Supplementary Material

Flood Hazard Assessment for the Tori Levee Breach of the Indus River Basin, Pakistan

Babar Naeem^{1¥}, Muhammad Azmat1^{¥*}, Hui Tao^{2*}, Shakil Ahmed¹, Muhammad Umar Khattak¹, Sajjad Haider¹, Sajjad Ahmad³, Zarif Khero⁴, Christopher R. Goodell⁵

- ¹ School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology, Islamabad 44000, Pakistan; <u>azmat@igis.nust.edu.pk</u>
- ² State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; <u>taohui@ms.xjb.ac.cn</u>
- ³ Department of Civil and Environmental Engineering and Construction, University of Nevada, Maryland Parkway, Las Vegas, NV, USA; <u>saijad.ahmad@unlv.edu</u>
- ⁴ Irrigation Department, Government of Sindh, Pakistan; <u>zarifkhero@gmail.com</u>
- ⁵ Kleinschmidt Associates., 1500 NE Irving St., Suite 550, Portland, OR 97232; <u>chris.Goodell@kleinschmidtgroup.com</u>
- * Correspondence: <u>taohui@ms.xjb.ac.cn</u>, <u>azmat@igis.nust.edu.pk</u>; Tel.: +86-991-7885327, +92-51-8864477
- [¥] Authors with equal contribution in this work.

Figure S1. Pre-flood (top), post-flood or breached (bottom) situation of Tori Levee images obtained from SPOT.

		S	torage Area Co	onnection	n Brea	ch Data				
SA Connection	nEscape	I Delete this Breach Delete all Breaches								
Steach This St	tructure		and a local distance of the second se	(march)	Dearch	and the second	Daramatas Calo			
Breach Method: U	ser Entered Data 💌	Inout Data	opression (Simplifie	d Privsical I	breach	kepair (optional)	Parameter Lait	Jacor		
Center Station:	1400	Top of Dam Elevation	(m):	72 Breach		Bottom Elevation (m): 69.13	-		
Final Bottom Width: 1000 Final Bottom Elevation: 69.13		Pool Elevation at Failure (m):		1.34 Pool 1		Volume at Failure (1000 m3):33900000				
					Failure mode: Overtopping					
left Side Slope:	80	MacDonald		-						
Right Side Slope: 80		Dam Crest Width (m)	Dam Crest Width (m): 1400		Slope of US Dam Face Z1 (H:V): 80					
Breach Weir Coef:	1.8	Earth Fill Type: Non-homogeneous or Rod/fill Vision Slope of D5 Dam Face 22 (H:V): 80								
Breach Formation Tim	e (hrs): 168	-Xu Zhang (and Von	Thun)				Mark			
Failure Mode: 0	vertopping 💌	Dam Type: Dam w	th corewas	-	Dam E	odbery:	[meaium	-		
Piping Coefficient:	0.5		T	1	_	Beach	<u> </u>	-		
Initial Piping Elev:		Method	Breach Bottom Width (m)	Side Slope	es (H:V)	Development Time (hrs)				
Starting WS	VS Elev	MacDonald et al	1369	0.5		5.38	Select			
	la rena	Froehlich (1995)	718		4	374.75	Select	1		
		Froehlich (2008)	855	1		359.61	Select			
		Von Thun & Gillete	59	0.5	5	0.29	Select			
		Xu & Zhang	182	7.4	8	167.55*	Select	1		

Figure S2. Estimation of dam crest width using Xu and Zhang method for Tori Levee breach.

Figure S3. Design of Guddu Barrage structure in HEC-RAS. Upper Figure shows the modelling of gates at Guddu Barrage, low Figure shows operational and non-operational gates at Guddu Barrage.

Figure S4. The validation of HEC-RAS model for maximum flood inundation comparison of 2015 flood map by comparing remotely sensed and simulated flood extents.

Figure S5. Sample comparison of flood extent in flood plain between MODIS daily images and simulated by HEC-RAS model during 03 to 12 September 2010 flood.

	MODIS	Simulated	Matching	Over Simulated	Under	Matching	Over	Under	Measure
Date	Flood Extent	Flood Extent	Area "M"	"O"	Simulate "U"	Area	Simulation	Simulation	of Fit "F"
			Area in km ²				Percentage		
10-Aug	5136.0	5914.9	4190.7	1724.1	945.2	82%	34%	18%	61%
11-Aug	5421.4	6197.9	4463.5	1734.5	957.9	82%	32%	18%	62%
12-Aug	5426.0	6467.9	4086.0	2381.9	1339.9	75%	44%	25%	52%
13-Aug	6719.5	6768.6	5359.9	1408.7	1359.6	80%	21%	20%	66%
17-Aug	7180.5	7992.8	6165.3	1827.5	1015.1	86%	25%	14%	68%
18-Aug	4816.6	8307.0	3787.7	4519.3	1029.0	79%	94%	21%	41%
20-Aug	7468.6	8891.1	5907.5	2983.6	1561.1	79%	40%	21%	57%
22-Aug	9542.5	9504.9	7877.7	1627.2	1664.8	83%	17%	17%	71%
23-Aug	10099.6	9782.7	8366.6	1416.1	1733.1	83%	14%	17%	73%
27-Aug	11172.4	10950.7	9179.3	1771.4	1993.1	82%	16%	18%	71%
29-Aug	10168.4	11376.8	8614.5	2781.1	1553.9	85%	27%	15%	67%
3-Sep	11828.3	12071.5	9189.5	2882.0	2638.8	78%	24%	22%	62%
5-Sep	11063.5	12169.8	8403.8	3766.0	2659.7	76%	34%	24%	57%
6-Sep	11355.6	12216.9	8608.6	3608.4	2747.0	76%	32%	24%	58%
7-Sep	10912.9	12230.5	8300.9	3929.6	2612.0	76%	36%	24%	56%
8-Sep	10775.4	12251.1	8010.0	4241.0	2765.4	74%	39%	26%	53%
10-Sep	11376.5	12103.9	8330.7	3773.2	3045.7	73%	33%	27%	55%
12-Sep	11690.6	11923.7	8386.0	3537.7	3304.6	72%	30%	28%	55%
13-Sep	11755.6	11829.9	8357.5	3472.4	3398.0	71%	30%	29%	55%
15-Sep	9108.1	11591.0	6566.9	5024.2	2541.3	72%	55%	28%	46%
16-Sep	9350.4	11447.8	6645.7	4802.1	2704.7	71%	51%	29%	47%
17-Sep	9180.2	11289.5	6349.7	4939.8	2830.5	69%	54%	31%	45%
18-Sep	11755.6	11122.1	7880.6	3241.5	3875.0	67%	28%	33%	53%
19-Sep	11837.8	10953.7	7811.5	3142.2	4016.9	66%	27%	34%	52%
21-Sep	12034.6	10614.2	7746.0	2868.3	4288.6	64%	24%	36%	52%
22-Sep	11909.1	10422.9	7560.6	2862.4	4348.6	63%	24%	37%	51%
		Aver	age Percent			76%	34%	24%	57%

Table S1. Comparison of daily observed and simulated flood extents based on MODIS images of the 2010 flood event.