation, to improve overall efficiency.
For example, the addition of activated carbon was found to improve the permeation flux
of the membrane in the oily wastewater treatment system by reducing membrane fouling
through hydrodynamic forces [88]. Other low-cost adsorbents, such as zeolites [89] and
pearlites [90], are also used in many research work the reduce the overall cost of the system.

The main problem related to CEB is the regeneration efficiency of material after
adsorption. The conventional approach for regeneration involves the physical method
of washing using a solvent. The solvent was found to alter the adsorbent’s chemical
nature and thus reduce its adsorptive capacity. CEB is illustrated in Figure 5. Magnetic
nanoparticles (MNP) were added into the oily wastewater, and an oil removal efficiency of
98% was reported. However, secondary processes are required to remove the oil coated on
the surface of the MNP. The recovery of MNP then produces another secondary pollution
of oil in the solvent [91]. The efficiency of the CEB method is also dependent on changes in
pH, water salinity, exposure time and temperature [92].

Recent research works in oily wastewater cleaning using demulsification techniques
are summarized in Table 4. Not much attention is given to physical demulsification. In the
chemical and CEB approach, efforts leading to the production of particles with multifunctional
properties to enhance adsorption of oil and demulsification, promote degradation of oil
and recovery of oil and the regeneration of the particle are prevalent. This method also,
in general, could produce high oil removal efficiency by more than 98%. Research on
biological methods is still focusing on the discovery and isolation of microorganisms to
produce the highest removal efficiency.
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Figure 5. Demulsification of oil in wastewater using magnetic nanoparticles (MNP). Reprinted with
permission from ref. [91]. Copyright 2020 Elsevier Ltd.

Table 4. Recent development in oily wastewater treatment systems using demulsification methods from 2018 to present.

Reference Focus of Research Outcomes

[93,94]

Compound with photocatalytic activity, such as TiO2, ferric
chloride and iron chloride was added into the structure of rGO and
activated carbon to enhance chemical emulsion breaking.
rGO/titanium oxide (rGO/TiO2) composite was used as a chemical
demulsifier for synthetic oily wastewater prepared using crude oil
and saline water.

Additional features of light transmission and photocatalytic
activity were introduced on rGO and activated carbon,
which enhances the demulsification effect.

[95]
Thirty-seven marine bacteria from offshore platforms and coastal
sediments in North Atlantic Canada were isolated and used as
demulsifiers of oil.

Bacteria Halomonas venusta strain N3-2A can achieve 92.5%
demulsification of oil within 24 h. The demulsification is
due to the combined effect of bio-surfactant production and
the reaction with the bacterial cell surface.

[96,97] MNP was deposited on rGO and graphene oxide (GO) to act as a
chemical-breaking demulsifier.

Deposition of MNP increases the adsorption of oil by rGO
and GO due to enhancement of interlayer spacing of rGO
and GO. Recovery of sediment oil flocs could be done easily
using magnetic forces in less than 5 min. The magnetic rGO
and GO could also be recycled easily for the next cycle.

[98,99]
Instead of using expensive graphene-based demulsifier, carbon
black nanoparticles grafted with polyvinyl alcohol (PVOH) and
carbon black modified with SiO2 was developed as demulsifier.

99.90% demulsification efficiency was achieved in
few minutes.

[100]

To reduce the energy required for centrifugation to separate oil and
water, a swirling demulsified-airlift loop reactor (SD-ALR) was
fabricated. Computational fluid dynamic (CFD) was used for the
design and performance assessment.

Modification of ALR with SD increases the gas holdup and
liquid velocity gradient, which improves the efficiency of oily
wastewater treatment.

[101,102] Multifunctional carbon nitride nanosheets and expanded pearlite
were prepared for chemical emulsion breaking.

Multifunctional materials showed hydrophobic,
superoleophilic and amphiphilic properties, which leads to
high demulsification capability of oil and high selective
absorption of oil.

Microwave and Ultrasound-Assisted Demulsification Treatment (M-UWT)

Microwave irradiation could be used for the demulsification of oil in wastewater based
on two instantaneous mechanisms; one is the rapid increment of oil droplet temperature
due to molecular friction and rotation, leading to reduction of emulsion viscosity and
thus breaks the outer film of the droplet. Two is molecular rotation, neutralizing Zeta
potential due to reorganization of electrical charges around water molecules, which leads
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to movement of ions around the droplets [103]. The advantages of this method include
no usage of chemicals, which eliminates secondary treatment for the removal of those
chemicals. This method is environmentally friendly [104].

The overall efficiency of the treatment system could be improved by improving the
heating rate of the oil droplet. Many works had been done by incorporating inorganic
salts, such as NaCl, CaCl2, KCl and MgCl2, into the treated wastewater to increase water
conductivity, which then speeds up the heating rate [105,106]. Kang et al. [107] developed
a hybrid system by the combination of microwave demulsification, ozonation, and aerated
biological filters to clean wastewater with high microtoxicity. This approach improved the
demulsification of oil by about 63.5%. However, in the last decade, not much research was
conducted on microwave-assisted demulsification due to the high capital, installation and
maintenance cost of this system setup [108,109].

Ultrasound-assisted wastewater treatment is found to be very effective once integrated
with electrochemical coagulation. Ultrasound reduces the formation of the dense layers
at electrode surfaces and the spread part depth of the electrical double layer at metal
surfaces. It also activates ions in the reaction zone surrounding electrodes and activates the
electrode’s surface by producing defects in the crystal lattice of the electrodes [110].

3.4. Mechanical Method

In the mechanical method, mechanical coalescers (MC) are used. In MC, small oil
droplets collide and adhere to other substances in the coalescers. Larger droplets form
and these droplets can be separated by buoyancy due to density difference [111]. The
mechanical method effectively separates emulsified oil using MC, especially when the
droplet size is less than 10 µm.

MC is often used in offshore platforms for oily wastewater treatment due to the
limitation of space. The coalescers have compact structures, exhibit a long service period,
produce efficient separation of liquid–liquid phase, and need a minimum amount of
additional chemicals [112]. The common coalescers are plate coalescers, packing coalescers,
coalescing filter separators and fibrous coalescers. A novel fibrous coalescer reported
in work done by Lu et al. is shown in Figure 6. This coalescer can reduce the offshore
produced water oil content from 1200 to 25 mg/L under residence time of 180 s and
pressure drop of 30 psi. The coalescence process in this equipment was visualized through
four steps; attach, approach, coalesce and release [113].
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The selection of suitable coalescers is based on operating conditions and emulsified
oil droplet size. Plate and packing coalescers are used to separate emulsified oil with a
droplet size of more than 20 microns, while filter separators and fibrous coalescers are used
when the droplet size is less than 10 microns [114]. In harsh conditions, such as offshore
platforms, fibrous coalescers are preferred because they can withstand vigorous conditions,
such as the sudden release of pressure and gas, flow fluctuation and wastewater with high
sludge content [115].

The common fibrous coalescers operate through three steps; first, the fibers capture the
emulsified droplet when they flow through the fibers; second, the small emulsified droplets
continuously collide with each other to form larger droplets, and lastly, the large droplets
are released from the fibers when the adhesive force between the droplet and fibers are
destabilized using hydrodynamic forces [116]. The principle of oil removal in fibrous coalescer
is based on Stokes law [117]. The fibrous coalescer construction material must exhibit great oil
absorption capacity, but the absorbed oil particles should not riotously spread on the materials’
surface. Styrene-butadiene rubber (SBR), carbon steel, fiberglass, polypropylene (PP) and
ceramic are among the common conventional materials used for the production of fibrous
coalescers [118]. Treatment of oily wastewater from Jianghan Oil Field in China, using
lipophilic modified ceramic fibrous coalescer, mounted in internal circulating coalescence
equipment integrated with flocculation-sedimentation tank and multistage filtration beds
showed 78.9% oil separation efficiency after two months of operation [119].

In filter separator coalescers, factors such as high surface wetting and lower drag force
are important in ensuring coalescence filtration effectiveness. Various attempts were made
to improve surface wetting by producing superoleophilic and superhydrophobic mem-
branes [120], surface-functionalized superoleophilic glass fiber filters [121], hierarchically
roughened surface structure on stainless steel fiber [122], and production of heat-treated
nanofibers-based filters with high surface area for wetting [123]. In another work by
Hu et al. [124], surface wetting of durable composite fibrous filter mat produced through a
wet-laying process of glass wool, glass fiber and cellulose fiber was enhanced by forming
polymeric nanoparticles on its surface. Oil separation efficiency up to 99.60% could be
achieved by this coalescer [125]. The advantages of using filter separators include low cost,
ease of operation and selective separation of water and oil [126].

Table 5 presents the recent research works being conducted in the area of MC for oily
wastewater cleaning. Most of this research was focused on understanding the mechanism
of the system for optimization and practical application.

Table 5. Recent development in oily wastewater treatment system using mechanical methods from 2018 to present.

Reference Research Focus Research Findings

[126]

Analyzing the existing droplet coalescence theories for
surfactant stabilized hexadecane/water emulsions
(case I) and the effect of fiber properties and operating
conditions on separation of sulfonated kerosene/water
emulsion (case II).

In case I, existing wetting theories are defined once the system is
pre-saturated with surfactant in the emulsion.
In case II, fiber diameter and medium face velocity influenced the
droplet capture and release drop efficiency. An enhanced design of
the coalescer could be proposed based on these findings.

[127]

Woven polytetrafluorethylene (PTFE) fiber mesh was
used to set a series of fiber beds, and the effect of bed
porosity, the specific surface area of the bed, permeability
and superficial velocity on the separation process
were investigated.

Redispersion occurs when the bed porosity is too small. Efficient
separation occurs when the increasing gradient porosity is being
applied where redispersion could be eliminated.

[128]

Fibrous coalescer was prepared using glass fiber wool,
glass fiber and cellulose fiber. The coalescer was then
deposited with silica nanoparticles and fluorocarbon
polymer to overcome the fouling problem.

Without the fluorocarbon and silica nanoparticles, the oil separation
efficiency could drop in 10 minutes’ time. The addition of these
substances could maintain oil separation efficiency by 99.8%
without fouling.

[129]
Numerical analysis using CFD to find a better
operational range based on aspects, such as equipment
operation, coalescence phenomenon and fluid dynamics.

The numerical analysis shows that the coalescence is in agreement
with Prince and Blanch model. CFD analysis also showed that
turbulence should be reduced in the equipment to enhance coalescence.
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4. Critical Discussion on the Traditional Methods for Oily Wastewater Cleaning

Conventional methods of oily wastewater cleaning are demonstrating ineffective per-
formances. For instance, the DAF cleaning technique can barely separate oil droplets with
the size of around 20 microns and less from wastewater. For even smaller droplet sizes, ad-
ditional units must pretreat the wastewater before flotation [130]. This unavoidably entails
a larger footprint and higher capital investments. Meanwhile, the formation of activated
sludge is a problem from flocculation and demulsification of oily wastewater cleaning
processes because it is harmful when discharged into the open watercourse [131]. Corrosion
of electrode material is the limitation of using the ET method [132]. The limitations of each
method reviewed in Section 3 are shown in Figure 7.
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In short, new or integrated technologies need to be developed due to the follow-
ing reasons:

- To increase treatment efficiency, reduce operational and maintenance costs of the
system due to problems, such as fouling, corrosion, sedimentation and high en-
ergy consumption;

- The complex nature of oily wastewater is generated by industry where the discharge
contains oil, toxic chemicals, recalcitrant organics, inorganic salts, EPS and biological
contaminants [133];

- Development of a more environmentally friendly approach by elimination of sec-
ondary pollution, nonbiodegradable substances and sludge formation.

- Integrated systems have shown long-term operational stability compared to stand-
alone systems [134];

- Create an opportunity to directly use the recovered oil, water or sludge for applica-
tions, such as energy, cleaning water and fertilizer, respectively, without any harm to
living things and the environment.

5. Current Modern Techniques for Oily Wastewater Cleaning

Face to the limitation of the conventional methods, several modern techniques are
developed based on scientific and technological evolutions. We cite, as an example,
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biological treatment, supercritical water oxidation, microelectrolysis, and membrane
separation technologies.

5.1. Biological Treatment (BT)

Common BT can be classified into aerobic and anaerobic treatment systems. Anaerobic
systems require less energy due to the elimination of the aeration process, could convert
organic pollutant to methane gas, requires fewer nutrients and produce less sludge [135].
The process can also produce valuable byproducts, such as biodegradable plastics [136].
The aerobic BT is used to treat high temperature and high pollutant concentrated wastewa-
ter due to its accelerated biodegradation kinetics [137]. However, in such BT systems, the
microbial cells are affected by toxic chemicals and the high salinity of wastewater, which
then reduces the system’s overall efficiency.

To overcome this problem, aerobic granulation technology and its application in
aerobic granular activated sludge reactor (AGR) has been explored [138,139]. AGR is more
stable in oily wastewater treatment due to microbial diversity, compact granule structure,
good sedimentation, excellent biomass retention and stability towards toxic pollutants [140].
These aerobic granules’ qualities lead to smaller reactor volume requirements, lower capital
cost and instantaneous nutrient removal capacity. Aerobic granulation technology is used
to treat wastewater from POME, dairy industry, slop waster and winery [141–143].

In recent times aerobic and anaerobic systems are combined to treat oily wastewater
without the need for any pretreatment [144]. This approach causes an improvement of
treatment efficiency and a reduction in the capital cost and space needed for treatment
system setup.BT using membrane bioreactor (MBR) and sequencing batch bioreactor (SBR)
is gaining momentum in the area of oily wastewater with a large concentration of organic
compound and hydrocarbons [145,146].

Generally, MBR produces high-quality effluent with a small footprint and a low
sludge volume [147]. SBR exhibits a robust system and simple operation with wide
flexibility [148]. However, the commercial application of MBR and SBR are restraint by lack
of confidence in their stability and reliability during operation due to few factors, which
affects the continuous efficiency of the system and performance of microorganism used.
Issues, such as membrane fouling, modification of biomass biokinetic and characteristic
of activated sludge, due to the presence of compounds, such as recalcitrant or xenobiotic
in the wastewater, are non-negligible [149]. In produced water, high salinity could cause
plasmolysis of the microorganism in the activated sludge and thus affect the metabolism of
the microorganism [150].

Thus, BT’s current research trend involves techniques to improve the stability and
efficiency to produce a more robust and reliable process. Campo and Bella et al. had
cultivated aerobic granules directly in slop wastewater, which mainly contain high molec-
ular weight recalcitrant hydrocarbons to promote gradual adaption of the granules to
salinity and hydrocarbon content. These aerobic granules resulted in higher removal of
total petroleum hydrocarbon (TPH) than matured aerobic granules cultivated in different
media [151]. Usage of bio-carriers in moving biofilm bed reactor-MBR (MBBR-MBR) was
reported to promote the growth and stability of nitrifying and denitrifying microbes in a
toxic environment and high salinity wastewater, thus makes MBBR-MBR more preferable
compared to MBR [152,153].

A multidisciplinary approach or integration of technology has resulted in a more
robust system. Integrated biofilm treatment and membrane filtration was used to treat
POME by Sajjad et al. [154]. Chemical oxygen demand (COD), mixed liquor suspended
solids (MLSS), turbidity, total solids content (TSS) and NH3-N removal of 98.6, 97.5, 99.98,
100 and 99.87% were achieved, respectively. Parrino et al. proved that a sequential
treatment system involving MBR and photocatalytic reactor (PCR), as shown in Figure 8,
could lead to 95% removal of total organic content (TOC) from slop wastewater in which
biological treatment, membrane filtration and photocatalytic reaction each contribute 40,
30 and 25% percent removal, respectively [155].
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In the integrated system, the shortcomings of each component, such as membrane
coking in membrane filtration, low stability of microbial cell in biorecalcitrant compounds,
and need for high cumulative impinging energy requirement for the photocatalytic reaction
was overcome by another component. In another work by Oliveira et al. [156] MBR system
was coupled with an advanced oxidation process (AOP) by adding TiO2 into the system.
TiO2 could degrade recalcitrant organic matter in the effluent and thus reduce fouling.
The performance of different BT treatment systems reported between 2018 to present is
presented in Table 6.

Table 6. Performance of biological treatments (BT) reported in the literature from 2018 to present.

Type of Wastewater Treatment System Operating Condition Pollutants
Monitored

Removal
Efficiency (%) References

Brewery wastewater AGR

3 cycles per day with 8 h
cycle time.
16 h HRT
50% VER

COD
NH4+-N

Oil

99.99
91.67
67.39

[157]

Refinery wastewater

Single chamber MFC
in serial (SFC) and parallel

(PFC) arrangement

Ambient temperature
PFC and SFC HRT 15 h. COD PFC-42

SFC-89 [158]

Anoxic–oxic MBR

MBR HRT = 17.4
Anoxic tank HRT = 4.7
Aerobic tank HRT = 10

SRT = 35 days

COD
Oil and grease

97.15
96.6 [159]

Effluent from the oil
recovery process

Anaerobic moving bed biofilm
reactor (AnMBBR)

Anaerobic contact reactor (ACR)

Mesophilic
T = 37 ◦C

HRT 24 days
Thermophilic

T = 50 ◦C
HRT 28 days

Thermophilic
HRT 43 days

T = 50 ◦C

COD

67
-

58
-

61
-
-

[160]
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Table 6. Cont.

Type of Wastewater Treatment System Operating Condition Pollutants
Monitored

Removal
Efficiency (%) References

POME

Anaerobic–aerobic pilot treatment
plant using two modular

mesophilic reactors
HRT = 7 days

BOD
COD
TSS

99.6
98.93
91.61

[161]

Moving bed biofilm
reactor (MBBR)

RT = 72
MFF: 50%

HEX biofilm carrier

COD
NH3-N

59.4
94.4 [162]

Emulsified diesel
wastewater AGR HRT = 12 h.

HRT = 48 h. Oil 68.85
90.31 [163]

5.2. Supercritical Water Technology (SCW)

Supercritical water oxidation (SCWO) and supercritical water gasification (SCWG)
are used to treat heavy oil concentration oily wastewater, such as oily sludge, and it is
an alternative technology to incineration [164]. In the SCWO technique, water is utilized
above its thermodynamic critical point (374 ◦C, 22.1 MPa) as reaction media to convert
H–C–N compound to H2O, molecular nitrogen and CO2 through an accelerated oxidation
process in a very short time [165]. Chlorine, phosphorus and sulfur byproducts are trans-
formed to their equivalent mineral acids or salts upon neutralization with base [166]. The
liquid and gas product can be discharged to the environment without the need for any
posttreatment [167].

SWCO is a green technique because it is clean, environment-friendly and does not
produce any pollutants [168]. SCWO is widely used in the USA and European coun-
tries [169]. However, in other parts of the world, SCWO is not popular because of process
costs. This process cost could be compensated by recovering the heat energy from SWCO
effluent. Espadafor et al. [170] showed that for an SCWO industrial plant with a capacity
of 1000 kg/h, a maximum of 118 kW heat could be recovered (71% of energy content).

SCWG exploits the ability of supercritical water to dissolve organic biomass compo-
nents in wastewater and hydrolysis to break down polymeric biomass structure. The major
advantage of SCWG is the ability of the system to generate energy through the gasification
of oily wastewater. The yield from SCWG could be divided into gas phase yield, which
is often H2, CO2 and CH4 gaseous and liquid phase yield, which is reported in terms of
pollutant removals, such as COD, TOC and TSS. Zhiyong and Xiuyi [171] demonstrated
TOC removal, hydrogen gasification ratio and carbon gasification ratio of 98%, 128% and
97.88% at temperature 650 ◦C from oily wastewater using SCWG. In another study by
Kipcak et al. [172], SCWG was used to treat complex olive mill wastewater, which contains
organic and inorganic fractions. At a reaction temperature of 550 ◦C, a gas composition
with energy content up to 10 kJ per mL olive mill wastewater was formed in just 30 s with
more than 90% TOC removal.

The yield and energy generation from SCWG are influenced by parameters, such as
temperature, feed concentration and catalyst used. In the past four years, many studies
had been conducted to understand the effect of these factors on the gas and liquid phase
yield. Extensive work had been conducted to layout the reactions that might occur in
SWCO and SCWG systems due to changes in these operating conditions. The research
papers in Table 7 have reported that the main reactions occurring during the SCWG process
are exothermic methanation reactions, endothermic reforming reaction, water–gas shift
reaction laterally with Boudouard coking and coke gasification [173].
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Table 7. Research on the effects of operating conditions on the performances of supercritical water oxidation (SCWO) and
supercritical water gasification (SCWG) from 2018 to present.

Type of Wastewater Treatment System Operating Condition Yield Monitored References

Synthetic wastewater
containing diesel

Continuous SCWG

Pressure: 23 MPa

Reaction temperature:
600–680 ◦C

Mass ratio of water: diesel set
to be 1:1, 1:2.5 and 1:3.5

Use alkaline catalyst: K2CO3

Optimum value of H2 and carbon
gasification efficiency (CE) achieved

at 680 ◦C;
H2 = 54.35%
CE = 97.35%

CO2 = 25.17%
CH4 = 16.52

Addition of catalyst improves CE and
H2, CH4 and CO2 yield from 39.50,

16.07 and 21.37 mol/kg diesel to 73.93,
26.27 and 36.27 mol/kg, respectively

COD reduced from 7.95 g/L to
0.86 g/L with the addition of catalyst

[174]

SCWG in a batch
reactor system

Temperature: 550 to 600 ◦C

Modified Ni/ZrO2 catalysts

Highest CE = 98.8% at 600 ◦C

Catalyst improves H2 (21.1 to
63.3 mol/kg) generation but reduces

CH4 production

ZrO2 restrained the
methanation reaction

[175]

Olive mill wastewater Anoxic–oxic MBR

Ni/Al2O3 and
Ru/Al2O3 catalysts

Reaction temperature: 400,
450, 500, 550, and 600 ◦C

Reaction time: 30, 60, 90, 120,
and 150 s

Pressure: 25 MPa

Ni/Al2O3 produces more hydrogen,
while Ru/Al2O3 produces

more methane

Highest yield of biofuel energy
obtained was 56,123 kJ/m3 with

Ru/Al2O3 at 600 ◦C and 60 s

97% TOC removal was obtained

[176]

POME SCWG in a continuous
flow reactor

Temperature: 500, 550, and
600 ◦C.

Pressure: 25 MPa

Highest CE = 76% at 600 ◦C and a
residence time of 50 s

Highest yield of CH4 was obtained at
600 ◦C.

[177]

Heavy oil wastewater
from Oilfield located

in China
SCWO reactor

H2O2 oxidant stream was
used: 250, 500, 750,

1000 mg/L
Nano-ZnO: 0, 10, 20, and 30 g

Pressure: 30, 32, 34, and
36 MPa.

Temperature: 420, 440, 460,
and 480 ◦C

Highest COD removal = 97.52% at
temperature 480 ◦C within 20 min
COD removal increases with the
increment of H2O2 dosage. H2O2
produces strong oxidation species,
which accelerate the oxidation of

organic pollutants
COD removal increases from

79.07% at 20 min to 98.26% at 20 min
with 30 g nano-ZnO

[178]

5.3. Microelectrolysis

Microelectrolysis is used to treat high concentration oily wastewater, which also con-
tains a large fraction of organic polymers, salt and chemical cleaning agents, such as pre-
plating wastewater [179], acid mine drainage [180], and stormwater [181]. Microelectrolysis
is a combination of oxidation–reduction, electrochemistry, physical adsorption, floccula-
tion and other function in one process [182]. Treatment processes, such as discoloration,
improved flocculation, refractory organic oxidation and enhancement in biodegradability,
could be achieved using this one method [183].

Ferric-carbon microelectrolysis uses cast iron scrap and carbon particles in acidic
wastewater to generate electrode potential differences among high potential carbon and
low potential iron for the production of many tiny proto batteries in the wastewater.
Reaction in the cathode (carbon) and anode (iron) produces eco-hydrogen [H] and Fe2+
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active species, which can cause chain scission, alter the organic functional group and
biodegrade the organic component in oily wastewater [184,185].

Microelectrolysis is often coupled with another treatment process, such as BT, coagu-
lation and oxidation, to obtain optimum oily wastewater treatment outcome. Zhang [186]
combined microelectrolysis, Fenton oxidation and coagulation to treat oilfield fracturing
wastewater. Total COD removal efficiency of 85.23% could be achieved, in which the
contribution of each process was determined as 68.45% microelectrolysis, 24.07% Fenton
oxidation and 7.48% coagulation. Microelectrolysis lead to chain scission, oxidation and
redox electroflocculation of organic compound in wastewater. Figure 9 shows the combina-
tion of microelectrolysis with a biological system for the treatment of coking wastewater.
In this integrated system, two-way electron transfer through the microbial cell was en-
hanced by Fe2+/Fe3+ and [H] atoms from the microelectrolysis process, thus increasing the
metabolism of the microorganisms in the biological system [186].

One of the major disadvantages of this technique for practical application is associated
with galvanic corrosion of iron, which leads to reduction of iron reactivity and easy plug-
ging of the system due to accumulation of corrosion product [187]. He et al. [188] combined
microelectrolysis with microwave coagulation technology to treat heavy oil wastewater,
and this combination was found to reduce corrosion rate by 96.5%. Instantaneously the oil
and suspended solids (SS) removal rates of 95.5 and 98.3% were recorded. The performance
of the microelectrolysis system under different conditions, such as solid ratio, residence
time and pH, had been studied extensively. Reports on work done from 2018 to the present
are being summarized in Table 8.

Table 8. Research on the effect of operating conditions on the performance of microelectrolysis oily wastewater treatments
from 2018 to recent times.

Type of Wastewater Treatment System Operating Condition Yield Monitored References

Synthetic wastewater
containing diesel

Microelectrolysis
using Fe–C fillers

Novel microelectrolytic
filler prepared using iron
powder, carbon powder,
bentonite, ammonium

bicarbonate, and
ionized water.

pH = 3
Reaction time = 60 min

Fe–C mass ratio: 1:1, 2:1, 3:1,
4:1, 5:1, 6:1

Bentonite loading: 10, 20,
30 wt %

Highest oil removal of
81.4% was achieved at Fe–C

ratio of 3:1, bentonite
content 20 wt % and

pore-former content of
3 wt %.

-
-
-
-

[189]

Ship sewage Microelectrolysis
using Fe–C fillers

Solid–liquid ratio of filler:
1:20, 1:10, 1:5, 1:4, 1:2.

Reaction time: 10, 20, 30, 40,
50, and 60 min.

pH: 1, 2, 3, 4, 5, 6, 7

Highest removal of oil
(80.1%) and landfill leachate

sludge (LLS) (77%) was
achieved at a solid–liquid

ratio of 1:4, pH 3 and
reaction time of 60 min.

[190]

Coking wastewater
Microelectrolysis

biological fluidized
bed (MBFB)

-
COD and total nitrogen

removal rates of 92
and 95%.

[191]

Turpentine processing
industry wastewater

Microelectrolysis by
Fe–C filler combined

with Fenton oxidation

Both batch and
continuous system.

An adsorption method
using activated carbon was
carried out for comparison.

By combining the two
systems, more than

15,000 mg/L of COD can be
degraded, which is higher
than using the activated

carbon absorption
treatment method

(9000–15,000 mg/L)

[192]



Water 2021, 13, 980 18 of 35

Water 2021, 13, x FOR PEER REVIEW 19 of 36 
 

 

Ship sewage Microelectrolysis 
using Fe–C fillers 

Solid–liquid ratio of filler: 
1:20, 1:10, 1:5, 1:4, 1:2. 

 
Reaction time: 10, 20, 30, 40, 

50, and 60 min. 
 

pH: 1, 2, 3, 4, 5, 6, 7 

Highest removal of oil (80.1%) and 
landfill leachate sludge (LLS) (77%) 

was achieved at a solid–liquid ratio of 
1:4, pH 3 and reaction time of 60 min. 

[190] 

Coking 
wastewater 

Microelectrolysis 
biological fluid-
ized bed (MBFB) 

- 
COD and total nitrogen removal rates 

of 92 and 95%. [191] 

Turpentine pro-
cessing industry 

wastewater 

Microelectrolysis 
by Fe–C filler com-
bined with Fenton 

oxidation 

Both batch and continuous 
system. 

 
An adsorption method using 
activated carbon was carried 

out for comparison. 

By combining the two systems, more 
than 15,000 mg/L of COD can be de-
graded, which is higher than using 

the activated carbon absorption treat-
ment method (9000–15,000 mg/L) 

[192] 

 
Figure 9. Combination of microelectrolysis and membrane bioreactor (MBR). Reprinted with per-
mission from ref. [190]. Copyright 2020 Elsevier Ltd. 

5.4. Membrane Separation Technology (MST) 
In the last decade, MST for oily wastewater treatment had been studied extensively 

due to its capability to remove most of the chemicals and inorganic and organic com-
pounds from wastewater [193]. MST requires a smaller area of land compared to other 
conventional methods and thus has a small carbon footprint [194]. Effective, selective and 
consistent separation of pollutants could be achieved using MST. MST also exhibits good 
productivity, stability, low defect rate and economical to use [195]. It is worth mentioning 
that the quality of the treated water is mostly consistent for all influent variations. Addi-
tionally, it can be used in the recycling of selected waste streams for different applications 
[196–198]. Currently, polymer and ceramic membranes are being vastly studied for oily 
wastewater filtration. 

MST could be first classified into three categories based on the driving force used for 
separation; pressure-driven, osmotic driven and thermally driven. Among these three-
driving forces, pressure-driven is the most popular category used for oily wastewater 
treatment [195]. The pressure-driven membrane could be further classified into reverse 

Figure 9. Combination of microelectrolysis and membrane bioreactor (MBR). Reprinted with permission from ref. [190].
Copyright 2020 Elsevier Ltd.

5.4. Membrane Separation Technology (MST)

In the last decade, MST for oily wastewater treatment had been studied extensively
due to its capability to remove most of the chemicals and inorganic and organic com-
pounds from wastewater [193]. MST requires a smaller area of land compared to other
conventional methods and thus has a small carbon footprint [194]. Effective, selective
and consistent separation of pollutants could be achieved using MST. MST also exhibits
good productivity, stability, low defect rate and economical to use [195]. It is worth men-
tioning that the quality of the treated water is mostly consistent for all influent variations.
Additionally, it can be used in the recycling of selected waste streams for different applica-
tions [196–198]. Currently, polymer and ceramic membranes are being vastly studied for
oily wastewater filtration.

MST could be first classified into three categories based on the driving force used for
separation; pressure-driven, osmotic driven and thermally driven. Among these three-
driving forces, pressure-driven is the most popular category used for oily wastewater
treatment [195]. The pressure-driven membrane could be further classified into reverse
osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF) [199]. Mi-
crofiltration and ultrafiltration processes to treat oily wastewater have previously been
reported, with UF being the preferred technique because it is a low-pressure operation and
thus needs low capital and operating cost [200].

However, for practical application, the major challenge faced by these membranes
are poor long-time stability, fouling and short membrane lifetime [201]. Oil droplets could
gather on the membrane surface or inside the pore channels, which then block the water
permeation through the membrane at constant trans-membrane pressure (TMP). This
problem is more prominent in the hydrophobic polymeric membrane. To overcome this
problem, cleaning is carried out through backward flush, chemical cleaning and air flush to
maintain membrane performance, but the cleaning process was found to reduce membrane
lifetime [202]. Cleaning also increases the operational cost of MST. Fouling problem in
membrane had been illustrated in detail by Huang et al. [203], Figure 10.
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Figure 10. Various oil fouling models in oily wastewater filtration. (a) Oil droplets are partially
blocking the membrane pores. (b) Cake layer formation on the membrane. (c) Continuous oil film
formation on the membrane. (d) Oil droplets within the membrane pores. Reprinted with permission
from ref. [203]. Copyright 2020 Elsevier Ltd.

A thermally driven MST known as membrane distillation (MD) had been studied
extensively in saline water purification, but more recently, research interest to use this
approach for oily wastewater separation is emerging. Direct contact membrane distillation
was studied for the treatment of refinery process wastewater, shale oil wastewater and
vegetable oil wastewater [204]. The main challenge in the application of this method
in oily wastewater separation is membrane wetting, where the oil starts to penetrate
into the membrane pores [205]. Omniphobic membranes, which can repel high and low
surface tension liquid and remain unwetted in oily wastewater separation systems, are
being extensively researched to overcome this challenge [206,207]. Schematic diagram
of counterflow direct contact membrane distillation system, blocking of hydrophobic
membrane pores, and the comparison on omniphobic membrane with a conventional
hydrophobic membrane is illustrated in Figure 11 [208,209].
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5.4.1. Polymeric Membrane

The most commonly used polymeric membranes are poly(ether sulfone) (PES), PTFE,
PP, polyvinylidene fluoride (PVDF) and polyethylene (PE) [210]. They are used for MF
and UF [211]. The hydrophilic polymeric membrane gives more successful treatments
than the hydrophobic type [212]. A good membrane must exhibit superhydrophilic and
underwater superoleophobic properties. These properties are often achieved by decorating
the membrane with particles, such as halloysite nanotube [213], cellulose [214], SiO2 [215],
TiO2 [216], and Al2O3 [217] to produce a rough surface on the membrane to improve
wetting. These particles are used because they have functional groups, such as carboxyl,
hydroxyl, amino and sulfonic, on their surfaces [218]. In situ modifications by blending
these particles in the polymer dope solutions are also used to improve the wettability of
the polymeric membranes.

A major issue of polymeric membrane application is fouling, which results in a gradual
decrease in permeation flux and separation efficiency during its operation. Fouled polymer
membranes are regenerated through chemical cleaning with strong oxidants [219] and pho-
tocatalysis [220]. These methods lead to membrane corrosion, reduce membrane wettability
and service life and cause photodegradation of membrane material [221,222]. Calcination
of polymer membrane to degrade organic matter could be one potential approach to solve
fouling problems. However, the polymer membrane needs to be constructed from ther-
mally stable engineering plastics, such as polysulfonamide (PSA), for the calcination to be
carried out.

In recent studies, vast focus has been given to increase the hydrophilic properties of
polymer membrane and reduction of fouling through membrane modification techniques.
Membrane modification techniques can be classified into the surface coating, surface
grafting and blending, as shown in Figure 12. Nanomaterials, such as nanosized ZrO2,
silica nanoparticles, Cu2O nanoparticles and graphene oxide, are often used to modify
the membrane through all these three techniques due to their large surface area and a
high number of functional groups [223]. Nanomaterials can change the pore structure,
membrane surface morphology, produce uniform coatings, increase hydrophilicity and
reduce membrane fouling [224]. The modifications of polymeric membranes and their
effects on MST performance are discussed in Table 9.
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Table 9. Research on material modification of polymeric membranes and their effects on oily wastewater cleaning from
2018 to present.

Type of Wastewater Treatment System Operating Condition Performance Monitored References

Synthetic oily
wastewater containing

soya bean oil

Polyamide thin-film
composite reverse osmosis
membrane (PA-TFC RO) in

a spiral wound structure
combined with granular
activated carbon (GAC)

filter adsorption unit

Pressure = 8.5 bar

Surfactant (Tween-20)

Membrane flux
PA-TFC RO = 34 L/m2·h

PA-TFC RO/
GAC = 75 L/m2·h

Oil removal
PA-TFC RO = 97.4%

PA-TFC RO/GAC = 99.9%

[225]
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Table 9. Cont.

Type of Wastewater Treatment System Operating Condition Performance Monitored References

Synthetic oily
wastewater prepared

with a mixture of
n-hexane, isooctane,

hexadecane, kerosene,
hexane, and petroleum

Polysulfonamide/
polyacrylonitrile fibrous

membrane decorated with
TiO2 nanoparticles

Vacuum-driven system
at 0.10 ± 0.01 bar.

Water flux: 3000 L/m2·h
Oil rejection efficiency: 99.6%

Regeneration of fouled
membrane through

calcination without affecting
the membrane performance

even after 10 cycles
of calcination

[226]

Surfactant free and
surfactant stabilized oil
in synthetic wastewater

PVDF membrane
decorated with

halloysite nanotubes.

Dead-end filtration

Pressure = 0.09 MPa

Water flux: 7994 ± 150 L/m2·h
Oil rejection

efficiency: 99.65%
Flux recovery rate = FRR > 95%

Excellent underwater oil
contact angle (OCA) = more

than 150 ◦C

Flux remains almost
unchanged up to 4 cycles.

Decoration of HNT creates a
rough surface and

increase wettability

[227]

Synthetic oil wastewater

PVDF membrane
grafted with

poly(isopropylacrylamide)
(PNIPAAM) and

poly(poly(ethylene glycol)
methacrylate) (PPEGMA),
which forms a brush-like
structure on the surface of

the membrane

Crossflow filtration.
Feed temperature:

40 ◦C.
Pressure: 700 kPa

FRR: 99.1%
Oil rejection rate of grafted

membrane: 98.2%
Oil rejection of PVDF

membrane not modified:
91%

PNIPAAm-b-PPEGMA
grafted PVDF membrane
showed a 64% decrease in
fouling ratio compared to

unmodified PVDF
membrane at best conditions

[228]

Synthetic oily
wastewater

Dual-layer bioinspired
superwetting fibrous

membrane, dual-layer
rough PAN fibrous

membrane (PAN FM)

The filtration was done
using gravity or

vacuum pressure

Water flux: 3000 L/m2·h
Oil content after separation

is 30 ppm

The membranes displayed
superhydrophilicity with
nearly 0◦ contact angles

Superior resistance to oil
droplet with hydrostatic oil

intrusion pressure up to
83.55 kPa

[229]

5.4.2. Ceramic Membranes

Among the advantages of ceramic membrane compared to polymeric membrane
includes narrow and well-defined pore size distribution, greater porosity, enhanced sep-
aration and flux, superior chemical, mechanical and thermal stability, longer membrane
lifetime, more hydrophilic and exhibit high fluxes at low pressure and has lower foul-
ing [230–232]. Recovery of the ceramic membrane could be easily done through calcination.
Ceramic membranes are also implausible to bacterial degradation due to bio-fouling com-
pared to polymeric membranes [233]. The drawback of this membrane includes difficult
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handling due to the brittle nature of the membrane, high cost of fabrication and foul-
ing [234].

Table 10 presents research that has been carried out in the past three years to solve the
ceramic membrane fouling problem and improve water flux. Most of these attempts involve
the integration of MF with other systems, such as EC, filtration and advance oxidation
process (AOP). Among these methods of integration, AOP produces better results in terms
of water flux and reduction of fouling in ceramic MF systems. The incorporation of EC
generally reduces the efficiency of the whole system. An example of a hybrid system of
AOP using a photocatalytic reactor and MF ceramic membrane is shown in Figure 13.

Table 10. Research on integrated oily wastewater cleaning systems using ceramic membrane from 2018 onwards up
to present.

Type of Wastewater Treatment System Operating Condition Performance Monitored Reference

Synthetic oily wastewater

TiO2/γ-Al2O3-modified
ceramic membrane fitted

into a photocatalytic
membrane reactor

Using a batch system with each
batch was operated for 1 h.

The wastewater was exposed to
UV light.

TMP pressure = 0.5–2 bar
Flow rate: 10.8–51.7 mL/min

Membrane flux for γ-Al2O3-coated
ceramic membrane

500 ppm oil = 214 L/m2·h
1000 ppm oil = 269 L/m2·h

TOC removal
500 ppm oil = 92%

1000 ppm oil = 89%
Membrane flux for TiO2/γ-Al2O3

modified membrane
500 ppm oil = 1053 L/m2·h
1000 ppm oil = 966 L/m2·h

TOC removal
500 ppm oil: 97%

1000 ppm oil: 96%
TiO2/γ-Al2O3-shows higher

membrane flux because of the
photo-induced hydrophilicity of

TiO2 nanoparticles.

[235]

Synthetic wastewater with
commercial-grade gas–oil

Kaolinitic clay-based
ceramic microfiltration

membrane coupled with
coagulation (in-line

coagulation–MF system)

Elimination of
sedimentation process

Ferric sulfate (Fe2(SO4)3,
aluminum sulfate (Al2(SO4)3,

PAC and polyacrylamide (PAA)
were used as a coagulant

TMP: 2.0 bar
Crossflow velocity (CFV):

1.5 m·s−1

Feed temperature 25 ◦C.

At pH, Coagulant concentration,
TMP, temperature and CFV of 7.0,

100 mg/L, 2.0 bar, 25 ◦C, and
1.5 m·s−1, COD removal of more
than 99.5% was achieved using

PAA coagulant.
In the hybrid system, over 95% of
initial water flux could be restored
by the periodic backwashing with
COD removal rate after 17 cycles

of backwashing is 98.06%

[236]

Effluent water from the
drilling site of Barekuri,
Oil India Limited (OIL)

Electrocoagulation and
MF using ceramic

membrane produced from
thermal power plant slag

mixed with alumina,
sodium carbonate, sodium

metasilicate and
boric acid.

Batch process
Current density: 20–80 A/m2

Electrode distance:
0.005–0.02 m
pH: 3.6–8.7

TMP: 98, 196, and 194 kPa
Membrane with different pore
size was used due to different

sintering temperature: 700, 800,
900, and 1000 ◦C

Current density of 80 A/m2

reduces oil concentration from
35 mg/L to 26.86 mg/L.

Permeate flux: Increased from 264
to 423 L/h·m2 when sintering

temperatures increased from 700 to
1000 ◦C.

However, 75–85% of the initial flux
was lost during the microfiltration

of the EC samples.
EC produces flocs, which captures

oil and grease from wastewater.
Higher the current density, floc

production is enhanced, and
removal of oil and grease increases.
The flocs form thick layers of cake
on the surface of the membrane,

which needs to be washed
vigorously to retain 50% of the

initial flux.

[237]
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Table 10. Cont.

Type of Wastewater Treatment System Operating Condition Performance Monitored Reference

Synthetic oil wastewater

Hybrid coagulation and
sand filtration

pretreatment and then MF
with tubular ceramic

membranes made of 70%
alumina, 20% zirconia and

5% yttria.

Coagulant:
Ferric sulfate (Fe2(SO4)3) and
aluminum sulfate (Al2(SO4)3)
TMP: 0.5, 1.0, 1.5, and 2.5 bar.

Flow rate: 0.5, 1.0, 1.5, and
2.0 L/min

NaCl concentration: 10–50 g/L

Oil rejection rate:
MF system alone from 0.5–2.0 bar:

between 92 and 95% for
1000 ppm emulsion.
Hybrid system: 99%

Flocculants formed in the
coagulation system is being

filtered in a sand filter before the
wastewater is feed into the

MF system.
Water flux:

MF system: 1.138 × 10−4 m3/m2·s
Hybrid system:

1.808 × 10−4 m3/m2·s

[238]

Oily wastewater from
Middle East oil and gas

sector. The sample is
diluted three times to

represent the produced
water from gas wells and
various refinery wastewater.

Ozonation-assisted
electro-membrane reactor.
Combination of EC, MF

using SiC ceramic
membrane and ozonation

The experiment was conducted
in continuous flow mode. Al-SS
electrode was used. The aerator
was fixed at the bottom of the

tank. A ceramic membrane was
installed in between the

electrode. Ozone was generated
by an ozone generator.
HRT: 12, 18 and 24 h.
Aeration: on and off

Current density (CD):
10–100 A m−2

Mode of power supply:
intermittent and continuous

the pH of feed: acidic to basic
Ozonation: On and off

Aeration improves EC and reduces
fouling of MF membrane.

An increase in HRT produces more
flocs through the EC process,
which then causes membrane
fouling. Thus, HRT 12 h. was

chosen as a baseline.
When CD is increased up to

100 A m−2, the coating of the
membrane cracked. An

intermittent power supply was
found not to give a large effect on

COD removal.
Neutral and acidic media is more

suitable for this system.
Inclusion of ozonation could

increase COD removal three times
higher than an air-based reactor,
but the COD removal rate is still

below 60%.

[239]
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5.4.3. Critical Analysis

As reported, it is clear that the MST is a multiphysical method involving fundamental
biology, membrane materials, processes and mechanisms, and hybridization philosophy.
Membrane filtration has a large potential for cleaning oil from oily wastewater due to its
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advantages in terms of energy efficiency, easy process, and low maintenance cost. Even
though membrane separation technology is superior to the conventional methods of treat-
ing oily wastewater, there are also some drawbacks of employing membranes. However,
the main barriers to the practical use of membrane filtration in oily wastewater cleaning are
identified as membrane fouling, low chemical resistance, low mechanical properties, and
the tradeoff effect between permeation flux and rejection rate. In fact, membrane fouling
is invariable when subjected to heavy, oily wastewater cleaning [240]. The fact that oil
components can easily block membrane pores imposes an arduous challenge to membrane
applications in oily wastewater cleaning. Moreover, a high rejection rate and high perme-
ation flux can never be achieved simultaneously when using the existing membranes. One
of the parameters must be compromised. Thus, the optimal solutions to both permeation
flux and rejection rate must be determined [111].

However, the oil components in oily wastewater can easily cause fouling of the
membrane, leading to lower efficiency of the membrane. In other words, membrane fouling
remains as one of the main technical challenges in the wastewater separation industries [72].
Many types of membranes were tested and evaluated, and they were the subject of research
and development. Particularly, polymeric membranes have low mechanical strength,
thermal stability, and chemical resistance [201]. This limits the applications of membranes
in severe conditions. The criteria that must be fulfilled by a membrane to serve as an
excellent oily wastewater cleaning agent are superior chemical resistance and mechanical
strength, high rejection rate, as well as high water flux and less fouling effect. Moreover, it
has acquired an inherent hydrophobic surface, which is subjected to fouling and hindering
the membrane from performing well [38]. Moreover, another common limitation of the
polymeric membrane is the tradeoff effect between the permeation flux and rejection
rate [111].

6. Future Opportunities of Oily Wastewater Treatment

Despite the application of all the technologies discussed in Section 5, oily wastewa-
ter treatment technology is still energy-intensive, unstable, needs high operational and
installation costs and does not produce the expected yield. The application of advanced
techniques, nanotechnology and integration of the system is required for efficient and
cost-effective oily wastewater treatment. In this section, the future direction of each oily
wastewater treatment system is highlighted and discussed.

(a) Future directions of membrane separation technologies (MST) The main focus in
research of MST is to overcome the fouling and tradeoff effect between the water flux
and rejection rate of oil. These problems could be addressed by the following means:

(i) Improve the wetting behavior of membrane surface with water and reduce the
interaction with oil droplet. This could be achieved by increasing the water
contact angle to be more than 150◦ and the oil contact angle to be less than
10◦. A system that mimics nature should be deposited on the surface of the
membrane either by chemical modification or changes in surface roughness.
However, techniques for the formation of such a structure should be fast
and cost-effective. The structure also must exhibit stability upon exposure to
operating pressure, salinity and chemical composition in wastewater;

(ii) Problems in the application of nanomaterials, such as poor dispersion of nano-
materials inside polymer dope, had to be overcome by introducing new meth-
ods to prepare the dope, such as compounding the dope in latex/emulsion
base system. Nanofillers with oxygen functional groups, such as GO, could be
easily dispersed in the latex/emulsion system;

(iii) Polymer membrane could be produced using high-temperature resistance
polymers, which could be calcined for recovery.

(b) Future direction of biological treatment (BT) systems The main challenge for the
development of the biological treatment system is the preserve the stability of the
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system upon exposure to high salinity and toxicity of the wastewater stream. The
stability could be achieved by the following methods:

(i) More focus should be given to the integration of system where toxic chemicals
and salinity are reduced by other treatment approaches before the feed is
channeled to BT;

(ii) Stimulation, correlation and experimental study on the synergistic effect of
each component in the integrated system mainly focusing on the microorgan-
ism activity should be explored vastly;

(iii) Exploring the stability of the microorganism when exposed to chemical and
thermal shock in the BT system.

7. Conclusions

This review had provided insight into the latest development in oily wastewater
treatment from 2018 to the present. In this period, integrating various techniques to
enhance performance, reliability, eliminate secondary waste or pollution and reduce the
operational cost of oily wastewater treatment systems could be observed. More research
works are focused on the system’s operational parameters in the field compared to previous
times. Within this period, advancement in material science related to oily wastewater
cleaning systems, such as extensive development in membrane material, photocatalytic
nanoparticles and flocculants, was carried out. Modification of these materials to achieve
superior cleaning properties had resulted in higher cleaning efficiency, as never been
reported before. However, the reliability of a single system or method is still questionable,
and thus, the practical way to move forward is by integrating a few systems or methods.
More studies should be conducted to understand the chemical, physical and economic
aspects of these integrations. Modeling, operational parameter studies, and the integrated
system design will accelerate the practical implementation of oily wastewater cleaning
integrated systems in real scenarios.
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Abbreviations

AC Current
ACM Activated carbon nanoparticles
ACR Anaerobic contact reactor
AGR Activated sludge reactor
AOP Advanced oxidation process
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APTES 3-Amino triethoxysilane
BMDAC Benzyl(methacrylooyoxyethyl) dimethylammonium chloride
BOD Biological oxygen demand
BT Biological treatment
CD Current density
CE Energy conversion efficiency
CEB Chemical emulsion breaking
CFD Computational fluid dynamics
COD Chemical oxygen demand
CN Carbon nitride nanosheets
DAF Dissolved air flotation
DC Direct current
EIO Indirect electro-oxidation
EO Electrochemical oxidation
EPS Intercellular polymer substances
ET Electrochemical technology
EU European Union
F-CB Functionalized carbon black
FE3O4 Magnetic seed
FE3O4@OA Magnetic nanoparticles coated with oleic acid
GAC Granular activated carbon
GS Gravity separation
HNT Halloysite nanotubes
HRT Hydraulic retention time
LCST Critical solution temperature
MBFB Microelectrolysis biological fluidized bed
MBBR-MBR Moving biofilm bed reactor-MBR
MBR Membrane bioreactor
MC Mechanical coalescence
MD Membrane distillation
MgCl2 Magnesium chloride
MF Microfiltration
MLSS Mixed liquor suspended solids
MST Membrane separation technology
M-rGO Reduced graphene oxide with magnetic nanoparticles
M-UWT Microwave and ultrasound treatment
NaCl Sodium chloride
NB Nanobubbles
NF Nanofiltration
OCA Oil contact angle
OMSW Oily micropolluted surface water
Ox-CB@SiO2 Oxidized carbon black modified with SiO2
PAB Cationic PAM copolymer
PAC Poly(aluminum chloride)
PAM Polyacrylamide
PANFM PAN fibrous membrane
PCR Photocatalytic reactor
PDBC Poly(dimethyl acryloxyethyl benzyl ammonium chloride)
PDMS Polydimethylsiloxane
PE Polyethylene
PES Poly(ether sulfone)
POME Palm oil mill effluent
PP Polypropylene
PSA Polysulfonamide
PTFE Polytetrafluoroethylene
PVDF Polyvinylidene fluoride
PVOH Polyvinyl alcohol
rGO Reduced graphene oxide
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RO Reverse osmosis
SBR Styrene-butadiene rubber
SCW Supercritical water technology
SD-ALR Airlift loop reactor
SRT Sludge retention time
TIF Poly(acrylamide-co-N,N-diethylacrylamide-co-n-butylstyrene)
TOC Total organic content
TMP Trans-membrane pressure
TPH Total petroleum hydrocarbon
TP-ADL Amphiphilic polyacrylamide with cationic micro block structure
TSS Total suspended solids
UF Ultrafiltration
UN United Nations
WFD Water Framework Directive
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