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Abstract: Increasing air temperature is a significant feature of climate warming, and is cause for
some concern, particularly on the Tibetan Plateau (TP). A lack of observations means that the impact
of rising air temperatures on TP lakes has received little attention. Lake surfaces play a unique role in
determining local and regional climate. This study analyzed the effect of increasing air temperature
on lake surface temperature (LST), latent heat flux (LE), sensible heat flux (H), and ice phenology
at Lake Nam Co and Lake Ngoring, which have mean depths of approximately 40 m and 25 m,
respectively, and are in the central and eastern TP, respectively. The variables were simulated using an
adjusted Fresh-water Lake (FLake) model (FLake_α_ice = 0.15). The simulated results were evaluated
against in situ observations of LST, LE and H, and against LST data derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) for 2015 to 2016. The simulations show that when
the air temperature increases, LST increases, and the rate of increase is greater in winter than in
summer; annual LE increases; H and ice thickness decrease; ice freeze-up date is delayed; and the
break-up date advances. The changes in the variables in response to the temperature increases are
similar at the two lakes from August to December, but are significantly different from December
to July.

Keywords: Tibetan Plateau; climate warming; lake surface temperature; heat exchange; lake ice phe-
nology

1. Introduction

Climate change has received much attention in recent decades. The Intergovernmen-
tal Panel on Climate Change (IPCC) Working Group I’s contribution to the IPCC Fifth
Assessment Report (WGI AR5) [1], specifically the chapter “Observations: atmosphere and
surface”, shows that the global average surface temperature warmed by 0.85 ◦C (0.65 to
1.06 ◦C) between 1880 and 2012. Global surface temperature is likely to change by more
than 1.5 ◦C by the end of the 21st century under almost all representative concentration
pathway (RCP) scenarios, and the change is likely to exceed 2 ◦C under RCP8.5 [1]. Lakes
have a near-global distribution. Differences between land and lake surfaces mean that lakes
play a unique role in determining local and regional climate, for example through their low
albedo, small roughness length, and high heat capacity [2–4]. They are considered to be
sentinels of climate change [5]. Recent studies have found significant warming for lakes
throughout the world, with a mean increasing trend of 0.34 ◦C per decade between 1985
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and 2009. In many cases, the observed rate of lake warming is more rapid than the air tem-
perature increases seen at high latitudes, which may indicate a close relationship between
these [6–9]. Lake surface temperature is an important indicator of the lake state and the
evaporation process occurs only on the skin layer (~10 µm) of the water body [9,10]. The
lake surface temperature is affected not only by the interactions between the atmosphere
and the skin layer, but also between the skin layer and the water column [11]. The former
interaction is governed by four primary meteorological variables: solar radiation, atmo-
spheric humidity, air temperature, and wind speed; while the latter is controlled by the
energy stored in the water body [12,13]. Trends towards earlier break-up and later freeze-
up dates for lake ice have been observed for most lakes in Canada between 1951 and 2012,
with the latter showing a lower degree of temporal coherence than the former [14]. Studies
have shown that a shortening of the frozen period can lead to an earlier establishment
of the summer thermocline in lakes, which accelerates the warming of the upper lake
water [9,15]. The freezing date of a lake is significantly affected by the lake’s heat storage,
air temperature and other climatic variables such as weed speed, while the melting of lake
ice is mainly determined by air temperature and solar radiation [16,17]. Several additional
lake responses to climate change have also been widely observed globally, such as more
stable stratification and shallower thermocline depths [18–20].

The Tibetan Plateau (TP) is a large distinct geographic region, with a mean elevation
that exceeds 4000 m. The TP is sometimes called the Asian Water Tower, and is more sensi-
tive to climate change than global land surfaces are (0.46 ◦C per decade, 1984–2009) [21–23].
The TP has experienced rapid climate change, with surface air warming and moistening,
solar dimming, and wind stilling. Precipitation is increasing over the central TP, and is
decreasing in the Himalayan region [23,24]. The environmental changes experienced on
the TP are mostly associated with rapid surface warming [23]. The annual mean air temper-
ature between 1980 and 2018 obtained from the 95 China Meteorological Administration
(CMA) weather stations on the TP is 4.1 ◦C [25]. For a global average temperature increase
between 1.5 ◦C and 2.0 ◦C at the end of the century (2100), the increases in the maximum
temperatures on the TP are projected to be between 2.34 ◦C and 3.20 ◦C under RCP4.5, and
between 2.34 ◦C and 3.14 ◦C under RCP8.5, respectively [26]. These projections are helpful
for the sensitivity experiments in our study.

The TP includes 57.2% of all lakes in China, and these account for ~1.9% of the total
global lake surface area [27–29]. The lakes on the TP are completely covered by ice for
5–7 months each year, with a total ice area of approximately 5 × 104 km2 in 2018 [29,30].
Mixing in ice-covered lakes can be caused by through-flow currents, by oscillations in
the ice cover, by heat flow from the sediments, or by solar radiation penetrating the
ice (influenced by the ice albedo). In contrast to high-latitude areas, solar radiation is
very strong on the TP and there is little snow, and there is almost none on lake surfaces,
where snow is blown by the wind, meaning that convection, driven by penetrating solar
radiation, is more effective, particularly in the ice melt period [31]. The impact of the
rising air temperature on lake ice phenology may be clearer for lakes on the TP. Studies
have shown that the area, level and volume of lakes on the TP decreased slightly from
1976 to the mid-1990s, and then increased rapidly [25]. These lakes play an important
role in the global water cycle and the Asian monsoon system. They are highly sensitive
to global climate change and are therefore an effective indicator of the absence of direct
anthropogenic influences [24,32–36]. Lakes can affect local land–atmosphere interactions
and regional heat and water budgets, and can impact on local atmosphere boundary layer
processes, as shown in numerical climate model simulations [25,37]. The characteristics
of the surface energy balance and turbulent exchange differ from lake to lake, depending
on the lake area and depth, as well as on meteorological conditions [38,39]. Long-term
changes in lake evaporation, and in the latent heat fluxes (LE) and sensible heat fluxes (H),
have been shown for Lake Nom Co and Lake Ngoring [40–44].

Almost all the previously mentioned research on lakes on the TP has focused either
on lake–atmosphere interactions at a single lake in ice-free conditions by seasonal in
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situ observation, or on the response of lake area, level and volume to climate change.
The responses of lake surface heat exchange and ice phenology to increasing air temperature
on the TP have rarely been addressed [25].

In this study, our goal is to investigate the response of lake ice phenology, lake surface
temperature (LST), sensible heat flux (H) and latent heat flux (LE) to rising air temperature
for two different lakes (Lake Nam Co and Lake Ngoring) on the TP. Our results were
simulated using the Fresh-water Lake (FLake) model, developed by Mironov [45], and the
model was driven by a dataset of long-term in situ observations. We adjusted the model
parameterization scheme for lake ice albedo and improved the accuracy of the winter
simulations. The simulated results were evaluated against in situ observed LST, H and LE
data, and against LST data derived from Moderate Resolution Imaging Spectroradiometer
(MODIS) observations. Then, lake ice phenology, LST, H and LE were investigated under
different air temperature scenarios. Finally, we analyzed the maximum possible impact of
future air temperature increases on these two lakes on the TP.

2. Study Area, Data and Methods
2.1. Study Area

The Lake Nam Co and Lake Ngoring basins are characterized by a cold and semi-arid
continental climate, and the thermal structure of the lakes means that they belong to the
dimictic lake type. However, the two lakes differ in surface area, depth, latitude, and
altitude. Lake Ngoring is the highest large freshwater lake in China, with a mean depth
of 17 m and a surface area of 610 km2, and is located in the Yellow River source region
on the eastern TP (34.46–35.4◦ N, 97.3–97.55◦ E; 4274 m a.m.s.l.; Figure 1). The average
precipitation between early December and early April is only 28.16 mm (1954–2014) [46].
The minimum and maximum air temperatures occurred in January (−14.2 ◦C) and August
(9.0 ◦C), respectively, and the annual mean air temperature was approximately −1.9 ◦C
(2011–2016). Lake Ngoring is usually completely ice-covered from early December to early
April [15]. The thickest ice appears in late February, and was ~0.7 m in 2013 and 2016 [46].
Lake Nam Co is the highest large lake on Earth, with an area of 2021.3 km2 as of 2010 [47],
and its mean depth is approximately 40 m. It is located on the southern part of the TP
(30.5–30.95◦ N, 90.2–91.05◦ E; 4710 m a.m.s.l.; Figure 1). The average annual precipitation
observed at Nam Co Station amounts to more than 400 mm, and mainly occurs from May
to October (Figure 1) [48]. The minimum and maximum air temperatures occurred in
January (4 ◦C) and July (9.3 ◦C), respectively, and the annual mean air temperature was
approximately 0.5 ◦C (2011–2016). Lake Nam Co is usually completely ice-covered from
early January to late March. Since 1978, the persistence of full ice cover for Nam Co Lake
has decreased by 19 to 20 days [34].

2.2. Data
2.2.1. In Situ Measurements

There are four sets of observations (two weather stations and two monitoring stations)
available for the two lakes. The station data (2011–2016) are used as long-term forcing
to drive the FLake models, which were derived from the Lake Nam Co station and Lake
Ngoring station on the lakeshore. The monitoring stations’ data (2015–2016) are used to
evaluate the model results. The observation site at Nam Co provides LST, H and LE data
(2015–2016), and the observation site at Ngoring provides H and LE data (2015–2016),
as well as lake ice albedo data (2014).



Water 2021, 13, 634 4 of 22
Water 2021, 13, x FOR PEER REVIEW 4 of 24 
 

 

 

Figure 1. The topography around Lake Nam Co and Lake Ngoring, and the location of Nam Co station (upper right), and 

of Ngoring station (lower right). The location of the monitoring station at Lake Ngoring for ice albedo, and at Lake Nam 

Co for lake surface temperature (LST), sensible heat flux (H) and latent heat flux (LE) is also marked. 

2.2. Data 

2.2.1. In situ Measurements 

There are four sets of observations (two weather stations and two monitoring sta-

tions) available for the two lakes. The station data (2011–2016) are used as long-term forc-

ing to drive the FLake models, which were derived from the Lake Nam Co station and 

Lake Ngoring station on the lakeshore. The monitoring stations’ data (2015–2016) are used 

to evaluate the model results. The observation site at Nam Co provides LST, H and LE 

data (2015–2016), and the observation site at Ngoring provides H and LE data (2015–2016), 

as well as lake ice albedo data (2014). 

The weather station at Lake Nam Co was established on the eastern shore of the lake, 

about 1.5 km from the shoreline, in 2005 (green five-pointed star in Figure 1). The auto-

matic weather station (AWS) tower records wind speed, wind direction (WD), air temper-

ature, humidity, pressure, precipitation, and downward short- and long-wave radiation. 

The in situ observation site for Lake Nam Co is situated on an island (an area of approxi-

mately 0.18 km2, shown as a black triangle in Figure 1). An eddy covariance (EC) system 

(4.5m above the island surface) and AWS tower (1.52m and 9.52m above the land surface) 

were established on the island, which is about 10 m from the shore, on July 28th, 2015. The 

EC system has been applied to all kinds of lakes including several lakes of TP to measure 

turbulent fluxes (momentum, sensible heat and latent heat flux) [40,49]. The EC system 

consisted of an open-path CO2/H2O infrared gas analyzer (LI-7500A, LI-COR Biosciences) 

Figure 1. The topography around Lake Nam Co and Lake Ngoring, and the location of Nam Co
station (upper right), and of Ngoring station (lower right). The location of the monitoring station at
Lake Ngoring for ice albedo, and at Lake Nam Co for lake surface temperature (LST), sensible heat
flux (H) and latent heat flux (LE) is also marked.

The weather station at Lake Nam Co was established on the eastern shore of the lake,
about 1.5 km from the shoreline, in 2005 (green five-pointed star in Figure 1). The automatic
weather station (AWS) tower records wind speed, wind direction (WD), air temperature,
humidity, pressure, precipitation, and downward short- and long-wave radiation. The in
situ observation site for Lake Nam Co is situated on an island (an area of approximately
0.18 km2, shown as a black triangle in Figure 1). An eddy covariance (EC) system (4.5 m
above the island surface) and AWS tower (1.52m and 9.52m above the land surface) were
established on the island, which is about 10 m from the shore, on July 28th, 2015. The EC
system has been applied to all kinds of lakes including several lakes of TP to measure
turbulent fluxes (momentum, sensible heat and latent heat flux) [40,49]. The EC system
consisted of an open-path CO2/H2O infrared gas analyzer (LI-7500A, LI-COR Biosciences)
and a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Inc.). Temperature,
humidity and three-dimension wind speeds are measured at a frequency of 10 Hz by the gas
analyzer and ultrasonic anemometer, respectively. A water temperature profiler, measuring
to a depth of 0.5 m, was installed (90.7979◦ E, 30.8107◦ N) from July 28th to November 19th
in 2015, and from July 7th to November 18th in 2016. The temperature at the 0.5 m depth is
used as the LST in our study (Ts, ◦C).

The lake station at Ngoring was installed in June 2011. Initially, an AWS tower and
an EC observation system were situated in the northwestern part of the lake, standing on
a submerged rock about 200 m from the shore (35.038◦ N, 97.658◦ E) [37,41]. These were
damaged by ice in the winter of 2011–2012. Another two systems were located on the
southwestern lake shore (yellow five-pointed star in Figure 1, 34.918◦ N, 97.558◦ E) to
ensure continuity with records from 2012, and these then developed into Ngoring Station.
Air temperature and humidity were measured with a temperature and humidity probe
(HMP45C, Vaisala) at a 3 m height. The incoming and outgoing shortwave and longwave
radiations were measured with a net radiometer (CNR-1, Kipp and Zonen) 1.5 m above
the lake surface. The sensor signals were recorded by a data logger (CR5000, Campbell
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Scientific, Inc.) at a frequency of 10 Hz. The AWS tower measures air temperature, humidity,
precipitation, pressure, wind speed and direction, and downward short- and long-wave
radiation. In this study, the AWS data are used as long-term forcing data to drive the lake
model for Lake Ngoring. The EC observation system measures H and LE and the data are
used to evaluate the model results.

Half-hourly data for H and LE at Nam Co and Ngoring lakes were calculated by
processing the high-frequency EC system observations using the ”Turbulence Knight 3”
software (Windows TK311) (https://zenodo.org/record/20349#, accessed on 27 Febru-
ary 2021). All the relevant corrections (spike removal, time lag compensation, spectral
correction, planar fit rotation, and Webb–Pearman–Leuning density correction) were in-
cluded [40,50]. Sporadic missing data were replaced through interpolation combined with
other meteorological variables such as radiation, wind speed, and temperature (specific hu-
midity) differences between the lake surface and air [49]. Sensible heat flux (H) and latent
heat flux (LE) are given by Equations (1) and (2), respectively.

H = ρacpw′T′ (1)

LE = Lvρaw′q′ (2)

Here, ρa is the air density, cp is the specific heat of air at a constant pressure, Lv is
the latent heat of vaporization, w′ is fluctuation of the vertical wind component, and T′
and q′ are the temperature and specific humidity fluctuations. To ensure the data quality
of the EC observations, we considered many criteria [43,49]. Biermann et al. [13] showed
the in situ-observed turbulent heat flux for conditions with wind direction (WD) from
the lake surface. Footprint analysis [51] was used to identify observations collected when
Lake Ngoring and Lake Nam Co Lake were the dominant source areas. So, we discarded
the turbulent heat flux data when wind direction (WD) criteria were not met (Nam Co
WD < 135◦ and WD > 270◦, Ngoring 35◦ < WD < 215◦), since these fluxes are contaminated
with land. In this study, EC system observation data from 2015–2016 are used to validate
our lake model results.

In situ observations of ice albedo were recorded over west Ngoring Lake from 3 to
6 January 2014 (red triangle in Figure 1). The instrument used for this observation is
a Kipp & Zonen 4-Component Net Radiometer (CNR4) (1.20 m above the ice surface),
in which the pyrgeometer and pyranometers measure longwave (4500–42,000 nm) and
shortwave (300–2800 nm) infrared radiation, respectively [15]. The albedo (α) measured by
the pyranometers over the lake ice surface is obtained from the ratio: α = RS_dw/Rs _up,
where RS _dw and RS _up are the measured upward and downward shortwave radiances,
respectively. In this study, the data were used with the MODIS-observed data to modify
the parameterization scheme used to represent lake ice albedo.

2.2.2. MODIS Lake Surface Temperature, Ice Albedo and Snow/Ice Cover Ratio

The MODIS albedo dataset, MCD43A3, from October 2014 to June 2015, was used to
adjust the parameterization scheme for lake ice albedo, using the in situ observation data
in this study. The MODIS data include albedo measurements at a 500 m spatial resolution
and are updated every 8 days. The two lakes are large enough (the area of Lake Nam Co is
2021.3 km2 while Lake Ngoring is 610 km2) that multiple MODIS footprints can fit. The
pixels that cover the two lakes are carefully selected (two pixels within the lake boundary
are removed) to ensure that land contamination is not an issue. The information in this
product is detailed in Ref. [52]. The MCD43A product used in this study is the White
Sky Albedo (WSA), from the short waveband product. Studies have shown that the snow
and ice albedo obtained from MCD43A3 have good accuracy for individual regions, with
mean biases ranging from 0.06 to 0.07, when compared with in situ observations [15,53].
MCD43A2 is the quality assurance product for MCD43A3, and it records whether each
pixel has snow-cover or not (ice-cover). The MCD43A2 data for winters in 2012–2013,

https://zenodo.org/record/20349#
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2013–2014, and 2014–2015 are used to analyze the snow/ice cover ratio for Lake Ngoring
and Lake Nam Co during the frozen period.

In this study, the MODIS LST product (MOD11A2) is used to evaluate the results simu-
lated by the lake model for 2015–2016. The MOD11A2 product includes two instantaneous
observations each day (approximately 11:00 and 21:00 local time), with a spatial resolution
of 1 km. Many studies have shown that the MOD11A2 product has good accuracy for
individual regions, with mean biases ranging from 0.2 ◦C to 1.05 ◦C [12,54,55]. The water
surface temperature from the MODIS observations of the skin layer is generally lower than
the in situ observation of the mixed layer [56–58], because of the cool skin effect [12,59].

2.3. Lake Model and Numerical Experiment Design

One-dimensional (1-D) lake models have demonstrated their ability of simulating
the lake thermodynamics [60,61]. The driving assumption of the 1-D lake model is hor-
izontal homogeneity [62]. The one-dimensional lake surface energy balance is given by
Q∗ = QLE + QH + QS + QGL, where Q∗ is net radiation, QLE is the latent heat flux (evap-
orative heat flux), QH is the sensible heat flux, and QGL is the heat flux across the lake
bottom. The heat storage in the lake is determined as QS = CW∆TW/∆t, where CW is the
heat capacity of water. The temperature change with time, ∆TW/∆t, is integrated over the
total depth of the lake. Certain 1-D lake models with different degrees of sophistication in
physical processes have been widely developed, including the 2-layer FLake model based
on similarity theory [62,63]; turbulence lake models [64,65]; and radiation-diffusion lake
models [11]. Many studies have conducted a series of intercomparisons of the available
1-D lake models’ performances in simulating the thermal features of different lakes during
the past several years [66–70]. Based on these studies, much considerable progress has
been made to improve the 1-D lake models [61,70–73].

Compared to the relatively comprehensive studies on the evaluation and development
of the 1-D lake models over lowlands and wet regions, few annual modeling studies being
have previously been done for TP lakes because of the harsh environment conditions
in winter. Recently, the lakes on TP have received increasing attention [37,43,70,74,75].
The competences of the FLake, WRF-Lake, and CoLM-Lake models in simulating the
thermal features of Lake Nam Co have been evaluated, and FLake performs the best in
simulating the temporal evolution and intensity of temperature in the shallow layers [70].
Huang et al. [70] also adjusted three key parameters (temperature of maximum water
density, light extinction coefficient, surface roughness lengths) within FLake and improved
the model results. Li et al. [75] evaluated the effects of ice and snow albedo, ice and water
extinction coefficients on the lake ice phenology, water temperature, and sensible and latent
heat fluxes using the LAKE2.0 model. The computation of the FLake is efficient, due to its
relatively simple construction, and it performs reasonably across lake categories in predict-
ing both surface temperatures and ice characteristics [61]. In terms of accuracy, previous
studies have found small positive biases in the H and LE simulated in the FLake model, as
well as good correlations between the LST from the FLake model and in situ observations,
and between FLake LST and MODIS observations, for the ice-free period [76,77]. Results
from simulations for the freezing period show that the lake temperature in winter has a
negative bias [15,42,67,70].

FLake has been applied to typical temperature freezing lakes of North America and
Alaska (Bear Lake) for several sensitivity analyses of lake depth, water transparency,
explicit snow and snow/ice albedo, snow density and heat conductivity [68,78]. FLake has
also been driven by regional climate scenarios, applied to small lakes in Berlin, Germany,
for modeling the impact of global warming on water temperature and seasonal mixing
regimes [79,80]. However, FLake has never previously been applied to Lake Nam Co and
Lake Ngoring for assessing air temperature sensitivity to compare the effects of different
warming degrees on the lake.
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2.3.1. FLake Model

The lake model used in this study is the 1-D Mironov FLake model, which is a
freshwater model, and is suggested to be appropriate for lakes with depths of less than
50 m because of its relatively simple stratification scheme. The model requires a small
number of lake parameters to be specified: the lake depth and the optical characteristics
of the lake. The FLake model is based on the concept of self-similarity (assumed shape)
for the vertical temperature profile in the thermocline, and simulate lakes’ temperature
profiles and surface heat fluxes [62,81,82]. The essence of the concept of self-similarity of the
temperature profile θ(z, t) in the thermocline is that the dimensionless temperature profile
in the thermocline can be parameterized through a “universal function of dimensionless
depth” with reasonable accuracy, that is [62]:

θs(t)− θ(z, t)
∆θ(t)

= Φθ(ζ) at h(t) ≤ z ≤ h(t) + ∆h(t), (3)

where t is time, z is depth, θs(t) is the temperature of the upper mixed layer of depth h(t),
∆θ(t) = θs(t)− θb(t) is the temperature difference across the thermocline of depth ∆h(t),
θb(t) is the temperature at the bottom of the thermocline, and Φθ ≡ [θs(t)− θ(z, t)]/∆θ(t)
is a dimensionless “universal function of dimensionless depth”, ζ ≡ [z− h(t)]/∆h(t), that
satisfies the boundary conditions Φθ(0) = 0 and Φθ(1) = 1. A snow layer, a lake ice layer,
an upper mixed layer, a thermocline layer and a lake sediment layer are considered in the
FLake model, and the concept of self-similarity is applied to all layers except the upper
mixed layer. The water temperature of the upper mixed layer is nearly vertically uniform.
The depth of the mixed layer is described with an entrainment equation for convective
conditions and a relaxation-type equation for stable conditions.

The water surface albedo, with respect to solar radiation, is set to 0.07 in the default
configuration, and the albedo of the ice surface is given by [15]:

αice = amax − (αmax − αmin)exp
(
−95.6

(
Tf 0 − Ti

)
/Tf 0

)
(4)

where αmax is white ice albedo, αmax = 0.6. The αmin is blue ice albedo, αmin = 0.1. Tf 0 is
the freezing temperature (273.15 K), Ti is the ice surface temperature. As the ice surface
temperature (Ti) approaches the freezing temperature (Tf 0), the albedo approaches 0.10.
The solar radiation transfer between the water and the snow or ice is calculated using a
one-band exponential approximation of the Beer–Lambert decay law, with an extinction
coefficient of 3 m−1 for water, and 1.0 × 107 m−1 for both ice and snow, in the default con-
figuration. The parameterized scheme for the turbulent fluxes of momentum, and sensible
and latent heat at the lake surface is adopted in the FLake model [62].

2.3.2. Modification of the Lake ice Albedo Parameterization Scheme in the FLake Model

Previous studies have found small positive biases in H and LE simulated in the FLake
model, as well as good correlations between the LST from the FLake model and in situ ob-
servations, and between FLake LST and MODIS observations, for the ice-free period [76,77].
Results from simulations for the freezing period show that the lake temperature in winter
has a negative bias [15,42,67,70]. Since our study focuses on changes to lake ice phenol-
ogy in different air temperatures, the accuracy of the model LST and ice phenology in
winter is very important. Since there is almost no snow on lake surfaces on the TP in
winter, and albedo is a key parameter for calculating lake ice phenology, we modified the
parameterization scheme for lake ice albedo to improve the negative model bias for LST in
winter. The MODIS-observed average ice surface albedo is 0.15 for lakes on the TP [15].
Based on results from our previous study, we calculated the lake ice albedo from a new
albedo parameterization scheme (Equation (4)), and tested the value for αmax by replacing
the constant value set for the maximum ice albedo (αmax = 0.6, Equation (4)) to 0.4 and
0.15 for the two lakes. We conducted a further two tests of Equation (4) by replacing the
maximum ice albedo (αmax = 0.6, Equation (4)) with 0.15, and setting αice to 0.15. The in
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situ observation data for the ice albedo were used to evaluate the results from each test for
daily changes at Lake Ngoring (Figure 2a), and the MODIS observation data were used to
evaluate the results of the two tests for the frozen period at Lake Ngoring (Figure 2b) and
at Lake Nam Co (Figure 2c). It can be seen from Figure 2 that the albedo parameterization
scheme in the FLake model greatly overestimated the ice albedo, and did not describe daily
changes well. It is very difficult to accurately describe daily changes in ice albedo. Since the
lake ice albedo values from the in situ observations are concentrated around 0.15 for most of
the daytime, the ice albedo had a large positive bias when αmax = 0.4 (open down triangle
in Figure 2), or αmax = 0.6 (solid up triangle in Figure 2). The results of the parameterized
scheme show a small negative bias when αmax = 0.15 (asterisk in Figure 2), compared
with the MODIS observation data. The results when αice = 0.15 (red line in Figure 2a,
red dot in Figure 2b,c) are the most accurate, and we therefore selected this scheme as
the final albedo parameterization scheme and used this in all following simulations, after
evaluating the model results for LST, H and LE for this scheme against the in situ and
MODIS observations.
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2.3.3. Numerical Experiment Design

In this study, we applied the FLake model to evaluate the influence of air temperature
on simulations for two different lakes: Lake Ngoring and Lake Nam Co. To evaluate the
influence of different degrees of air temperature rise (1.5 ◦C to 3.5 ◦C) on LST, H, LE, and ice
phenology at the two lakes, we first carried out a control experiments (CTRL) by running
the FLake model with the default model configuration. We then calculated an additional
simulation to test the modified ice albedo parameterization scheme (same in both of the
two lakes). Based on the results from the previous tests of the ice albedo parameterization
scheme, we conducted a series of sensitivity experiments by increasing the air temperature
of the input data by different amounts (1.50 ◦C, 1.75 ◦C, 2.00 ◦C, 2.25 ◦C, 2.50 ◦C, 2.75 ◦C,
3.00 ◦C, 3.25 ◦C, and 3.50 ◦C) to investigate the influence of increasing air temperature on
the two lakes. The model lake depth is set to equal the mean depths of the lakes (25 m
for Lake Ngoring, 40 m for Lake Nam Co). The initial water temperature for the bottom
of Lake Nam Co was set to 276.65 K. The value is close to the temperature that has been
observed at a 44 m depth in other years. Other parameters that it is not essential to specify
will be set as default with no corresponding observations. The forcing data are derived
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from the observations made at the stations at Lake Ngoring and Lake Nam Co. The main
input variables include the surface air temperature, relative humidity, wind speed, air
pressure, downward shortwave and longwave radiation, and precipitation from 1 July
2011 to 1 January 2017. The simulations began in July 2011 and ended in December 2016.
The integration time step was 30 min. The simulations began in July 2011, instead of
January 2012, to allow for model spin-up.

3. Results
3.1. Evaluation of the Simulated Results

Observations of LST, H and LE from 2015 to 2016 were used to validate the results
from both the original FLake model and for the FLake_αice = 0.15 model, for Nam Co and
Ngoring, as shown in Figure 3 (Nam Co) and Figure 4 (Ngoring). The results show that
the FLake model’s performance is sensitive to the ice albedo parameterization scheme,
especially in winter. Setting the ice albedo to 0.15, instead of 0.6, in the FLake model
consistently led to the improved simulation of H and LE during winter and the ice melt
period for both lakes, and improved the simulated LST throughout the year at Lake Nam
Co. Reducing the ice albedo in the FLake model results in fewer frozen days and a smaller
maximum ice thickness, leading to a better agreement with the in situ observations reported
in other studies [33,37,83]. Further intercomparison indicates that FLake_αice = 0.15
performs better than the standard FLake model in simulating lake ice phenology for both
of the two lakes, and in simulating LST for Lake Nam Co; it also simulates LST, H and LE
better than the FLake model during the ice melt period for Lake Ngoring.
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3.1.1. Lake Surface Temperature

The simulated LSTs from FLake_αice = 0.15 are higher in winter, and lower in summer,
at both lakes, relative to the original FLake model. The FLake_αice = 0.15 model simulates
LST better than the FLake model at Lake Nam Co, with a mean bias of 2.22 ◦C, relative
to the bias in the FLake model bias of 2.69 ◦C. The root-mean-square error (RMSE) values
for the LSTs simulated at Lake Nam Co in the FLake_αice = 0.15 and FLake models are
2.70 ◦C and 3.25 ◦C, respectively. At Lake Ngoring, the mean LST bias is 3.04 ◦C for the
original FLake model, and 1.94 ◦C for FLake_αice = 0.15, and the RMSEs are 3.74 ◦C and
2.42 ◦C, respectively. One possible reason for the warm biases simulated for Lake Ngoring
in winter is that the ice at Lake Ngoring is thicker than at Lake Nam Co, and the frozen
period is longer. This effectively inhibits energy exchange between the lake water and the
atmosphere. In the model, all the solar radiation entering the lake via the lake ice remains
in the ice layer, resulting in the model’s overestimation of the lake surface temperature in
winter (ice layer surface temperature). Another possible reason is that Lake Nam Co is
deeper than Lake Ngoring. Mixing in ice-covered lakes is caused by many factors, and
convection driven by penetrating solar radiation is one effective driver (Bengtsson, 1996).
The shallower the lake, the greater the impact of the through-ice solar radiative flux on
mixing. Lake Ngoring is much shallower than Lake Nam Co, so it is more sensitive to
changes in ice albedo.

3.1.2. Latent Heat Flux and Sensible Heat Flux

The model can simulate seasonal variations in H and LE at the lake surface. The sim-
ulated H and LE in FLake_αice = 0.15 are higher in winter and spring for both lakes
(Lake Nam Co: January to May; Lake Ngoring: December to June) than in the original
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FLake model (Figures 3 and 4). The FLake_αice = 0.15 model simulates LE and H better
than the FLake model during the melt period (March to April) at Lake Ngoring, with
RMSEs of 31.76 W m−2 and 23.34 W m−2, respectively. The RMSEs for the FLake model
simulations of LE and H are 35.14 W m−2 and 28.25 W m−2, respectively. There are no in
situ EC observation data for the corresponding ice melt period at Lake Nam Co to facilitate
a comparison. Ref. [40] indicated that sublimation during winter is non-zero over Lake
Nam Co, as LE was observed to be very high during the ice-covered period in the EC data.
In simulations from the original FLake model, LE is zero throughout frozen period, and
simulations from FLake_αice = 0.15 significantly improve on this bias.

3.1.3. Lake Ice Phenology

The simulated number of frozen lake ice days is lower for both lakes in the FLake_αice = 0.15
simulations than in the original FLake simulations. At Lake Nam Co, the number of frozen days
in simulations from FLake_αice = 0.15 is 82, and there are 101 frozen days in simulations from
FLake. At Lake Ngoring, the number of frozen days is 139 in FLake_αice = 0.15, and 154 in FLake.
The simulated lake ice freeze-up date is several days earlier in FLake than in FLake_ αice = 0.15,
and the onset of ice melt occurs half a month earlier in FLake_αice = 0.15 than in the original FLake
model for both lakes. In situ observations show that freeze-up generally occurs in mid-January
at Lake Nam Co, and that ice break-up occurs in early April [33,83]. The average duration of
complete freezing (i.e., complete ice cover) at Nam Co is 58.5 days [84]. The lake ice thickness
at Lake Nam Co peaks in February, and the maximum thickness in the in situ observations is
about 0.4 m, which occurs relatively near to the Nam Co station [83]. The in situ observations
of ice thickness at Lake Ngoring show that it remained above 0.6 m from mid-January to early
March, with a maximum (0.73 m) measured in late February [37]. Lake ice thickness at Ngoring
was measured from December 2012 to March 2013 near the lakeshore, very close to the AWS.
In Figure 5, the simulated lake ice phenology is shown to agree well with the in situ observations
reported in other studies.
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In summary, the comparison of the simulations against in situ and MODIS observa-
tions shows that the FLake_αice = 0.15 model can approximately reproduce the observed
lake ice phenology, and improves upon the original FLake model for the freezing and
melting periods, but there is no significant improvement in the simulation results for
the ice-free period. The simulated LST, H and LE values at Ngoring are higher than the
observed values, with mean biases of 3.04 ◦C, 17.61 W m−2, 45.17 W m−2, respectively.

3.2. The Influence of Rising Air Temperature at the Two Different Lakes

All the above-mentioned positive biases in LST and LE for Lake Ngoring are present
in both the FLake and the FLake_αice = 0.15 simulations, and have relatively little influence
on seasonal variations for the lake. FLake_αice = 0.15 simulates the lake ice freezing and
melting periods at Lake Ngoring, and the LST and frozen period at Lake Nam Co, better
than the original FLake model. We therefore assume that the FLake_αice = 0.15-simulated
LST, H, LE and ice phenology data can be used to analyze changes in seasonal variations at
the two lakes.

Although global climate models (such as CMIP5 and CMIP6) can provide climatic
variables which can be used as a future climate scenario, it is well known that the simulation
errors of global climate system models for the TP are large [23,25]. The forcing data of the
control experiment in our study are in situ-observed climatic variables data; these data can
provide a more realistic driving field of the model. Because the environmental changes
experienced on the TP are mostly associated with rapid surface warming [23], we use
offline simulation and only change the air temperature, mainly to compare the effects of
different warming degrees on the lake. Here, we use simulations from FLake_αice = 0.15
to analyze the effects of rising air temperatures on LST, H, LE and ice phenology.

3.2.1. Seasonal Variations in the Effect of Rising Air Temperature on the Lake Surface
Temperature and on Heat Fluxes

Figure 6 shows seasonal variations in LST, H and LE after air temperatures have
risen by 1.50 ◦C, 2.25 ◦C, 3.00 ◦C, and 3.50 ◦C at Lake Nam Co and Lake Ngoring, from
2012 to 2016. In ten groups of sensitivity tests, we selected four modes (1.50 ◦C, 2.25 ◦C,
3.00 ◦C, 3.50 ◦C), for which there were clear changes, to analyze the response of the seasonal
variability at the two lakes to the increase in air temperature.
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January 2012 to December 2016) (a,c,e) at Lake Nam Co and (b,d,f) at Lake Ngoring.
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H (Figure 6a,b) is the most sensitive parameter to changes in air temperature, with
a decreasing trend for every month as air temperature rises, except for February at Lake
Nam Co and December in Lake Ngoring. The difference in H simulated under different
air temperatures reaches a maximum in November (before freeze-up), and suddenly
decreases when the two lakes begin to freeze. The minimum decreases in H at Lake
Nam Co reach −16.45 Wm−2 and −14.94 Wm−2 in November and December, respectively.
After Lake Nam Co has frozen, the minimum decrease is in January, and is −4.46 Wm−2.
The minimum decreases at Lake Ngoring reach−11.97 Wm−2 and−14.34 Wm−2 in October
and November, respectively. After Lake Ngoring has frozen, the minimum decrease is
in December, and is −2.49 Wm−2. LST rises rapidly in winter with the increasing air
temperature, and the change in H at Lake Nam Co in February (Lake Ngoring in December)
is opposite to that for other months.

With increasing air temperature, LE (Figure 6c,d) generally decreases from the end
of the frozen period to a period after ice break-up (March to June at Lake Nam Co, April
to June at Lake Ngoring), and increases in the other months, especially during the frozen
period. The maximum decreases at Lake Nam Co reach 16.00 Wm−2 and 13.45 Wm−2 in
May and June, respectively, and the maximum increase reaches 25.89 Wm−2 in February.
The maximum decrease at Lake Ngoring reaches 4.18 Wm−2 in April, while the maximum
increase reaches 14.88 Wm−2 in December.

LST (Figure 6e,f) increases every month as the air temperature rises, and two relatively
large peaks appear in winter and summer, with the largest increase in winter. The maximum
increases at Lake Ngoring reach 3.02 ◦C and 3.40 ◦C in December and January, respectively,
while the maximum increase at Lake Nam Co reaches 2.64 ◦C in January.

Figures 7 and 8 show the impact of different temperature increases on the seasonal
changes in LE, H, LST, and lake mixed layer temperature (MLT). Here, we use the differ-
ences between the different sensitivity tests (line in Figures 7 and 8) to analyze the influence
of different increase intervals on seasonal variations in the four variables. The differences
before and after the frozen period fluctuate significantly. The variability in the sensitivities
for the four variables in the ice-free period is roughly the same at Lake Ngoring and at
Nam Co, but the magnitude of the sensitivities is small. Since the frozen period is longer
at Lake Ngoring, we can see differences between the variations in the sensitivities at the
two lakes during the frozen period. In the middle of the frozen period, there is a relatively
regular one-month (February) change in LST, LE and H with increasing air temperature
at Lake Ngoring, and we do not see this at Nam Co. The thicker ice at Lake Ngoring
means that the MLT is unaffected by the increase in air temperature for the three months
after freeze-up. However, the MLT at Lake Nam Co changes significantly once the air
temperature rises beyond 2.75 ◦C. At both lakes, there is a clear difference between the
simulations with unchanged air temperature, and the simulations when the air temperature
has been increased by 1.5 ◦C, shown with a black line in Figures 7 and 8. The next obvious
difference is between the simulations calculated with temperature increases of 2.75 ◦C and
3.00 ◦C at Lake Nam Co, shown with blue line in Figures 7 and 8 (2.25 ◦C and 2.50 ◦C at
Lake Ngoring, shown with a red line in Figures 7 and 8).

Differences between the sensitivity tests can be used to analyze the rate of change for
the lake surface and MLT for different intervals of increasing temperature. The larger the
positive (negative) value, the faster the LST rises (drops) over the temperature interval.
The variations in the differences for LST and MLT are the same in the ice-free period, with
relatively regular changes except for the months before and after the ice has frozen. After
freeze-up, the thick ice layer isolates the lake body from the air, and the responses of the
mixed layer to different air temperature increases become increasingly similar, until they
become the same, i.e., the sensitivity to the magnitude of the change in air temperature
disappears. This happens at Lake Ngoring, but differences appear again between the
mixed layer responses to different air temperature increases at Lake Nam Co once the air
temperature rises beyond 2.75 ◦C. When the air temperature rises beyond 2.75 ◦C at Lake
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Nam Co, the lake ice is thin enough, and solar radiation will be absorbed by the lake water
through the ice layer, and then affect the mixed layer temperature.
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Figure 7. Seasonal variations in lake ice thickness (shading), and differences between the sensitivity of H and LE to different
air temperature increases (lines), averaged from January 2012 to December 2016 (a,c) at Lake Nam Co and (b,d) at Lake
Ngoring. The plotted differences are the differences between the sensitivities found for different air temperature changes,
as detailed in the legend, i.e., (+1.5 ◦C)–(+0 ◦C) refers to the difference between the sensitivity found for a temperature
increase of 1.5 ◦C, and for a temperature increase of 0. The y coordinates for each line show how much the variable has
changed within this air temperature increase interval. The gray-shaded area and the left-slash-filled area show the simulated
values for no change in air temperature, and for an air temperature increase of 3.5 ◦C, respectively.
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Figure 8. Seasonal variations in the lake ice thickness (shading), and the difference between LST and MLT sensitivities to
different temperature increases (lines), averaged from January 2012 to December 2016 (a,c) at Lake Nam Co and (b,d) at
Lake Ngoring. The details of the legend are the same as in Figure 7.

Changes in H are closely related to changes in LST. The LST for Lake Nam Co from the
end of July to mid-January follows a generally increasing trend, when the air temperature
increases from 2.00 ◦C to 2.75 ◦C, and differences in LST are more obvious with temperature
increases of between 0 ◦C and 1.5 ◦C. When the air temperature rises from 1.50 ◦C to 2.00 ◦C,
and above 2.75 ◦C, the LST decreases with the increasing air temperature for three months
after the ice break-up, and the most significant decrease occurs in the last month. When the
lake begins to freeze-up in January, the differences appear to be irregular, and fluctuate
until the end of February. The LST at Lake Ngoring from the end of June to the end of
November follows a steadily increasing trend for air temperature increases from 0 ◦C to
3.5 ◦C, and the differences in LST are more obvious for a temperature increase of 0 ◦C to
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1.5 ◦C. When the air temperature rises from 1.5 ◦C to 2.25 ◦C, and from 2.75 to 3 ◦C, LST
decreases with increasing air temperature during two months after ice break-up. When the
lake begins to freeze-up in November, the differences appear to fluctuate until the end of
March. By February, the rising LST trend has stabilized, and then there is a rapid change in
March, when the ice is about to begin break-up.

3.2.2. The Effect of Rising Air Temperature on Lake Surface Temperature and
Ice Phenology

Figure 9 shows the impact of the change in air temperature on the simulated LST in
summer and winter, and Table 1 shows the impact on the simulated lake ice phenology.
As expected, the LST rises with increasing air temperature. When the air temperature rises,
the number of frozen days decreases and the maximum ice thickness decreases, meaning
the freeze-up date of lake ice will be delayed, and the break-up date will be advanced.
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Figure 9. Plot of changes in LST in summer and winter for air temperature increases of between
1.5 ◦C and 3.5 ◦C at Lake Nam Co and Lake Ngoring (summer data are averaged from June, July, and
August 2012–2016, and winter data are averaged from December, January, and February 2012–2016).

The LST in summer and winter increases with the increases in air temperature. How-
ever, the LST rises much faster in winter than in summer, and the increase is greater at Lake
Ngoring than at Lake Nam Co in both seasons. When the air temperature rises by 3.50 ◦C,
the LST at Lake Nam Co rises by 1.90 ◦C in winter, and by 0.57 ◦C in summer, while the
LST at Lake Ngoring rises by 2.88 ◦C in winter, and by 0.92 ◦C in summer. The pattern
with which LST rises with increasing air temperature is different in winter and summer.
Once the winter air temperature rises beyond 2.75 ◦C at Lake Nam Co, LST rises faster
with increasing air temperature. The same thing occurs at Lake Ngoring when the winter
air temperature rises beyond 2.25 ◦C. However, when the air temperature increases from
2.75 ◦C to 3.00 ◦C at Lake Nam Co, the LST decreases from 0.76 ◦C to 0.50 ◦C, and at the
same time, the air temperature begins to affect the temperature of the mixed layer.
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Table 1. Changes in lake ice thickness, the number of frozen days, and dates for the onset of freeze-up and melt when the
air temperature increases by between 1.5 ◦C and 3.5 ◦C at Lake Nam Co and Lake Ngoring (averaged from January 2012 to
December 2016).

Lake Increasing Air
Temperature (◦C) Freezing Date Melting Date Frozen Days Maximum

Ice Thickness (m)

Lake
Nam Co

0 9 January 1 April 83 0.300
0.150 11 January 23 March 72 0.226
0.175 17 January 22 March 65 0.216
0.200 18 January 21 March 63 0.197
0.225 11 January 21 March 70 0.195
0.250 11 January 21 March 70 0.192
0.275 11 January 21 March 70 0.196
0.300 11 January 20 March 69 0.159
0.325 16 January 20 March 64 0.141
0.350 18 January 20 March 62 0.103

Lake
Ngoring

0 6 December 17 April 133 0.761
0.150 11 December 15 April 126 0.678
0.175 11 December 15 April 126 0.656
0.200 13 December 15 April 124 0.645
0.225 11 December 15 April 126 0.638
0.250 20 December 6 April 108 0.607
0.275 20 December 5 April 107 0.602
0.300 21 December 3 April 104 0.580
0.325 21 December 4 April 105 0.573
0.350 21 December 3 April 104 0.56409

When the air temperature rises from 0 ◦C to 3.50 ◦C, the number of frozen days at
Lake Nam Co decreases from 83 days to 62 days, while the number of frozen days at Lake
Ngoring decreases from 133 days to 104 days; the maximum ice thickness at Lake Nam Co
reduces from 0.3 m to 0.1 m while the maximum ice thickness at Lake Ngoring reduces
from 0.76 m to 0.56 m; ice freeze-up is delayed by 9 days, and the onset of ice melt advances
by 12 days at Lake Nam Co, while freeze-up is delayed by 15 days and the onset of ice
melt advances by 14 days at Lake Ngoring. When the air temperature rises from 2.25 ◦C to
2.50 ◦C, the frozen period at Lake Ngoring changes more obviously than it does between
cooler temperatures. Specifically, when the air temperature at Lake Ngoring rises from 0 ◦C
to 2.25 ◦C, and from 2.50 ◦C to 3.50 ◦C, the number of frozen days decreases by 7 days and
4 days, respectively, and when the air temperature rises from 2.25 ◦C to 2.50 ◦C, the number
of frozen days decreases by 18 days. There is no obvious rule to relate the change in the
duration of the frozen period at Lake Nam Co with rising air temperature. The processes
that determine the duration of the frozen period are relatively complicated, particularly
around the time of freeze-up and break-up. Lake Ngoring has a relatively long and stable
freezing period, and we speculate that temperature increases must reach a threshold of
around 2.25 ◦C before they influence the duration of the frozen period at Lake Ngoring.

3.2.3. The Maximum Possible Impact of Rising Air Temperature on the TP On Lake Nam
Co and Lake Ngoring

Figures 10 and 11 show the impact of air temperature rises of 3.5 ◦C at the two lakes.
Here, we use the differences between responses to air temperature increases of 0 ◦C and
3.5 ◦C to analyze the influence of the most significant warming on seasonal variations in
five variables (H, LE, LST, MLT, and ice thickness) for the two lakes. In general, when
the air temperature rises by 3.5 ◦C, annual LE and LST increase and H decreases at both
lakes (Figure 10b,c, Figure 11b,c). The increase in LE and LST at Lake Ngoring is higher
than at Lake Nam Co, and the decrease in H at Lake Nam Co is greater than at Lake
Ngoring. The ice thickness at Lake Ngoring decreases more than at Lake Nam Co. The
changes in the variables in response to the temperature increases are similar at the two
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lakes from the end of July to the beginning of December. From mid-December to the end of
July, the two lakes respond differently to the temperature increase, due to their different
frozen periods and the continuous impact on lake surface energy exchange after the lake
ice melts. The difference between the responses of H to the temperature change at the
two different lakes is greater than the difference between the LE responses at the two
lakes. The maximum value for the increase in LE at Lake Nam Co is 39.52 W m−2, which
occurs at the beginning of February, and the maximum for Lake Ngoring is 47.37 W m−2,
which occurs at the end of December. The maximum decreases occur at the end of May
and at the beginning of April, reaching −38.22 W m−2 and −23.95 W m−2, respectively.
The maximum values for the increases in H at Lake Nam Co and Lake Ngoring are also
at the beginning of February and at the end of December, when they reach 18.08W m−2

and 24.73 W m−2, respectively. In contrast to the LE responses, the maximum decreases
in H occur at the beginning of March and in mid-November, reaching −22.98 W m−2

and −21.39 W m−2 for Lake Nam Co and Lake Ngoring, respectively. Similar to H and
LE, the maximum increases in surface temperature at Lake Nam Co and Lake Ngoring
are at the beginning of February and the end of December, when they reach 5.06 ◦C and
6.58 ◦C, respectively. The maximum decrease in ice thickness at Lake Nam Co and Lake
Ngoring occurs at the beginning of February and the end of March, reaching −0.24 m and
−0.36 m, respectively. The possible reasons can be summarized as the following points.
Firstly, the model lake depth is set to 25 m for Lake Ngoring and 40 m for Lake Nam
Co. Secondly, the meteorological conditions of the two lakes are different, such as air
temperature, precipitation and wind speed.
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the former), for H, LE and ice thickness for Lake Nam Co and Lake Ngoring (averaged from January 2012 to December
2016): (a,b) LE, (c,d) H, and (e) lake ice thickness.
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Figure 11. Comparison of changes in the differences, when the air temperature rises by 0 ◦C and by 3.5 ◦C (the latter
minus the former), for LST, MLT and ice thickness, for Lake Nam Co and Lake Ngoring (averaged from January 2012 to
December 2016): (a,b) LE, (c,d) H, and (e) for lake ice thickness.

4. Conclusions

The model simulations show that LST rises with increasing air temperature, the rate is
much faster in winter than in summer, and the increase is greater at Lake Ngoring than at
Lake Nam Co. When the air temperature rises, the number of frozen days is reduced, the
maximum ice thickness decreases, the freeze-up date for the lake ice is delayed, and the
break-up date advances. From the end of July to the beginning of December, the variables
changed similarly for the two lakes, and from mid-December to the end of July, due to their
different frozen periods and the continuous impact on the lake surface energy exchange
after ice melt, the two lakes respond significantly differently to changes in temperature.
The difference in the response of H is greater than the difference in the response of LE
between Lake Ngoring and Lake Nam Co.

It is interesting that LST increases in summer and winter with rising air temperature,
but it increases much faster in winter than in summer, especially as the lake begins to freeze,
and it increases more at Lake Ngoring than at Lake Nam Co. This is completely consistent
with the fact that the increase in surface temperature on the TP is higher in winter than
in summer. The mechanism for surface warming on the TP has not yet been resolved,
so in future work, we will explore a plateau warming mechanism that includes multiple
freezing and thawing processes, such as glaciers, frozen soil, and snow. In combination,
these phenomena may explain the freezing period response of lake ice.

Another interesting phenomenon is that when the air temperature rises from 2.25 ◦C
to 2.50 ◦C, the freezing period at Lake Ngoring changes more obviously than following
similarly sized increases between cooler air temperatures. There is no obvious rule to relate
the duration of the frozen period at Lake Nam Co with rising air temperature. The physical
processes that determine the duration of the frozen period are relatively complicated,
especially during the times for ice freeze-up and break-up. Lake Ngoring has a relatively
long and stable freezing period, and we speculate that temperature increases must reach a
threshold of 2.25 ◦C before they influence the duration of the frozen period at Lake Ngoring.
Our future work will try to investigate this by carrying out model simulations for other
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lakes on the TP. We will also focus on a wider range of climate change indicators, including
wind speed, precipitation, and humidity, and try to analyze the impact of future climate
change on lakes on the TP.

One aspect of this work that could be improved is that the diurnal pattern in the simu-
lated albedo does not match the typical U-shaped curve seen in the observations. This is
because the albedo parameterization scheme in the FLake model was developed from
the sea ice albedo parameterization scheme, and its application to lakes requires further
improvement. Our future work will establish long-term observation sites at multiple lakes
to obtain sufficient observation data to improve the parameterization scheme for ice albedo,
and thereby make it more suitable for lakes on the TP. Another aspect of this work that
could be improved is that we use offline simulation, and only change the air temperature,
mainly to compare the effects of different warming degrees on the lake. This method is
commonly used, even though it has some obvious flaws, but the uncertainty is relatively
small. In our future study, we will further use reginal climate models to comprehensively
explore the effects of the offline and coupled climate models on the simulation results of
the method.
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