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Abstract: This article proposes a new approach for determining the optimal parameter (β) in the
Inverse Distance Weighted Method (IDW) for spatial interpolation of hydrological data series. This
is based on a genetic algorithm (GA) and finds a unique β for the entire study region, while the
classical one determines different βs for different interpolated series. The algorithm is proposed in
four scenarios crossover/mutation: single-point/uniform, single-point/swap, two-point/uniform,
and two-point swap. Its performances are evaluated on data series collected for 41 years at ten
observation sites, in terms of mean absolute error (MAE) and mean standard error (MSE). The
smallest errors are obtained in the two-point swap scenario. Comparisons of the results with those of
the ordinary kriging (KG), classical IDW (with β = 2 and the optimum beta found by our algorithm),
and the Optimized IDW with Particle Swarm Optimization (OIDW) for each study data series show
that the present approach better performs in 70% (80%) cases.

Keywords: genetic algorithm (GA); IDW; spatial interpolation

1. Introduction

Evaluating and predicting the effects of atmospheric factors dynamics, like precipi-
tation and temperature, are of major importance for human activity, especially for zones
with arid or rainy climates. Since water scarcity impacts billions of people worldwide, it
is important to assess the water resources availability at ungauged locations [1]. Spatial
interpolation methods are utilized for estimating the values of environmental variables
using data recorded at neighbor locations. The most utilized approaches are classified as
deterministic, geostatistical, and combined (or hybrid) [2,3]. The Inverse Distance Weight-
ing (IDW) is a deterministic (mechanical) technique. The attribute values of any pair of
points are related to each other, their similarity being inversely proportional to the distance
between the two locations [4,5].

Since IDW does not involve advanced computational knowledge, researchers widely
utilized it for spatial interpolation problems. Different authors presented comparable
IDW performances with other spatial interpolation methods [6–11]. In [6,7], it is shown
that IDW provided better or comparative results as ordinary kriging (OK) in the spatial
interpolation of precipitation in Taiwan and Norfolk Island. Ly et al. [8] reported that OK
and IDW provided the smallest root mean squared error in a study concerning the daily
rainfall at the catchment scale in Belgium. Dong et al. [9] found that Ordinary CoKriging
(OCK) performed better than OK and IDW when interpolating daily rainfall in a river basin
from China. IDW, Thiessen Polygons Method (TPM), and kriging have been evaluated
against the Most Probable Precipitation Method (MPPM) on annual, monthly, seasonal,
and annual monthly maximum precipitation series from ten stations of 41 data [10]. IDW
over performed TPM and OK, but underperformed MPPM. Chen et al. [11] proposed an
improved regression-based scheme (PCRR) that was superior to IDW and multiple linear
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regression (MLR) interpolation methods on data from the mesoscale catchment of the
Fuhe River.

Even if the classical IDW (with the value of the parameter β = 2) was successfully
employed for a long period for spatial interpolation problems, being easy to use, improving
its performances was targeted by scientists. For example, Lu and Wong [4] proposed the
weights’ modification depending on the neighboring locations’ distribution density around
the unsampled place. Golkhatmi et al. [12] introduced altitude as a new variable in the
IDW interpolation (keeping β = 2) and reported good results in the case study.

Another direction is finding the best β. This is an optimization problem by itself,
targeted by many scientists [13–19]. For example, Noori et al. [13] employed IDW for
estimating the distribution of precipitation in Iran, the value of the parameter (β) being
recursively searched in the interval (1, 5], increasing its value each time. However, this
grid-search procedure is time-consuming for small step sizes [5]. To avoid this drawback,
Mei et al. [14] designed and implementing parallel adaptive inverse distance weighting
(AIDW) interpolation algorithms by using the graphics processing unit (GPU) for acceler-
ating the parameter finding. Gholipour et al. [15] propose a hybridization of IDW with a
harmony search, which improves the convergence rate and reduces the search time.

In the same idea, hybrid methods have been proposed. Zhang et al. [16] combined
Support Vector Machines (SVM) with IDW obtaining the SVM residual IDW, obtaining
superior results by comparison to IDW and OK for the spatial interpolation of the multi-
year average annual precipitation in the Three Gorges Region basin. Nourani et al. [17]
used a two-stage framework for spatial interpolation of precipitation, employing, in the
first stage, three artificial intelligence models that generate the input for the second stage,
where they utilize IDW for spatial interpolation. Bărbulescu et al. [18] proposed a Particle
Swarm Optimization approach (called OIDW) for finding a single β in IDW interpolation
of maximum annual precipitation from the Dobrogea region (Romania). Chang et al. [19]
applied a genetic algorithm (GA) to find the optimal distances between the gauged stations
to minimize the estimation errors in IDW. Still, based on our knowledge, no attempt to
optimize the choice of β parameter of IDW using a GA has been made so far.

On the other hand, GAs are widely used for solving real-life problems. For example,
Ratnam et al. [20] improved seasonal air temperature forecasts using a genetic algorithm.
Nasseri et al. [21] presented an optimized scenario for rainfall forecasting using a genetic
algorithm coupled with an artificial neural network using rainfall hyetograph of recording
rain gauges in the Upper Parramatta catchment (Sydney, Australia). Using the ability of
GAs to search complex decision spaces, Sen and Ôztopal [22] utilized such an algorithm
for optimizing the classification of rainy and non-rainy day occurrences using atmospheric
data (temperature, humidity, dew point, vertical velocity). Heat conduction and control
problems have also been solved by utilizing GAs [23,24].

In this context, this article proposes a new approach that optimizes the finding of
the beta parameter of IDW. This is based on a genetic algorithm and finds a unique β

for the entire study region, while the classical one determines different βs for different
interpolated series. The algorithm is proposed in four scenarios crossover/mutation: single-
point/uniform, single-point/swap, two-point/uniform, and two-point swap. Comparisons
of its performances with those of the classical IDW (with β = 2 and the optimal beta found
in our algorithm), ordinary kriging, and two versions of the optimized IDW by using
Particle Swarm Optimization (OIDW) are also provided.

2. Methodology and Data Series
2.1. IDW Interpolation

The study problem is estimating a variable’s values at ungagged locations employing
the same variable’s known values, registered at the neighboring observation sites [18]. In
terms of mathematics, one can formulate the problem as follows. Given a set of spatial data
of a variable z at n observation sites, s1, . . . , sn determine the same variable’s values at the
study site, s0.
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The IDW interpolation formula is:

ẑ(s0) = ∑n
i=1

1/d(s0, si)
β

∑n
i=1

(
1/d(s0, si)

β
) z(si), β > 1 (1)

where ẑ(s0) is the value computed for the site s0, z(si) is the value recorded at the site si,
d(s0, si) is the distance between s0 and si, and β is a parameter whose value is either given
or determined by different optimization methods. In the original algorithm, β = 2 [25,26].

The interpolation quality depends on β which is generally determined after running a
grid search. The time spent for finding the parameters is inverse proportional with the step
of the grid.

2.2. Genetic Algorithms

A genetic algorithm (GA) is a metaheuristic method inspired by natural selection laws
that try to find optimal solutions to complex problems to which deterministic approaches
usually cannot find a good result. The genetic operators, selection, crossover, and mutation
establish a balance between the exploration and exploitation of the search space [27,28].
Exploration means that the algorithm searches for new solutions in new regions, while
exploitation refers to making refinement to existing solutions to improve their quality.
A function called fitness measures the quality of the solutions, which are represented
by chromosomes.

A GA starts with a population of some random chromosomes and (by applying the
principle of ’survival of the fittest’) produces multiple generations by selecting in each one
the fittest individuals for breeding. The mutation is then applied to increase the population
diversity. Along with the generations, better individuals, i.e., better approximations to
the solution, are obtained. The process continues until the fittest individual (the optimal
solution) is found or the maximum number of generations is reached.

Using a genetic algorithm to solve a problem means finding the representation of the
problem’s solutions (encoding of the chromosomes), the fitness function, and the genetic
operators. A chromosome is a feasible solution to the problem. In our case, a chromosome
represents a real value of the parameter a ≤ β ≤ b. Thus, we apply a value encoding and
get a binary string with the length l, calculated using the following formula (the default
encoding of real values to binary strings):

2l− 1 < (b − a) ∗ 10z < 2l (2)

where z represents the given number of β’s decimals. In this study, l = 9 bits.
The decimal value, val, of the binary chromosome representation, is computed by (3).

We get the real value of a chromosome (β) by applying (4).

val = (β − a) × (2l − 1)/(b − a) (3)

or
β = a + val × (b − a)/(2l − 1) (4)

The fitness function controls the possibility of individuals’ reproduction. The better
chromosome is (i.e., the better fitness is), the more likely it is to be selected for breeding
the next generation. Since our goal is to minimize the error between the results obtained
by the spatial interpolation and those recorded at the meteorological stations, the fitness
function will record the mean standard error (MSE) between the known data and those
computed by IDW. A GA performs best when a feasible solution maximizes the fitness
function. Hence, we apply one of the most commonly adopted fitness mapping (inversion
scaling), which does not alter the minimum location, but converts a minimization problem
to an equivalent maximization one.
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We use the mean standard error and mean absolute deviation (MAE) to evaluate the
GA’s performance. The lowest the MAE or MSE is, the better the algorithm performs.

Genetic operators are used for producing new generations of individuals with more
diverse properties. There are three operators, selection, crossover, and mutation, which can
set and, most of the time, find a good ratio between exploration and exploitation of the
search space.

A selection operator determines the best individuals’ regions that will exchange infor-
mation to create a new generation. In this paper, the roulette wheel selection method [27]
is used.

A crossover operator combines two or more parents to generate one or two offspring.
It implements the idea that a swap of information between good individuals will generate
an even better one. In this paper, the single-point crossover and the two-point crossover
are used to create new offspring [29].

A mutation operator randomly modifies chromosomes with a given probability, pm,
called mutation rate, leading to an increased population’s structural diversity. Thus, a
mutation operator facilitates the recovery of genetic material lost during the selection
step and exploring new solutions. Here we used the uniform mutation [27] (one gene is
randomly chosen and its value is modified) and swap mutation [27] (two positions on the
chromosome are randomly selected, and their values are interchanged).

One may configure several control parameters in a genetic algorithm to achieve a
balance between exploration and exploitation. If the population size is large, the search
space is more explored than when the population size is small [28]. However, the runtime
of the algorithm would increase. If crossover and mutation rates are high, the search will
explore much of the solutions space, but there is a high chance of missing good solutions,
the GA acting more like a random search. If crossover and mutation rates are low, the
search space remains unexplored, and in this case, the GA resembles the hill-climbing
algorithms. Therefore, we investigated the influence of the population size, crossover rate,
mutation rate, and stop condition on the GA results. We performed each test ten times
and averaged the results to increase their precision (as suggested in the literature). We
implemented two crossover operators and two mutation operators to find the ones which
are best suited for our problem. We also ran several tests for each pair of operators to see
the relationship between the control parameters and the fitness value. Details are presented
in the following sections.

2.3. New Approach for Estimating Beta

The genetic algorithm we implemented is presented in the following.

Input: The distances between stations and the precipitation series recorded at these stations.
Output: The optimal parameter value of β

Begin

1. Generate a random population of n individuals represented as binary strings of
length l = 9

2. Compute the fitness function

a. Select some chromosomes for crossover operation (the number of selected
individuals is defined by the crossover rate)

b. Apply one of the crossover operators described in 2.2 to generate two new
offspring

c. Copy the remaining chromosomes (that were not recombined) to the next
generation

3. Select a few chromosomes for the mutation (the number of selected individuals is
defined by the mutation rate)

4. If the number of generations is reached, then stop, else go to step 2

End
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For a better understanding, a flowchart of the procedure of determination of the beta
parameter is presented in Figure 1.

In order to find the best parameters settings for our problem, we fine tune our algo-
rithm, which means creating several GA variants to test and find the best one, by slightly
changing of GA parameters (population size, number of generations, crossover and mu-
tation rates). We change only one parameter at a time, and try out several evolutionary
literature-based test values. For example, for the crossover rate, the most used values
in applications are in interval [0.6,1), whereas the mutation rate should be less than 10%.
We run these GA variants on our problem, accept that parameter value at which the GA
performs best, and continue to the next GA parameter, and so forth, to the last one. More
precisely, to select the best population size, stop condition, and crossover rate the following
steps are done.

Step 1. We start with predefined values for the stop condition (10 generations), crossover
rate (0.75), and mutation rate (0.015). Then, we vary the population size and
compute the values of the fitness function. For each pair of operators (single-
point/uniform, single-point/swap, two-point/uniform, two-point/swap), we
chose the optimal population size to be the lowest value from which population
growth does not significantly influence the modification of the fitness value.

Step 2. With the population value determined at Step 1, the crossover rate, and the muta-
tion rate kept at the same values as in Step 1, we run the algorithm to determine
the best number of generations.

Step 3. With the number of individuals determined at Step1, the number of generations
determined at Step 2, and the mutation kept at the same value as in Step 1, we run
the algorithm using different crossover rates, to determine the best crossover rate.

Step 4. To find the best mutation rate, we set the best parameters from the previous steps
and run the algorithm with different mutation rates.

Step 5. The algorithm is run in each scenario with the new parameters determined in the
previous steps.

Figure 1. The procedure flow chart. nGen represents the maximum number of generations.
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Although the complexity of GAs has a probabilistic convergence time [30], the settings
of our genetic algorithm are not complex, and, based on the experimental results that show
that it converges in a short time, we may state that the best convergence time is logarithmic,
O(log(n)), whereas the worst is linear, O(n). In the Results and Discussion, we present the
recorded execution time (in seconds), which shows that the algorithms stop in short time
for each test we did.

2.4. Data Series

Dobrogea is a region covering a surface between the Romanian Littoral of the Black Sea,
the lower Danube River, and the Danube Delta, situated in the southeast part of Romania
and characterized by long droughts periods. Records show the absence of precipitation for
4–6 months per year after 1961, which affects agricultural activities. Researchers analyzed
precipitation and temperature evolution in this zone, especially after 2010, to mitigate the
drought effects [31–33].

The data we are working with is formed by the maximum annual precipitation series
recorded during a period of 41 years at 10 main meteorological stations from the Dobrogea
region (Figure 2).

Figure 2. Maximum annual precipitation series.

3. Results and Discussion

Firstly, we ran several tests to find the settings of control parameters that are most likely
to produce the best results. We started with predefined values from the literature [27,28] for
the stop condition (10 generations), crossover rate (0.75), and mutation rate (0.015). Then,
we varied the population size (from 10 to 80, with a step of 5) and computed the fitness
function’s corresponding values, run time, and β. Table 1 shows the relationship between
the fitness value and population size.

For each pair of operators (single-point/uniform, single-point/swap, two-point/uni-
form, two-point/swap), we chose the optimal population size to be the lowest value from
which population growth does not significantly influence the modification of the fitness
value. This is 45, 40, 30, and 35 individuals, respectively, and the fitness function value is
0.0317. The corresponding β values obtained in the four scenarios are 1.256, 1.372, 1.308,
and 1.336, respectively. These results are highlighted in Table 1.



Water 2021, 13, 863 7 of 13

Table 1. The impact of population size on the GA accuracy. The best results are highlighted.

Scenario Single Point/Uniform Single Point/Swap Two-Point/Uniform Two-Point/Swap

Pop.
Size Fitness Time

(s) β Fitness Time
(s) β Fitness Time

(s) β Fitness Time
(s) β

10 0.0311 0.300 2.528 0.0312 0.3156 2.316 0.0313 0.3500 2.186 0.0316 0.3625 1.580
15 0.0313 0.4625 1.500 0.0315 0.4688 1.612 0.0313 0.4719 2.154 0.0316 0.4781 1.568
20 0.0314 0.6062 1.862 0.0315 0.6031 1.742 0.0316 0.6375 1.514 0.0309 0.675 2.886
25 0.0315 0.8031 1.766 0.0315 0.8125 1.346 0.0315 0.7906 1.772 0.0313 0.7969 2.092
30 0.0316 0.9375 1.594 0.0315 0.9094 1.708 0.0317 0.9563 1.308 0.0315 0.9531 1.758
35 0.0316 1.0656 1.538 0.0316 1.0625 1.542 0.0317 1.1125 1.382 0.0317 1.100 1.336
40 0.0316 1.2813 1.494 0.0317 1.2188 1.372 0.0317 1.2813 1.298 0.0316 1.2437 1.620
45 0.0317 1.4312 1.256 0.0316 1.3687 1.382 0.0317 1.4094 1.208 0.0317 1.4781 1.212
50 0.0317 1.6781 1.480 0.0317 1.5781 1.128 0.0317 1.5375 1.308 0.0317 1.5594 1.274
55 0.0317 1.6906 1.324 0.0316 1.8375 1.552 0.0317 1.6938 1.132 0.0316 1.700 1.720
60 0.0317 1.8156 1.690 0.0317 1.850 1.258 0.0317 1.8750 1.122 0.0317 1.8469 1.192
65 0.0317 1.9625 1.212 0.0316 1.9781 1.510 0.0317 2.0156 1.294 0.0317 2.0938 1.246
70 0.0317 2.1781 1.248 0.0317 2.2062 1.056 0.0317 2.2250 1.200 0.0317 2.1656 1.210
75 0.0317 2.2437 1.306 0.0317 2.3062 1.126 0.0317 2.3406 1.262 0.0317 2.3687 1.282
80 0.0317 2.4406 1.162 0.0316 2.4469 1.382 0.0317 2.4500 1.320 0.0317 2.5844 1.306

Since we used a predefined number of generations as the stop condition, in the second
stage, we had to determine its optimal value. To find it, for each pair of operators, we
ran tests with several values of the number of generations, the population size previously
estimated (45, 40, 30, 35, respectively—Table 1), keeping the mutation rate set to 0.015, and
the crossover rate set to 0.75. Table 2 and Figure 3 show that the fitness value does not
improve after a certain number of generations (which is the optimal number of generations).

Table 2. The impact of the number of generations on the GA performance. The best results are highlighted.

Scenario Single Point/Uniform Single Point/Swap

Crossover
Rate

Pop.
Size No. Gen Fitness Time (s) β Pop. Size No. Gen Fitness Time (s) β

0.6 45 9 0.0316 1.2469 1.476 40 5 0.0317 0.6219 1.242
0.65 45 9 0.0316 1.2344 1.372 40 5 0.0317 0.6094 1.170
0.7 45 9 0.0316 1.2469 1.26 40 5 0.0317 0.6156 1.310
0.75 45 9 0.0316 1.2875 1.550 40 5 0.0317 0.6094 1.174
0.8 45 9 0.0317 1.2500 1.228 40 5 0.0317 0.6094 1.344
0.85 45 9 0.0317 1.2563 1.064 40 5 0.0317 0.6000 1.148
0.9 45 9 0.0317 1.2313 1.556 40 5 0.0316 0.6125 1.408
0.95 45 9 0.0317 1.2563 1.386 40 5 0.0316 0.6094 1.192

Scenario Two-Point/Uniform Two-Point/Swap

Cross Rate Pop.
Size No. Gen Fitness Time (s) β Pop Size No. Gen Fitness Time (s) β

0.6 30 5 0.0316 0.4594 1.424 35 5 0.0316 0.5625 1.538
0.65 30 5 0.0315 0.4750 1.964 35 5 0.0316 0.5594 1.578
0.7 30 5 0.0316 0.4719 1.564 35 5 0.0317 0.5344 1.362
0.75 30 5 0.0317 0.4594 1.122 35 5 0.0317 0.5313 1.252
0.8 30 5 0.0317 0.4562 1.532 35 5 0.0317 0.5375 1.208
0.85 30 5 0.0317 0.4688 1.400 35 5 0.0317 0.5313 1.348
0.9 30 5 0.0317 0.4688 1.326 35 5 0.0317 0.5469 1.124
0.95 30 5 0.0316 0.4531 1.406 35 5 0.0317 0.5469 1.274
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Figure 3. The impact of the number of generations on fitness value in (a) single-point/uniform, (b) single-point/swap,
(c) two point/uniform, (d) two point /swap scenarios.

Based on the highest fitness value, the optimum number of generations determined
was nine for the single-point/uniform mutation scenario, whereas, for the other scenarios,
the number of generations was five. The corresponding β-values obtained are 1.228, 1.242,
1.122, and 1.362, respectively (highlighted in Table 2, together with the fitness and beta
values). Since in our algorithm, β is represented by a chromosome, and several genetic
operators have been used, different chromosomes (β) could produce the same fitness value.

The next step is the determination of the optimal crossover rate. For this aim, we ran
the algorithm in each scenario with different values of the crossover rate (from 0.6 – value
suggested in the literature to 0.95, with a step of 0.05), the population size and number
of generations previously determined (45, 40, 30, and 35 individuals, respectively; 9, 5, 5,
5 generations, respectively), and the mutation rate kept to 0.015. We chose the optimal
crossover rate for each pair of operators to be the value that gives the best (highest) fitness.

From Table 3 it results that the best crossover rates are 0.8 when using a single-
point/uniform scenario, 0.6 for single-point/swap, 0.75 for two-point/uniform, and 0.7
for two-point/swap. These values correspond to the highlighted sequences of values in
Table 3.

The last step was the determination of the best mutation rate. Therefore, we analyzed
the impact the mutation rate has on the GA’s results. We considered the population size,
the number of generations, and the crossover rates we established in previous stages, and
we performed new tests aiming at detecting the value of the mutation rate. For example, for
single-point uniform mutation, we took the population size = 45, the number of generations
= 9, the crossover rate = 0.80, and ran the tests for a mutation rate from 0.02 to 0.1, with a
step size of 0.01. For each pair of operators, we search the optimal mutation rate for which
the fitness value evolves to a maximum along with the generations. Table 4 contains the
values of the fitness function obtained after running the algorithm in the four scenarios,
with different mutation rates. For example, in Table 4a we present the values of the fitness
function obtained for each generation (from 1 to 9) and the mutation rates from 0.02 to
0.1, in the single-point crossover/uniform mutation scenario. The highest fitness value is
obtained after nine generations in the single-point crossover/uniform mutation, with a
mutation rate of 0.06 (the sixth column–the highlighted values).
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Table 3. The impact of crossover rate on the GA accuracy. The best results are highlighted.

Scenario Single-Point/Uniform Single-Point/Swap

Crossover Rate Pop. Size No. Gen Fitness Time (s) β Pop. Size No. Gen Fitness Time (s) β

0.6 45 9 0.0316 1.2469 1.476 40 5 0.0317 0.6219 1.242
0.65 45 9 0.0316 1.2344 1.372 40 5 0.0317 0.6094 1.170
0.7 45 9 0.0316 1.2469 1.26 40 5 0.0317 0.6156 1.310
0.75 45 9 0.0316 1.2875 1.550 40 5 0.0317 0.6094 1.174
0.8 45 9 0.0317 1.2500 1.228 40 5 0.0317 0.6094 1.344
0.85 45 9 0.0317 1.2563 1.064 40 5 0.0317 0.6000 1.148
0.9 45 9 0.0317 1.2313 1.556 40 5 0.0316 0.6125 1.408
0.95 45 9 0.0317 1.2563 1.386 40 5 0.0316 0.6094 1.192

Two-Point/Uniform Two-Point/Swap

Cross Rate Pop. Size No. Gen Fitness Time (s) β Pop Size No. Gen Fitness Time (s) β

0.6 30 5 0.0316 0.4594 1.424 35 5 0.0316 0.5625 1.538
0.65 30 5 0.0315 0.4750 1.964 35 5 0.0316 0.5594 1.578
0.7 30 5 0.0316 0.4719 1.564 35 5 0.0317 0.5344 1.362
0.75 30 5 0.0317 0.4594 1.122 35 5 0.0317 0.5313 1.252
0.8 30 5 0.0317 0.4562 1.532 35 5 0.0317 0.5375 1.208
0.85 30 5 0.0317 0.4688 1.400 35 5 0.0317 0.5313 1.348
0.9 30 5 0.0317 0.4688 1.326 35 5 0.0317 0.5469 1.124
0.95 30 5 0.0316 0.4531 1.406 35 5 0.0317 0.5469 1.274

Table 4. The impact of mutation rate on the GA accuracy. The best results are highlighted.

a. Single-Point Crossover/Uniform Mutation

Mutation Rate
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0307 0.0309 0.0309 0.0309 0.0308 0.0309 0.0310 0.0309 0.0309
2 0.0309 0.0310 0.0310 0.0310 0.0310 0.0309 0.0310 0.0310 0.0309
3 0.0309 0.0310 0.0310 0.0310 0.0310 0.0310 0.0311 0.0312 0.0309
4 0.0310 0.0311 0.0312 0.0310 0.0310 0.0311 0.0312 0.0312 0.0309
5 0.0310 0.0313 0.0312 0.0311 0.0312 0.0312 0.0312 0.0313 0.0309
6 0.0311 0.0313 0.0312 0.0311 0.0312 0.0312 0.0312 0.0313 0.0309
7 0.0311 0.0313 0.0313 0.0311 0.0312 0.0312 0.0312 0.0313 0.0309
8 0.0312 0.0313 0.0313 0.0311 0.0313 0.0312 0.0311 0.0312 0.0310
9 0.0313 0.0313 0.0313 0.0311 0.0314 0.0313 0.0311 0.0312 0.0312

b. Single-Point Crossover/Swap Mutation

Mutation Rate
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0308 0.0309 0.031 0.0309 0.0309 0.0309 0.0309 0.0308 0.0308
2 0.0308 0.0311 0.031 0.0309 0.0308 0.0309 0.0311 0.0311 0.0310
3 0.0308 0.0312 0.0312 0.0309 0.0308 0.031 0.0311 0.0311 0.0310
4 0.0309 0.0312 0.0312 0.031 0.0310 0.031 0.0312 0.0312 0.0311
5 0.0308 0.0313 0.0313 0.031 0.0310 0.0311 0.0315 0.0312 0.0311

c. Two-Point Crossover/Uniform Mutation

Mutation Rate
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0308 0.0308 0.0309 0.0308 0.0309 0.0311 0.0311 0.0308 0.0308
2 0.0309 0.0309 0.031 0.0309 0.0309 0.031 0.0313 0.0309 0.0309
3 0.0311 0.0309 0.0311 0.0311 0.0309 0.0311 0.0313 0.0311 0.0309
4 0.0311 0.0308 0.0312 0.0309 0.031 0.031 0.031 0.0311 0.0308
5 0.0311 0.0308 0.0313 0.0312 0.031 0.0312 0.0312 0.0311 0.0308
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Table 4. Cont.

d. Two-Point Crossover/Swap Mutation
Gener. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.0308 0.0309 0.0311 0.0308 0.0308 0.031 0.0309 0.0309 0.0309
2 0.0309 0.031 0.0312 0.031 0.0311 0.031 0.031 0.031 0.0308
3 0.0308 0.031 0.0311 0.0312 0.0309 0.031 0.0311 0.031 0.0309
4 0.031 0.0311 0.0312 0.0313 0.0308 0.0309 0.0311 0.0312 0.0310
5 0.0311 0.031 0.0312 0.0313 0.0309 0.031 0.0311 0.0313 0.0309

In the single-point crossover/swap mutation (Table 4b), the highest fitness value is
0.0315, obtained after 5 generations, with a mutation rate of 0.08 (the eighth column of
Table 4b). For the two-point crossover/uniform mutation and two-point crossover/swap
mutation (Table 4c,d), the best mutation rates are 0.04 and 0.05, respectively, and the
corresponding value of the fitness function is 0.0313 (contained in the highlighted columns—
the fourth and the fifth, respectively).

After setting the optimal parameters, determined in the previous stages, we finally
ran the algorithm to determine the optimum beta parameters. Table 5 summarizes the
parameters used to implement the proposed genetic algorithm (columns 2–5), the fitness
function obtained after running the algorithm with these parameters (column 6), the
execution time (column 7), and the value obtained for the IDW’s parameter (last column).

Remark that the values of β are different when using different scenarios, even if the
fitness value is the same. This is due to the specifics of the individuals’ selection and
operations in GAs.

The lowest execution time (0.6188) is obtained when using the single-point/swap
scenario and the highest one (10.5875 s) when using a two-point/swap procedure. Even if
in the two-point/uniform case, the population size and the number of generations are the
smallest, the execution time is high (the second-highest).

Table 5. The control parameters settings for the GA.

Crossover/Mutation Pop. Size No. of Gen. Crossover
Rate

Mutation
Rate Fitness Time (s) β

Single-Point/Uniform 45 9 0.8 0.06 0.0317 1.2437 1.318
Single-Point/Swap 40 5 0.6 0.08 0.0317 0.6188 1.124

Two-Point/Uniform 30 5 0.75 0.04 0.0317 7.5687 1.064
Two-Point/Swap 35 5 0.7 0.05 0.0317 10.5875 1.042

Table 6 contains the MSE and MAE for each station and the average (the last row of the
table) computed after running the algorithm in each scenario. Comparing the MSEs in the
two-point/swap and single-point/uniform (single-point/swap, and two-point/uniform)
scenario, they are smaller in 70% (70%, 70%) cases, so our algorithm, in two-point/swap
scenario, performs better in 70% cases compared to the other three scenarios. The MSEs’
averages (31.5874, 31.5306, 31.5188, 31.5153) are comparable, the smallest being obtained in
the two-point/swap scenario, followed by the third one.

Comparing the MAEs in the two-point/swap and single-point/uniform (single-
point/swap, and two-point/uniform) scenario, they are smaller in 80% (80%, 80%) cases,
so our algorithm, in two-point/swap scenario, performs better in 80% cases compared
to the other three scenarios. The MAEs’ averages (23.6352, 23.5542, 23.5308, 23.5228) are
comparable, the smallest being obtained in the two-point/swap scenario, followed by the
third one.

The corresponding values computed for beta in the best two cases are 1.042 (in two-
point/swap) and 1.064 (in two-point/uniform).
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Table 6. MSEs and MAEs in GA. The best results are highlighted.

Station
Single-Point/Uniform Single-Point/Swap Two-Point/Uniform Two-Point/Swap

MSE MAE MSE MAE MSE MAE MSE MAE
Adamclisi 36.2300 27.0536 36.1639 27.047 36.1372 27.0440 36.1264 27.0436
Cernavoda 22.9755 16.4861 22.7221 16.2628 22.6682 16.2290 22.6529 16.2254
Constanta 28.8453 17.0195 28.9273 17.2437 28.9601 17.3086 28.9731 17.3311
Corugea 21.0101 15.8130 21.0132 15.7836 21.0419 15.7770 21.0561 15.7744
Harsova 39.4587 26.2462 39.8004 26.2647 39.9151 26.2710 39.9581 26.2731
Jurilovca 24.5367 20.3591 24.4805 20.2806 24.4658 20.2606 24.4607 20.2534
Mangalia 36.4302 27.1703 36.3815 27.0490 36.3661 27.0040 36.3605 26.9864
Medgidia 26.8786 21.8044 26.5124 21.5704 26.3874 21.4822 26.3396 21.4471

Tulcea 33.5917 26.2378 33.5510 26.1170 33.5348 26.0791 33.5283 26.0667
Sulina 45.9171 38.1624 45.7538 37.9231 45.7115 37.8524 45.6972 37.8272

Average 31.5874 23.6352 31.5306 23.5542 31.5188 23.5308 31.5153 23.5228

For comparison reasons, we performed the classical IDW, with β = 2 (the value used
in most applications) and β = 1.042. The MAE and MSE values computed for each station
are presented in Table 7.

Comparing the MSEs in the two-point/swap algorithm (Table 6, column 8) with
those from the IDW with β = 2 (Table 7 column 2), they are smaller in 70% cases (the first
four stations, the sixth, eighth, and ninth), so our algorithm performs better in 70% cases.
Comparing the MSEs in the two-point/swap algorithm with those from the IDW with
β = 1.042 (Table 7 column 4), they are smaller in 60% cases (the second, third, fourth, sixth,
eighth, and ninth stations), so our algorithm better performs in 60% cases.

In terms of the average MSEs, that in the two-point/swap approach is smaller than
those of the IDW (β = 2), IDW (β = 1.042), and slightly higher than in KG (Table 7, the last
column). Still, our approach is preferable against KG since it is difficult to determine the
kriging parameters, requiring special knowledge of geostatistics.

Table 7. MSE and MAE in the classical IDW for β = 2 and β = 1.042. MSE in ordinary kriging (KG).

Station
IDW (β = 2) IDW (β = 1.042) KG * OIDW ** OIDW *

MSE MAE MSE MAE MSE MSE MSE

Adamclisi 36.32 27.03 35.73 26.96 32.73 32.4184 28.5774
Cernavoda 23.78 17.33 28.03 15.88 23.40 22.9189 22.6820
Constanta 37.29 27.80 35.83 27.09 30.22 30.3249 30.1713
Corugea 35.67 27.69 34.34 26.52 22.48 22.4062 22.3283
Hârs, ova 37.95 28.06 35.51 27.16 35.03 35.6281 35.2566
Jurilovca 34.89 27.89 34.35 27.31 23.04 24.1018 23.9813
Mangalia 35.65 26.86 35.03 26.81 42.73 42.0429 41.9517
Medgidia 35.89 27.41 34.89 26.82 22.58 22.3809 22.3073

Tulcea 38.55 29.84 36.15 28.19 43.54 44.0204 43.4118
Sulina 36.99 29.04 35.62 28.03 34.47 33.0844 33.0501

Average 35.30 26.90 34.55 26.08 31.02 30.93 30.37

* Results from [18], Table 2; ** Results from [18], Table 1.

The MAEs in the two-point/swap algorithm are smaller than those from the IDW with
β = 2, in 80% cases (all, but the first and sixth station), and comparable for the first station.

The MAEs in the two-point/swap algorithm are smaller than those from the IDW
(β = 1.042), they in 60% cases (all, but the first and sixth station), and comparable for the
first station.

The average MAE in the two-point/swap approach (23.5228) is significantly smaller
than those in the IDW with β = 2 (26.90), and IDW with β = 1.042 (26.08).

From the computational viewpoint, the highest computational time in our experiment
was 10.5875 (in the two-point scenario), while in the grid search to estimate beta with 3
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decimals takes 60 seconds for each series, so, a total of 60*10 stations = 600 seconds, which
is 56.67 times higher than in our approach.

The last two columns of in Table 7 contains the MSE in the optimized IDW, denoted
by OIDW [18], in two scenarios, as described in [18]—with different beta, found using a
Particle Swarm Optimization (PSO) approach (column 7), or with a single best beta found
by the same approach.

In term of MSE, our GA algorithm (Table 7, column 8) performs better that OIDW
(Table 7, columns 7 and 8) in 80% of cases. Therefore, we can say that a significant
improvement of the interpolation performances are obtained, that may reflect in the water
management policy.

4. Conclusions

In this article, we presented a new approach to finding the beta parameter in IDW,
using a GA implemented in four scenarios. The settings of this GA were optimized for
finding the best fitness function and, by consequence, the best parameter beta, for all the
study sites, not only for some of them.

It is shown that the algorithm proposed here performs better (in all scenarios) than the
classical one (with β = 2 and β = 1.042) in terms of average MSE and MAE. When compared
the MSEs and MAEs for the individual stations, the following results are obtained:

• In IDW with β = 2, MSE is smaller only for Hârs, ova, Mangalia, and Sulina, compared
to the GA with a two-point swap.

• In IDW with β = 2, MAE is smaller only for Adamclisi and Mangalia, compared to the
GA with a two-point swap.

• In IDW with β = 1.042, MSE is smaller than in GA (with two-point/swap) only for
Adamclisi, Mangalia, and Sulina.

• In IDW with β = 1.042, MAE is smaller than in GA with a two-point swap only for
Adamclisi, Cernavoda, and Mangalia.

The algorithm performs faster than the classical IDW, for which the running time on
the same problem is 60s for each interpolated data series (so 600s for all ten series). It is
easy to be implemented and used and can be applied to similar problems only by changing
the input data.

Compared with other artificial intelligence methods used for finding beta (OIDW) our
approach shows superior performances in 80% of cases.

Another advantage is that our algorithm provides a single beta for all the stations,
optimizing the interpolation.

The results obtained in all four GA’s scenarios are comparable. Since the execution
time is the highest in the best scenario (Table 5), the other alternatives can be successfully
used for the spatial interpolation when the number of series or the number of records per
station is very high.
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