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Abstract: The objective of this research is to develop a module for the design of best management
practices based on percent pollutant removal. The module is a part of the site-scale integrated
decision support tool (i-DSTss) that was developed for stormwater management. The current i-DSTss
tool allows for the design of best management practices based on flow reduction. The new water
quality module extends the capability of the i-DSTss tool by adding new procedures for the design of
best management practices based on treatment performance. The water quality module can be used
to assess the treatment of colloid/total suspended solid and dissolved pollutants. We classify best
management practices into storage-based (e.g., pond) and infiltration-based (e.g., bioretention and
permeable pavement) practices for design purposes. Several of the more complex stormwater tools
require expertise to build and operate. The i-DSTss and its component modules including the newly
added water quality module are built on an accessible platform (Microsoft Excel VBA) and can be
operated with a minimum skillset. Predictions from the water quality module were compared with
observed data, and the goodness-of-fit was evaluated. For percent total suspended solid removal,
both R2 and Nash–Sutcliffe efficiency values were greater than 0.7 and 0.6 for infiltration-based and
storage-based best management practices, respectively, demonstrating a good fit for both types of
best management practices. For percent total phosphorous and Escherichia. coli removal, R2 and
Nash–Sutcliffe efficiency values demonstrated an acceptable fit. To enhance usability of the tool by a
broad range of users, the tool is designed to be flexible allowing user interaction through a graphical
user interface.

Keywords: stormwater; best management practices; i-DSTss; percent pollutant removal

1. Introduction

Increased building, roadway, and parking lot densities associated with urbanization
result in an expansion of impervious cover in urban watersheds. Impervious surfaces do
not allow for the natural infiltration of stormwater and lead to increased runoff volumes,
peak flow rates, and decreased water quality in the watershed’s receiving water body [1–3].
Impervious surfaces also accumulate pollutants, such as trash, gasoline, and fertilizers, that
can adversely affect the water quality in the receiving water body as they are washed off
during storm events [4]. These pollutants disrupt the natural environment by impacting
certain aquatic species; promoting eutrophication, which leads to oxygen depletion and
clogging of waterways; and increasing the potential for human health hazards [5–7]. Best
management practices (BMPs) are evolving stormwater management approaches using
natural processes to mitigate stormwater runoff and water quality. BMPs include structural,
vegetative, or managerial practices used to treat, prevent, or reduce water pollution. In
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this study, we group BMPs in two categories: infiltration-based and storage-based BMPs.
The infiltration-based BMPs alter runoff from drainage areas through infiltration while
storage-based BMPs alter runoff mainly though storage. BMPs are implemented to achieve
an integrated stormwater management using multiple BMP options [8]. Management of
stormwater runoff quality and quantity using BMPs is a multi-benefit solution that can
address both stormwater quality and quantity concerns [9,10].

BMP design for water quality improvement is often based on assumed performance or
non-site-specific empirical estimation rather than premised on a fundamental understand-
ing of pollutant removal mechanisms for the specific BMP at a specific site [11]. Thus, BMP
design tools capable of more detailed analysis of water quality improvement are needed.
More research is needed to properly characterize the interactions between hydrologic
impacts of BMPs, processes for contaminant removal, and water quality performance.

An initial version of the tool (i-DSTss: site-scale integrated decision support tool) was
developed for the design of BMPs based on flow reduction only [12]. A new water quality
module was added to i-DSTss during this study. Thus, the current version of the i-DSTss
allows the design of BMPs based on flow reduction and/or percent pollutant removal. The
i-DSTss is a stormwater management model developed by the research team for the design
of BMPs based on flow reduction [12,13]. The water quality module within i-DSTss includes
a physically based mass balance approach for the design of infiltration- and storage-based
BMPs according to percent pollutant removal.

Pollutant removal processes vary based on both type of BMPs and type of pollutants.
Removal processes may include sedimentation, filtration, infiltration, and adsorption. Sedi-
mentation involves the gravitational settling of suspended particles from runoff in ponds
and infiltration-based BMPs such as bioretention cells. This is also a major mechanism for
some pollutants that sorb to particulate matter and settle (e.g., phosphorus) [14]. Filtration
removes particulates as they pass through a porous medium such as sand, vegetation,
soil mixes, and gravel [15]. Pollutants can also be removed in infiltration-based BMPs
as stormwater infiltrates into the aquifer [16]. Pollutants can also be removed in BMPs
through sorption on to soil mixes and organic filters [17].

The physical, chemical, and biological process occurring in BMPs are complex; thus,
detailed procedures are required for calculating BMP efficiency and effectiveness. Detailed
models can be calibrated to capture observational data more accurately than over-simplified
models. The International Stormwater BMP Database is a publicly accessible repository for
BMP performance, design, and cost information. The project website features a database
of over 700 BMP studies, performance analysis results, tools for use in BMP performance
studies, monitoring guidance, and other study-related publications [18]. The database is
the result of an effort by the Environmental Protection Agency (EPA) to collect stormwater
quality data in the United States. It includes the concentration of different pollutant types,
such as Total Suspended Solid (TSS), phosphorous, and other types of pollutants, collected
from different EPA rainfall zones. The database characterizes BMP performance based
on event mean concentration (EMC). The EMC is a key analytical parameter defined as
the total pollution load (M) divided by the total runoff volume (L3) [19]. Although some
groups believe that a better method for measuring performance is the amount of flow
treated and effluent quality [20], an outlet EMC value is probably the simplest single
measure of BMP performance. While an outlet EMC may be an appropriate method for
determining the reduction in pollutant concentrations for an individual event, an EMC
may not give an indication of the long-term performance of the BMP or the performance
for runoff events of varying intensity and volume [21]. The outlet EMC model could be a
good option when site-specific EMC data are available and when physically based models
could not sufficiently describe the pollutant removal phenomena. The use of literature data
based on land use may limit the accuracy of this EMC approach due to the variabilities in
climatologic and physiographic characteristics of individual watersheds.

Strecker et al. (2001) discussed the challenges of using monitoring data to develop
consistent estimates of BMP effectiveness and pollutant removal [20]. Thus, modeling these
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processes at a fundamental level requires estimation of pollutant removal based on physical
design parameters, hydraulic variables, and intrinsic chemical properties and reaction rates.
Several models have been developed to estimate the pollutant removal capacities of BMPs.
The Minnesota Pollution Control Agency (MPCA) Estimator worksheet [22] presents a
calculator approach to computing the pollutant load reduction for total phosphorus (TP)
and TSS with a simple method. The estimator applies only to specific structural stormwater
BMPs and is a simplistic tool that provides estimates of loading and load reductions.
Therefore, it is not an appropriate tool for modeling a stormwater system or selecting
BMPs. The estimator computes pollutant reduction using BMP performance data from the
International BMP Database [18].

In some of the previous tools, the size of BMPs was determined as a function of
drainage area, imperviousness, flow rate, pollutant loads, depth of BMP, and infiltration
rate. Examples include the Minimal Impact Design Standards (MIDs) calculator [23] and the
California Phase II Low Impact Development (LID) Sizing Tool [24]. These tools developed
a graph that relates percent flow captured or percent pollutant reduction to a sizing factor
(a dimensionless area, which is the ratio of the area of the BMP to the drainage area). The
limitation of these approaches is that the performance curves are just applicable to the
specific sites. A more robust approach was developed and implemented in the current
water quality module, describing the relationship between percent pollutant removal.

Pollutant removal is often estimated using first-order decay kinetics [25,26]. The com-
monly applied Storm Water Management Model (SWMM) uses a conceptual continuous-
flow, stirred-tank reactor (CFSTR) model to model water quality treatment in impound-
ments [27]. Conceptually, the CFSTR represents all treatment or removal processes that
act to reduce EMCs of constituents as they pass through the BMP. The use of empirical
approaches and constant concentration (EMC) for water quality prediction include assump-
tions that could potentially limit the accuracy of such models [28]. This method does not
account for the loss of water by infiltration and evapotranspiration, which acts to reduce
loads especially for BMP facilities. However, SWMM simulation also accounts for storage
changes during inflows to and outflows from the facility. The main removal mechanism
available with SWMM is first-order decay.

Similar to the CFSTR approach in SWMM [27], System for Urban Stormwater Treat-
ment and Analysis IntegratioN (SUSTAIN) [29] implements first-order reaction decay for
pollutant removal by BMPs. These models are relatively complex, require extensive data
processing, and modeling expertise to set up and operate. Other simplified tools presented
earlier are based on simplified empirical approaches such as the Minnesota Pollution
Control Agency (MPCA) Estimator tool [22]. The prediction accuracy of these simplified
tools is low relative to that of the more complex tools, and they are usually applicable to
the specific location where they were initially developed. The water quality module within
i-DSTss is user-friendly and includes rigorous approaches used in the more complex tools
(e.g., SUSTAIN). The water quality module within i-DSTss can be used to calculate BMP
removal efficiency for multiple types of BMPs based on user-defined data such as BMP
geometry and BMP characteristics (e.g., soil type, depth, and surface area).

A significant merit of the i-DSTss water quality module is that complex approaches
were translated into easy to use, computationally less intensive, yet rigorous, physically
based modules. In the development of the water quality module, attempts were made
to make a balance between model accuracy, model parsimony, and model transparency,
which are the fundamental principles of model development [30]. The limitation of the
water quality module is that it considers more parameters, e.g., soil type and decay rate,
than simple models. The current water quality module uses generic default values for
some parameters (e.g., decay rate). Other parameters are populated according to soil
type based on literature values. Thus, the tool requires site-specific parameter values
or the determination of more realistic values via calibration to yield better results. The
limitation of the current tool is that it requires the influent concentration to be provided by
the user. Future modifications should connect the tool to the National Stormwater Quality
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Database (NSQD) [31]. The advantage of the water quality module is that it is developed
on the commonly used Excel-VBA platform, which requires minimum skillset, allowing a
broader use.

The objective of this study is to develop and demonstrate a relatively detailed but
easy-to-use sizing tool that can be used to design different types of BMPs based on water
quality in urban watersheds. The water quality module is capable of analyzing scenarios of
tradeoffs between BMP size and percent pollutant reduction. The result of the water quality
module was verified with observed data for a permeable pavement and a wet detention
pond in Madison, Wisconsin.

2. Methodology
2.1. Water Quality Module

The conceptual framework of the water quality module within the i-DSTss tool is
shown in Figure 1. Inputs into the water quality module include inflow hydrograph, BMP
features and characteristics, and water quality parameters such as decay rate. Similar to
the approach implemented in SUSTAIN [29], adsorption, settling, and filtration processes
are lumped into one parameter, that is, decay rate.

The water quality module groups processes by BMP and pollutant type. Outputs from
the water quality module include percent pollutant removal and pollutant design curve.
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Figure 1. Conceptual framework for water quality module.

The water quality module is developed to calculate percent pollutant removal of BMPs
based on the user-defined geometry and characteristics of BMPs. The sizing approach is
different for infiltration-based BMPs and storage-based BMPs. In addition to the BMP
types, the approaches implemented vary by pollutant type. The approaches used are
summarized in Table 1 below. The water quality module includes 13 types of BMPs and
7 pollutants. BMP types are categorized in two different groups:

(i) storage-based BMPs such as dry pond and wet pond,
(ii) infiltration-based BMPs such as infiltration basin, dry well, infiltration trench, sand

filter, porous pavement, grassed swale, vegetated filter strip, bioretention, rain garden,
tree box, and wetland.

Table 1. Sizing approaches for different best management practice (BMP) groups by pollutant types.

BMP Group Pollutant Removal Approach
Reference

Colloids Dissolved Pollutant

Infiltration-based Simplified CFT Decay rate
Yao et al. (1971) [32]

and Tinoco et al.
(1995) [33]

Storage-based Settling Decay rate

Wilson et al. (1984)
[34], Chen et al. (1975)
[35], and Tinoco et al.

(1995) [33]
CFT, colloid filtration theory.

The functional relations between percent pollutant removal were developed based on
mass balance. The details are presented in Sections 2.2 and 2.3.
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2.2. Infiltration-Based BMP Sizing According to Percent Pollutant Removal

The water quality module within i-DSTss allows up to seven pollutant types including
colloids such as TSS and dissolved pollutants such as nutrients (total nitrogen (TN) and
total phosphorous (TP)), metals, and bacteria such as Escherichia coli (E. coli) and fecal
coliforms. A simplified colloid filtration theory (CFT) and decay rate approach have been
implemented for the removal of colloids and dissolved pollutants, respectively.

A conceptual diagram for pollutant removal processes in infiltration-based BMPs
is shown in Figure 2. The number of layers vary in infiltration-based BMPs, with some
BMP having three layers (a surface layer/ponding depth, a soil media layer, and a storage
layer/gravel layer) and others with only a surface layer or a combination of surface
layer with either soil media layer or storage layer [12]. When runoff enters infiltration-
based BMPs, part of it becomes overflow and part of it percolates into the deeper soil
and discharges via an underdrain. For the part that becomes overflow, percent pollutant
removal is calculated in a similar way as for storage-based BMPs (presented later in
Section 2.3.). For the part that discharges via the underdrain, percent pollutant removal is
calculated based on decay rate and travel time in each layer. Finally, a combined efficiency
is calculated based on concentration and proportion of overflow and underdrain amounts.
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Figure 2. Conceptual diagram for pollutant removal processes in infiltration-based BMPs.

The combined removal efficiency for infiltration-based BMPs is given by Equation (1)
as follows:

EC(%) = Ess(%) × (QIN − QOF)

QIN
+ Es(%)× QOF

QIN
(1)

where Ec is combined efficiency, Ess is weighted average efficiency of soil media layer and
storage/gravel layer, Es is efficiency of surface layer/ponding depth, QIN is runoff into an
infiltration-based BMP in m3

s , and QOF is the overflow runoff out of an infiltration-based

BMP in m3

s .
Removal efficiencies required in Equation (1) for the soil layer and storage layer can

be calculated using Equations (2) and (4) separately. Then, a weighted average efficiency
based on depth for both the soil layer and the storage layer is calculated. The approach used
to calculate removal efficiency of surface layer is also similar to the methods developed for
storage-based BMPs presented later in Section 2.4.

Default decay rate values are used for TP and E. coli for different types of BMPs. These
values are changeable by the user and can be used for the calibration of the tool.
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Equations (2) and (4) show the percent colloid and dissolved pollutant removal for
infiltration-based BMPs as a function of BMP areas, respectively. Equation (2) is derived
from colloid filtration theory [32,36] by simplifying interception and sedimentation terms,
ignoring the diffusion term, and rearranging to solve for the percent colloid removal
(details about BMP sizing approaches built into the water quality module are provided in
Supplementary Materials). Equation (3) shows the interception transport mechanism and
sedimentation transport mechanism terms used in Equation (2). Equation (4) is derived
from the first-order decay reaction method [33] and was rearranged in a format to calculate
the percent dissolved pollutant removal (details about BMP sizing approaches built into
the water quality module are provided in Supplementary Materials).

Percent colloid pollutant removal (%) = 1 − e
−3
2 (1− f )αn z

dc
(2)

n =
3
2

(
dp

dc

)2

+
vsABMP

QIN − QOF
, where vs = 2.81d2

p (3)

Percent dissloved pollutant removal (%) = 1 − e−k
dmedia (ABMP∗θ)

QIN−QOF (4)

where f is filter bed porosity, α is collision efficiency factor, n is single collector efficiency, z
is filter bed depth in m, dp is median particle diameter in m, dc is collector diameter in m,
ABMP is surface area of the BMP in m2, θ is water content, dmedia is depth of soil media in
m, Q is runoff flow in m3

s , vs. is settling velocity in m
s , and k is decay rate values in 1

s , QIN

is runoff into a BMP in m3

s , and QOF is overflow runoff out of a BMP in m3

s .

2.3. Storage-Based BMP Sizing According to Percent Pollutant Removal

A similar approach was implemented for storage-based BMP types. Equations (5)
and (7) show the percent TSS/colloid removal and percent dissolved pollutant removal
for storage-based BMPs as a function of BMP size and flow characteristics. Equation (5) is
derived from the ratio of settling velocity to critical velocity equation [35] and rearranged
in a format to calculate the percent colloid removal (details about BMP sizing approaches
built into the water quality module are provided in Supplementary Materials). Critical
velocity is equal to the water flow rate into the pond divided by the pond surface area. A
settling velocity greater than a critical velocity for a given particle size suggests that the
particle is trapped before leaving the storage-based BMPs.

Equation (6) shows the equation for settling velocity, vs, [34] used in Equation (5).
Equation (7) is derived from first-order decay [33] rearranged in a format to calculate the
percent dissolved pollutant removal (details about BMP sizing approaches built into the
water quality module are provided in Supplementary Materials).

Percent colloid pollutant removal (%) = 1 − e−
vs∗ABMP

QIN (5)

vs = 10−0.34246(log D)2+0.9812(log D)−0.33801 (6)

Percent dissolved pollutant removal (%) =
kdBMPABMP

QIN
(7)

where vs is the settling velocity in m
s , D is the mean sieve diameter of grains in m, dBMP is

the depth of the BMP in m, and QIN is runoff into a BMP in m3

s .

2.4. Performance Curve

Finally, the water quality module creates the BMP performance curve, and the BMP
efficiency will be obtained from the performance curve. The performance curve is a curve
in which BMP removal efficiency is graphed with respect to the sizing factor (the ratio of
the area of the BMP to the area of the watershed). Relating the efficiency of the BMP to
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the size of the BMP and drainage area (described in detail in Supplementary Materials)
assists the BMP design process [37]. Developing performance curves from the local climate
provides a starting point to estimate actual reductions that could be achieved. Performance
curves highlight the need to consider design parameters relative to total maximum daily
load (TMDL) allocations (i.e., acceptable range for the watershed). Furthermore, these
curves bracket the sensitivity of a range of assumptions for more significant parameters
(e.g., surface area, infiltration rate) to evaluate potential BMP effectiveness [29]. The water
quality module enables users to explore the tradeoff between the primary sizing (design
criteria) and BMP performance by providing a performance curve.

3. Water Quality Module Test Cases—Performance Evaluation

To demonstrate the performance of the water quality module, measured water quality
data were compared to simulated outputs for infiltration-based and storage-based BMPs.
The details are presented in Sections 3.1 and 3.2.

3.1. Infiltration-Based BMP

To demonstrate the performance of the water quality module, measured water quality
data from a permeable pavement were used. A parking lot with an area of 1324 m2 in
Madison, Wisconsin, drains into the permeable pavement located at the outlet of the
parking lot. Figure 3 shows the parking lot and the permeable pavement. Inflow and
outflow volumes were measured for different events [38]. A comparison of measured
and simulated outflow volumes was presented by Shojaeizadeh et al. (2019) [12]. In
this research, the fidelity of the water quality module was assessed based on comparison
of simulated and measured percent pollutant removal for different types of pollutants
including TSS, TP, and E. coli. Statistical evaluation techniques including R2 and the
Nash–Sutcliffe coefficient of (NSE) were used as performance measures.
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pavers at the outlet of Parking lot located in Madison, Wisconsin [38].

The total area of permeable pavement was 139.35 m2 consisting of three permeable
pavement surfaces (permeable asphalt, permeable concrete, and permeable interlocking
pavers) with equal area of 46.45 m2. The permeable pavement was developed for reducing
runoff via infiltration and improving the quality of stormwater runoff originating from a
conventional asphalt parking lot. Effluent water quality from the permeable pavement was
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compared with simulated outputs from the water quality module. A permeable pavement
including each of the test plots is shown in Figure 3. The permeable pavement had a depth
of approximately 50 cm. An impermeable membrane lining a sloped base (approximately
2 percent) was placed under the permeable pavement to collect and measure the infiltration
rate. Actual removal efficiency was based on comparisons of the influent and effluent
pollutant load for sampled events. Storm event loads at each monitoring location were
computed by multiplying the EMC and event runoff volumes. Field and sample-processing
equipment blanks were collected at all sample collection points, to evaluate the integrity
of the water-quality sampling process, identify whether sample contamination existed
and, if so, to identify possible sources [38]. Most of the available observed data were for
the year 2015. We compared storm events from 2015 with the percent pollutant removal
obtained from the water quality module. For each event, time series data were available
for both precipitation and runoff. To make sure the results were accurate, volume of runoff
into permeable pavement calculated using i-DSTss was compared with observed volumes
before the start of comparing simulated water quality data with observed data.

Table 2 shows a list of parameters and their values used in the water quality module
within i-DSTss for colloids and dissolved pollutants for the case study. Some are design
variables and others are model parameters. Both design variables and model parameters
can be changed by the user. Parameter values can be obtained from literature or determined
by calibration (e.g., decay rate).

Table 2. List of parameters and their values used in the water quality module by pollutant type.

Parameters
Colloids Dissolved Pollutant

Values Values

Surface area (m2) 46.45 46.45

Soil/paver depth (cm) 15.24 15.24

Storage depth (cm) 40.64 40.64

Saturated moisture content
(%) 0.45 0.45

Decay rate (1/day) - TP: 0.25 *
Escherichia coli: 2.0

QIN (m3/s)
Calculated for each event Calculated for each event

QOF (m3/s)

Ponding depth (cm) 0 0

dc (mm) 0.1 -

dp (mm) 0.02 -

α 0.5 -

f 0.5 -
* SUSTAIN model [29] suggests 0.2/day. TP, total phosphorus.

3.2. Storage-Based BMP

To demonstrate the performance of the water quality module, measured water quality
data from a wet detention pond obtained from studies conducted by the U.S. Geological
Survey (USGS) were used. The University of Wisconsin Arboretum in Madison, Wisconsin,
constructed the Marion Dunn wet detention pond to protect the water quality and ecology
of Lake Wingra from the effects of storm–sewer inflow to the lake (Figure 4). The Marion
Dunn Pond is located on the downstream side of Monroe Street and the average basin
slope is 2.2 percent. The pond has a surface area of 5670 m2, a maximum depth of 2.3 m,
and an average depth of 1.1 m at normal pool elevation (Figure 4). It has a surcharge
storage volume above the normal pool elevation that is capable of holding the 10-year,
24-h storm-runoff volume without overtopping. The pond has two outlets controlled by
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45-degree V-notch weirs that drain to channels leading to Lake Wingra. The bottom of the
pond consists of a clay layer that inhibits infiltration of water from or into the pond.

The Marion Dunn wet detention pond was monitored by the USGS to determine
its effect on the water quality of urban runoff. The Marion Dunn Pond has a drainage
area of 0.96 square kilometer, composed primarily of residential land use. TSS and TP
event mean concentrations were determined from the detention pond inflow and outflow
samples. EMC samples were collected for 64 runoff events. The data used for performance
evaluation were not recent, however, the sampling techniques and analytical methods used
are still valid. Thus, the data could still be used to conduct a valid comparison. Storm
precipitation ranged from 1 to 51 mm during these events [39].
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Table 3 shows a list of design and parameter values used in the water quality module
for colloids and dissolved pollutants.

Table 3. List of design variables and parameter values used in the water quality module by pollu-
tant type.

Variable/Parameters
Colloids Dissolved Pollutant

Values Values

Surface area (m2) 5670 5670
Average depth (m) 1.1 1.1
Decay rate (1/day) - TP: 0.25 *

QIN (m3/s) Calculated for each event Calculated for each event
D (mm) 0.02 -

* SUSTAIN model [29] suggests 0.2/day.

4. Results and Discussion
4.1. Performance Criteria

Many papers discussing the calibration of watershed models (e.g., [40,41]) use the
coefficient of determination, R2, to measure the quality of calibration, which describes the
degree of collinearity between simulated and observed values and varies from 0 to 1. R2

values greater than 0.5 are considered acceptable [42].
Although R2 has been widely used for model evaluation, this statistic is oversensitive

to outliers and insensitive to additive and proportional differences between simulated
values and observed data [43]. Hence, measures such as the Nash–Sutcliffe coefficient of
efficiency (NSE) [44] and root mean square error (RMSE) are often considered to be more
appropriate [45]. Thus, the NSE was also calculated. The limitation of NSE is that it does
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not include weighting, and thus ignores differences in uncertainty in observations [46].
NSE determines the model efficiency as follows:

NSE = 1 − ∑n
i=1(Si − Oi)

2

∑n
i=1(Oi − OMean)

2

where Oi is observed data, Si is simulated values, and OMean is observed mean data.
In this section, the results of two case studies including an infiltration-based BMP

(permeable pavement) and a storage-based BMP (wet pond) are presented in Sections 4.2
and 4.3, respectively.

4.2. Infiltration-Based BMP

Percent TSS, TP, and E. coli removal from the water quality module were compared
with observed data from a permeable pavement in Madison, Wisconsin. Table 4 shows
precipitation values and antecedent dry time for different events.

Table 4. Storm event number, precipitation volume, and antecedent dry time.

Event Number 1 2 3 4 5 6 7

Precipitation (mm) 7 9 46 14 15 12 6
Antecedent dry time (days) 9 1 12 3 9 9 24

Figure 5a compares percent TSS removal between observed data and simulated values
for different events and shows the coefficient of determination, R2 and NSE, between
observed and simulated values for all events. As shown in Figure 5a, both R2 and NSE are
greater than 0.7, which is relatively good.
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Figure 5. Scatter diagram of observed and simulated values for (a) percent TSS removal, (b) percent TP removal, and (c)
percent E. coli removal.

Figure 5b compares percent TP removal between observed data and simulated values
for different events and shows the coefficient of determination, R2 and NSE, between ob-
served and simulated values for six events (excluding event number 4) for which observed
data were available. As shown in Figure 5b, both R2 and NSE are around 0.5, which is
relatively acceptable.

Figure 5c compares percent E. coli removal between observed data and simulated
values for different events and shows the coefficient of determination, R2 and NSE, between
observed and simulated values for four events (excluding events number 2, 5, and 7) for
which observed data were available. As shown in Figure 5c, R2 is 0.69 (relatively good)
and NSE is 0.44 (relatively acceptable). Summarizing Figure 5a–c shows that the water
quality module had better overall performance and prediction for percent TSS removal.
The module had acceptable performance for percent TP and E. coli removal.
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4.3. Storage-Based BMP

Simulated percent TSS and TP removal were compared with observed data for the
Marion Dunn wet detention pond in Madison, Wisconsin. Table 5 shows precipitation
values and antecedent dry time for different events.

Table 5. Storm event number, precipitation volume, and antecedent dry time.

Event Number 1 2 3 4 5 6 7 8 9 10

Precipitation (mm) 18 15 43 8 51 21 19 12 29 20
Antecedent dry time (days) 5 9 4 1 6 5 2 7 9 4

Figure 6a compares percent TSS removal between observed data and simulated values
for different events and shows the coefficient of determination, R2 and NSE, between
observed and simulated values for all events. As shown in Figure 6a, both R2 and NSE are
greater than 0.6, which is relatively good.
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Figure 6. Scatter diagram of observed and simulated values for (a) percent TSS removal and (b) per-
cent TP removal.

Figure 6b compares percent TP removal between observed data and simulated values
for different events and shows the coefficient of determination, R2 and NSE, between
observed and simulated values for all events. As shown in Figure 6b, R2 is 0.78 (relatively
good) and NSE is 0.58 (relatively acceptable).

Summarizing Figure 6a,b shows that the water quality module had better overall
performance and prediction for both of percent TSS and TP removal. The module had
slightly better performance for percent TP removal. Additionally, the storage-based rou-
tines outperformed the infiltration-based routines at these two sites.

5. Conclusions

The water quality module is a part of the i-DSTss tool, which integrates several
modules, including hydrology, BMP selection, BMP sizing, and cost. The water quality
module includes sizing options for infiltration-based BMPs and storage-based BMPs.
Decision-support tools in stormwater management become more useful to the users when
they integrate multiple criteria and modules. Several factors were considered in the
development of the water quality module within the i-DSTss including model accuracy,
user interaction, and transparency. The water quality module employs a user interface
that allows easy interaction; thus, it can be used by a wide range of users and designers
who may not be modelers. The water quality module is relatively simple to implement,
but equations for BMP performance and sizing are based on robust physically based, mass
balance approaches.

To assess the fidelity of the tool, predictions from the water quality module were
compared with observed data and the goodness-of-fit was evaluated for both BMP types
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including infiltration-based (a permeable pavement) BMPs and storage-based BMPs (a
wet pond). The water quality module predicted BMP efficiency for three pollutant types
including TSS, TP, and E. coli from a permeable pavement in Madison, Wisconsin. For
percent TSS removal, both R2 and NSE values were greater than 0.7, demonstrating a good
fit. For percent TP and E. coli removal, R2 and NSE values were around 0.5, demonstrating
an acceptable fit. The water quality module also predicted BMP efficiency for two pollutant
types including TSS and TP from the Marion Dunn wet detention pond in Madison,
Wisconsin. For percent TSS removal, both R2 and NSE values were greater than 0.6, which
is a relatively good fit. For percent TP removal, R2 is greater than 0.7 and the NSE value is
greater than 0.5. A significant merit of the water quality module is that complex approaches
were translated into easy to use, computationally less intensive, yet rigorous physically
based modules that could be verified with observations. Due to the assumptions and
simplifications made in the development, the tool has limitations. The physically based
tool developed in this study may not be able to capture performance under complex
environmental conditions. The tool does not account for the effect of temporal change in
soil hydraulic properties due to physical or biological clogging or biogeochemical changes
due to season. Future developments should consider the change in BMP efficiency over
time. The tool does not include site-specific decay rate values. Future work should include
testing the tool at different locations to develop site-specific values. However, the tool can
generate better results than simplified empirical methods.
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1/13/6/844/s1, A. Design procedure for different BMP group.
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