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Abstract: This paper describes a new heat transfer parameterisation between wastewater and in-
sewer air based on understanding the physical phenomena observed in free surface wastewater and
in-sewer air. Long-term wastewater and in-sewer air temperature data were collected and studied to
indicate the importance of considering the heat exchange with in-sewer air and the relevant seasonal
changes. The new parameterisation was based on the physical flow condition variations. Accurate
modelling of wastewater temperature in linked combined sewers is needed to assess the feasibility of
in-sewer heat recovery. Historically, the heat transfer coefficient between wastewater and in-sewer air
has been estimated using simple empirical relationships. The newly developed parameterisation was
implemented and validated using independent long-term flow and temperature datasets. Predictive
accuracy of wastewater temperatures was investigated using a Taylor diagram, where absolute errors
and correlations between modelled and observed values were plotted for different site sizes and
seasons. The newly developed coefficient improved wastewater temperature modelling accuracy,
compared with the older empirical approaches, which resulted in predicting more potential for heat
recovery from large sewer networks. For individual locations, the RMSE between observed and
predicted temperatures ranged between 0.15 and 0.5 ◦C with an overall average of 0.27 ◦C. Previous
studies showed higher RMSE ranges, e.g., between 0.12 and 7.8 ◦C, with overall averages of 0.35,
0.42 and 2 ◦C. The new coefficient has also provided stable values at various seasons and minimised
the number of required model inputs.

Keywords: modelling; wastewater temperature; heat transfer between wastewater and in-sewer air;
wastewater heat recovery

1. Introduction

This section highlights the importance of modelling heat transfer in sewers, addresses
the expected challenges with existing techniques and proposes a new parameterisation
for the heat transfer between wastewater and in-sewer air. The section also introduces
advanced methods for analysing the modelling accuracy using a Taylor diagram.

1.1. The Need for Modeling Heat Transfer in Sewers

The increasing demand for clean energy sources caused by more stringent carbon
emission regulations is creating an urgent need for alternative low carbon energy sources in
urban areas. Recovering heat from sewers may provide an attractive potential source of low-
carbon heat due to the relatively high wastewater temperature in sewers, the predictable
daily dry weather flow patterns and the proximity of numerous potential heat users in many
urban areas. Heat recovery from sewers has more significant potential than other forms of
energy, such as chemical energy, e.g., Hao et al. (2019) [1] have estimated theoretical energy
densities of 4.64 and 1.54 kWh/m3 for heat and chemical energy potentials, respectively.
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These estimates neglect the efficiency factors when extracting the energy. Recovering heat
from wastewater may also qualify for government subsidies, e.g., the renewable heat
incentive (RHI) in the UK (Bulteau et al., 2019) [2]. Short-term measurement programmes
of wastewater temperatures in combined sewers recorded temperatures reaching 27 ◦C
(Schilperoort and Clemens, 2009 and Cipolla and Maglionico, 2014) [3,4]. A case study
by Abdel-Aal et al. (2018) [5] indicated that 7 to 18% of the heat demand for a 79,500 PE
Belgian city could be met by sewer heat recovery. This was based on assuming a 100%
efficient heat exchange system.

Quantifying the potential heat recovery from sewer pipes requires a reliable prediction
of the wastewater temperature variation to ensure the changing environmental conditions
do not significantly vary the amount of potential heat recovery without compromising the
operation of “end of system” wastewater treatment plants. It is also important to always
maintain a wastewater temperature in a sewer pipe above the freezing point in order to
avoid physical damage and blockage. The modelling of wastewater temperature requires
knowledge of wastewater hydraulics, surrounding temperatures (soil and in-sewer air) and
heat transfer coefficients. Durrenmatt (2006), Durrenmatt and Wanner (2008 and 2014) [6–8]
developed a deterministic model called TEMPEST that estimates wastewater temperature
variations along with the longitudinal profile of a sewer pipe based on heat transfer
laws and the principles of mass balance. Heat transfer parameters, including thermal
conductivity and penetration depth of surrounding soil, were calibrated and validated in
TEMPEST using data observed only over a few days in the same season [8]. Furthermore,
TEMPEST can be highly parameterised since it requires fifteen input parameters, including
specific variables, such as chemical oxygen demand and degradation rate. The TEMPEST
model was tested onsite by utilising a limited dataset measured between 14 February and
22 March 2008. Abdel-Aal (2015) [9] developed a more efficient computational model
that predicts the total amount of potential heat recovery from sewer networks and the
consequent wastewater temperature variations along the pipes. The latter model, which
will be referred to as the “2015 model”, was calibrated and validated using long-duration
datasets (February to July in 2012 and 2013) in a number of combined sewers.

Abdel-Aal (2015) [9] found that calibrated coefficients were inconsistent between the
winter and summer data, which indicated that the heat transfer between wastewater and
in-sewer air is not negligible. Elías-Maxil et al. (2017) [10] developed a parsimonious
computational model to estimate water temperature using similar heat and mass balance
principles to that of TEMPEST. The main difference between the TEMPEST model and that
developed by Elías-Maxil et al. (2017) [10] was that the latter neglected the heat transfer
between water and air. Elías-Maxil et al. (2017) [10] tested their model in the field on
an out-of-service sewer with an internal diameter of 0.23 m using controlled inflows of
cold and hot water. The current work, therefore, focuses on developing a new model for
predicting sewage temperature changes, focusing on the interaction between in-sewer air
temperature, air velocity and wastewater temperature to reflect the physical interaction of
the in-sewer air/wastewater boundary layer.

1.2. Complexity of Modeling Heat Transfer in Sewer Pipes

Heat transfer in sewer pipes is usually a complex process since the pipe is partially
filled, some of the parameters are difficult to quantify (e.g., in-sewer air velocity), and the
relevant parameters are subject to seasonal variations. Previous studies concerned with
modelling wastewater temperatures have not addressed in detail the physical interaction
between wastewater and in-sewer air, which can improve the modelling accuracy and
result in predicting more potential heat recovery, as will be shown in Section 3.4. The
challenge of quantifying in-sewer air velocity can compromise the model accuracy since
in-sewer air temperature is an influential parameter, as proven by Abdel-Aal et al. (2015) [9]
using a predictive machine learning model. Therefore, this paper develops a new model
for predicting sewage temperature changes, focusing on the physical interaction between
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in-sewer air and wastewater boundary layer while accounting for the seasonal variations
presented in observed long-term field data.

1.3. Challenges Associated with Modeling In-Sewer Air Velocity

The heat transfer between wastewater and in-sewer air has previously been estimated
using empirical methods as a function of in-sewer air velocity. The velocity of in-sewer
air is not usually known and can also be difficult to predict accurately for large sewer
networks. Pescod and Price (1982) [11] developed an empirical model to estimate in-sewer
air velocity based on observations from a single laboratory flume. Other researchers have
studied the airflow in sewers; for example, Edwini-Bonsu and Steffler (2006) [12] simulated
the ventilation process in sewers by predicting the air movement and the pressure variation
in the system. The latter authors estimated the in-sewer airflow rate as a function of
acceleration due to gravity, available headspace, wastewater velocity and wastewater
depth. However, the study was a general framework for drop structures, and the model
was not validated using observed data. This may limit the model applicability in complex
systems, e.g., large sewer networks. A conceptual model by Qian et al. (2018) [13] was
developed to simulate the in-sewer air movement in a small prototype sewer network
by considering air pressure, wastewater drag and friction forces. Their model assumed
in-sewer air velocities to predict the airflow rate while considering a single direction for
the airflow, which may not be the case in real sewer systems. Qian et al.’s (2018) [13] model
has a number of assumptions that may result in discrepancies, especially if the model is
applied to large sewer networks. These include the pipe connections having no further
branches and the limited number of in-sewer air leakage sources. Some of the model
discrepancy causes were found, by Qian et al. (2018) [13], to be mainly due to changes in
drop diameters, breakup lengths and wastewater terminal velocities. The models by Qian
et al. (2018) [13] and Edwini-Bonsu and Steffler (2006) [12] were aimed at predicting the
in-sewer airflow by assuming in-sewer air velocity (ua) mainly for controlling odours, and
therefore, their focus was not to develop a methodology for estimating ua.

Durrenmatt and Wanner (2014) [8] incorporated ua in their model and assumed it is
50% of wastewater velocity. The latter authors considered ua to be a key parameter in their
TEMPEST model since it was utilised to estimate the airflow, air transfer coefficient and heat
transfer between wastewater and in-sewer air. Durrenmatt and Wanner (2014) [8] assumed
that the airflow in sewers was based mainly on the pipe structure, which makes the in-
sewer air velocity independent of external forces and variations of airflow streamwise. This
assumption may accumulate simulation errors if the model to be deployed on large sewer
networks. Abdel-Aal (2015) [9] calibrated ua, which was initially found to be unrealistically
high (100′s m/s) before limiting its calibration range between −0.5 and 0.5 m/s, indicating
that the way his model was formulated could be improved. Therefore, there is a need
for developing a new parameterisation that can incorporate the effects of in-sewer air on
wastewater temperature while relying on measurable parameters. This parameterisation
needs to incorporate the widely varying temperatures of in-sewer air and wastewater over
the year.

1.4. Introducing a New Parameterisation for the Heat Exchange between Wastewater and
In-Sewer Air

The development of the new heat transfer coefficient (hFr) will enable the estimation
of the heat transfer parameter at the air-wastewater surface by utilising physically based
parameters that can reflect changes in the wastewater and in-sewer air dynamics at the
interface. The 2015 model, which was based on the heat transfer coefficient being dependent
on ua, as will be shown later by Equation (1), showed wide variability in the root-mean-
squared error (RMSE) and calibrated parameters, which indicates a weakness in the model
structure. Therefore, utilising a relation that better simulates the physical variation of the
relevant heat transfer parameters expressed by the dimensionless Fr number is expected to
enhance the modelling accuracy.
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1.5. Taylor Diagram

An advanced way to compare the accuracy between various models is to plot a Taylor
diagram, which was developed by Taylor (2001) [14]. This can be achieved by graphically
plotting various statistics that interpret the model accuracy in terms of correlation, RMSE
and standard deviation in a single diagram for various models. A Taylor diagram can
also be used to represent the normalised statistics and thus facilitates the fair comparison
between different models. Therefore, this study will utilise the Taylor diagram to compare
the performance of the model developed in this paper with previously developed models.

1.6. Novelty, Aim and Objectives

Novelty: Introduce and examine the reliability of a new heat transfer coefficient (hFr)
between wastewater and in-sewer air.

Aim: Develop a new heat transfer coefficient between wastewater and in-sewer air
that is based on physical variations in wastewater hydraulics.

Objectives:

1. Analyse the fluid dynamics at the interface between wastewater and in-sewer air to
develop a dimensionless heat transfer parameter;

2. Utilise long-term measured seasonal datasets for calibrating the new parameterisation
for the heat transfer coefficient;

3. Compare the accuracy of the new model developed in this paper and existing models
by employing advanced analysis techniques, e.g., the Taylor diagram.

2. Methodology

This section describes the field sites and shows the collected seasonal field data,
which include measured values for the wastewater, in-sewer air and soil temperatures,
as well as in-sewer wastewater flow rates. The section explains the techniques used for
modelling wastewater temperature and the process followed for calibrating and validating
the key heat transfer parameters in sewers, including hFr. Data analysis techniques used
to examine the model performance over a long-term interval, including the probability
density function (PDF) and Taylor diagram, are also described.

2.1. Data Collection

The data collection was performed in collaboration with Aquafin, a Belgian water
company in Antwerp. The authors specified the measuring parameters based on the
modelling requirements, defined the sensor specifications and processed the measured
data. Four sewer pipes were utilised to measure the temperatures of wastewater (upstream
and downstream), in-sewer air and soil, wastewater flow rate, velocity and depth. Since
the underlying heat transfer mechanism varies depending on the sewer size (Abdel-Aal,
2015) [9] the four sites in this study were selected to represent the range of sewer pipes
in a catchment area; small residential sewers and large-scale collector sewers. The site
category depends on the dry-weather flow rate (DWF) and the position in the sewer
network. The residential sewers have a higher diameter to flow ratios than larger collectors
and are closer to residential homes, which results in higher wastewater temperatures.
Collector sewers have no direct connections to residential homes and are mainly designed
to transport wastewater from the downstream of the residential areas to the treatment
plant. Table 1 describes the sites from which data were recorded between March 2012 and
July 2012 for residential sewers and between February 2013 and June 2013 for collector
sewers. Residential sewers were located 1.5 km apart in the same catchment, while the
large collectors were 3 km apart and located 15 km from the residential sites.
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Table 1. Details of sewer pipes used for data collection.

Site
Average DWF Pipe Length

Pipe Depth Pipe Outer Diameter Slope Material Shape Type

US DS m
L/s m m m

1 10 464 2.4 3 1.34 0.13% Concrete Circular Residential
2 13 232 3 4 1.34 0.56% Concrete Circular Residential
3 350 1031 3.5 3 1.34 0.1% Concrete Circular Collector
4 100 749 3 2.8 0.78 0.13% Concrete Circular Collector

Temperatures of wastewater and in-sewer air were observed every 20 min by Tinytag
(PBRF-5006-5m) sensors with ±0.06 ◦C accuracy and less than 0.05 ◦C resolution. The
measurement frequency was found to be adequate to account for the temperature variation.
The in-sewer air temperature sensors were installed 1 m below the manhole cover, while
the wastewater temperature sensors were fixed just above the sewer pipe invert level and
were always covered with wastewater. Thermocouples of the EJB378 K-type, calibrated
by BERCU EJB, were used to measure soil temperatures 3 m underground with ±0.7 ◦C
accuracy. Wastewater flow rate, velocity and depth were recorded every 2 min using Isco
2150 area-velocity type meters that were calibrated onsite by Studiebureau Patrick Casier,
Belgium. The flow meters were visited weekly when the wastewater velocity and depth
were checked, and sensors cleaned if necessary. Wastewater depth was observed using an
Isco 2150 flow meters through submerged pressure transducers with ±0.003 m accuracy.
Wastewater velocity was measured, with an accuracy of ±0.03 m/s, using Isco 2150 area
velocity type meter employing the Doppler ultrasonic method with a 500 kHz frequency.
All sensors were purchased from Antwerp, Belgium. More details on the measurement
campaign are available in Abdel-Aal (2015) [9].

DWF for each site was estimated by observing the flow rate variations when there
are no relatively high flow rates (spikes), such as the periods between 15 and 30 March at
sites 1 and 2 (Figures 1 and 2). These flow values at dry periods were then averaged over
their timespan to define the average DWF for the relevant site. The modelling, calibration
and validation for the urban sites were based on DWF periods to avoid complications
associated with sudden increase in flow rates and potentially high wastewater temperature
changes caused by rainfall. The omission of rainfall events was achieved by removing
(filtering out) flow rates and their corresponding parameters, e.g., observed temperatures,
that are greater than the DWF. The collector sewers did not show significant differences
in terms of calibration and validation results when DWF or the total flow was considered.
Hence, there was no need to omit the rainfall events in the collector sewer data. The
plotting of observed data was smoothened using a moving average of 15 points (i.e., over
5 h for temperatures and 30 min for flow rate) to avoid noisy data. Figures 1 and 2 show
the variation of wastewater temperatures and flow rates of the smoothed data for sites 1
and 2, respectively.
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Figure 1. Observed wastewater temperatures and flow rates for site 1 (used for calibrating the residential sewer model).

Figure 2. Observed wastewater temperatures and flow rates for site 2 (used for validating the residential sewer model).

Expected patterns of wastewater temperatures and flow rates were observed at sites 1
and 2, where the flow peaks reflect the infrequent rainfall events. The rainfall runoff peaks
often show short-term dips in the sewer flow temperature, but not always. The occurrence
and size of these dips would be dependent on the temperature of the rainfall runoff as
well as the volume of rainfall runoff, but this has not been studied further. Wastewater
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temperatures at sites 1 and 2 generally increased before plateauing, e.g., on 10 April and 9
June in Figures 1 and 2. This is thought to be due to the change in in-sewer air temperature,
which plateaus or dips around the same periods of time. Figure 3 shows the local soil
temperature, measured 3 km from site 1 at 3.7 m depth below ground level, and the
variations of in-sewer air at site 1. The soil temperature at the above depth is expected to
be the same or very close to that in the vicinity of the four sites. In-sewer air temperatures
for sites 1 and 2 were close in terms of patterns and values; hence only site 1 data were
plotted in Figure 3.

Figure 3. Temperature variations of soil and in-sewer air in a residential sewer (site 1).

The pattern of observed in-sewer air temperature is very close to that of the wastewater
temperatures at site 1 (Figure 1). Unlike soil temperatures, in-sewer air temperatures vary
significantly during the day and increase considerably from winter to summer (Figure 3),
which suggests that the diurnal wastewater temperature variation was less influenced by
soil temperatures. This indicates that the temperature of in-sewer air largely affects that
of wastewater. Therefore, the heat transfer process between wastewater and in-sewer air
is thought to be important when modelling wastewater temperature in sewers over long
durations. Figures 4 and 5 show the observed wastewater temperatures and flow rates
for sites 3 and 4, respectively. Some technical issues related to data monitoring occurred
between 7 and 21 June 2013 in site 4, hence the gap in Figure 4.
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Figure 4. Observed wastewater temperatures and flow rates for site 3 (used for validating the collector sewer model).

Figure 5. Observed wastewater temperatures and flow rates for site 4 (used for calibrating the collector sewer model).

A relatively steady drop in wastewater flow rate was observed, in Figures 4 and 5,
during wintertime until around the start of April at sites 3 and 4. It is likely that from
early April onwards, the groundwater infiltration was lower than that in other months.
The lower temperature of the infiltrated water may cause less increase in wastewater
temperature up until April, compared to sites 1 and 2. There was a sharp drop in the
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wastewater flow rate at site 3 between 1 February and 8 March, which is likely due to the
earlier snow that melted over February to reflect this drop. This explains the sharp drop in
wastewater temperature on around 20 March, as the melted snow was mixed with surface
runoff and drained into the sewers at a lower temperature. The sudden flow rate drop also
at site 3 on 13 March may be caused by a blocked sensor.

2.2. Existing Technique of Modeling Heat Exchange between Wastewater and In-Sewer Air

Durrenmatt (2006), Abdel-Aal (2015) and Abdel-Aal et al. (2014) [6,9,15,16] utilised a
relationship, developed by Flinspach (1973) [17], to estimate the heat transfer coefficient
(hwa) between wastewater and in-sewer air knowing the relative in-sewer air velocity as
given by Equation (1).

hwa = 5.85×
√
|uwa| (1)

where uwa is the relative in-sewer air velocity to that of wastewater (m/s).
The derivation of Equation (1) is not fully explained by Flinspach (1973) [17]; hence the

origin of the calibration coefficient (5.85) is unclear. In addition to the challenges associated
with an accurate estimation of in-sewer air velocity (Section 1.2), a closer examination of
Equation (1) suggests that it does not fully consider the heat transfer processes between
the wastewater and the in-sewer air, as the velocity of the wastewater free surface relative
to the in-sewer air in contact with the free surface can reach zero, as shown in Figure 7
(uw = ua). The wastewater and in-sewer air velocities can be estimated based on the
interface fluid dynamics. Abdel-Aal (2015) [9] described the heat transfer process in sewer
pipes, as shown in Figure 6, and utilised Equation (1) to estimate hwa in his 2015 model. The
challenge in estimating the in-sewer air velocity has led Abdel-Aal (2015) [9] to calibrate
for the in-sewer air velocity.

Figure 6. Illustration of heat transfer processes in a sewer pipe. q is the heat transfer rate (Watt)
between wastewater (w) and in-sewer air (a) and soil (s).

2.3. New Parameterisation for the Heat Exchange between Wastewater and In-Sewer Air

Unlike Abdel-Aal (2015) and Abdel-Aal et al. (2014) [9,15,16] simulations, the model
developed in this paper attempts to account for the impact of the in-sewer air velocity
profile, close to the interface, on the heat transfer processes and develop a heat transfer
parameterisation that accounts for the free surface air boundary layer. Convective heat
transfer of a fluid moving on a surface relies on the velocity boundary layer caused by
the shear stresses between the fluid and the surface (Schlichting and Gersten, 2003 and
Incropera et al., 2007) [18,19]. In this study, in-sewer air is assumed to be moving over the
“rough” wastewater surface and therefore, it is necessary to study the boundary layer of the
in-sewer air created by the moving wastewater surface. It is important to consider the effect
of the “roughness” of the wastewater surface waves on the shearing of the adjacent airflow,
as shown in Figure 7. Since the exact behaviour of wastewater interaction with in-sewer
air is poorly understood, as a first approximation, it is assumed that the characteristics
of wastewater surface movement in a sewer pipe have a similar effect on the airflow
over a static rough surface with turbulent conditions. This assumption is reasonable to
reflect the irregularity of the wastewater surface at the interface zone and develop a better
understanding of the local air and wastewater velocity profiles.
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Figure 7. Velocity and shear stress boundary layers in a sewer pipe. τ is the shear stress (N/m2), u is
the velocity (m/s), a and w denote the in-sewer air and wastewater, respectively, ∆ is the distance
from the zero-velocity plane to the maximum height of the wastewater surface wave (m), y is the
relevant vertical distance from the relevant zero-velocity plane (m), kW is the wastewater surface
wave amplitude (m).

Based on the aforementioned assumptions, Figure 7 illustrates the shear stress and
velocity boundary layers of in-sewer air and wastewater. For simplicity, the rough wastew-
ater surface was assumed to have a fluid roughness that is related to the geometry of the
surface waves. This is analogous to the fluid roughness of a static boundary in a channel or
river bed, which can be represented by a layer of spheres packed together (Schlichting and
Gersten, 2003) [18]. The wastewater shear stress (τw) below the interface zone of Figure 7
becomes zero when the velocity gradient of the wastewater along the vertical axis ( duw

dy ) is
zero. Einstein and El-Samni (1949) [20] found that, for a static bed, the fluid roughness is
around 20% of the static roughness size (kW), depicted as ∆ in Figure 7. The shear stresses
and velocities of in-sewer air and wastewater close to those boundaries are controlled by
the effective fluid roughness (∆), i.e., 20% of the wastewater wave amplitude. The scale
of ∆ implies that the impact of in-sewer air velocity is less effective when analyzing the
heat transfer at the interface zone. Therefore, and since wastewater hydraulic data are
available in this work, the focus will be on investigating measurable parameters that can
help describe the wastewater shear stress boundary layer, which influences the in-sewer
air velocity gradient and hence impacts the physical heat transfer between wastewater
and in-sewer air. Accounting for eddy tangential velocity and combining the shear stress
and moment equations, the shear stress of wastewater in a boundary layer flow can be
expressed, based on the Prandtl eddy model approach, by Equation (2) [18]:

τw = ρw(Ky)2
(

duw

dy

)2
(2)

where τw is the wastewater shear stress in the boundary layer (N/m2), ρw is the wastewater
density (kg/m3), K is Von Karman’s constant, y is the relevant vertical distance from the
zero-velocity plane (m), and uw is the wastewater velocity (m/s).

Similarly, Equation (3) can be used to describe the shear stress of in-sewer air:

τa = ρa(Ky)2
(

dua

dy

)2
(3)

where τa is the in-sewer air shear stress in the boundary layer (N/m2), ρa is air density
(kg/m3), and ua is the in-sewer air velocity (m/s).

The shear stresses of wastewater and in-sewer air are equal at the effective interface
between the two fluids (Figure 7). The density of in-sewer air (ρa) is significantly less than
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that of wastewater, and since both τw and τa are equal at the interface, the variation of
wastewater velocity over the vertical axis ( duw

dy ) is much less than that of in-sewer air ( dua
dy )

as indicated by Equations (2) and (3). Assuming the in-sewer air velocity (ua) follows a
logarithmic profile, ua can be expressed as follows in terms of u∗, which is the square root
of the in-sewer air shear stress over its density, as shown by Equation (4):

ua =
u∗
K

ln
y
∆

(4)

where ua is the in-sewer air velocity (m/s), K is Von Karman’s constant, ∆ is the depth
from the zero-velocity plane to the point where τa reaches its maximum (m), and y is the
vertical distance in the in-sewer air from the zero-velocity.

Equation (4) demonstrates that the shearing of the in-sewer air velocity profile is
influenced by the wastewater fluid roughness height, i.e., the wave amplitude. Since shear
stresses of wastewater and in-sewer air are equal at the interface surface, Equations (2) and (3)
show that the shear stress of in-sewer air is dependent on the wastewater surface wave
amplitude and its velocity. Therefore, to enhance the accuracy of modelling the heat transfer
between wastewater and in-sewer air, a parameterisation that includes the influence of
the wastewater surface velocity and wave amplitude can be developed. Analysis of water
surface elevation data collected by Romanova (2013) [21] indicates that for a variety of pipe
roughness conditions at shallow depths (e.g., less than a third of the pipe diameter), the
standard deviation of the surface wave height is related to Froude number. This limitation
inflow depth corresponds to dry weather flow in combined sewers. This indication leads
to the utilisation of the dimensionless Froude number (Fr), given by Equation (5), since it is
related to wastewater surface velocity and surface wave height. Adding a dimensionless
calibrating factor (fc) to obtain an optimal value of the new heat transfer coefficient (hFR),
Equation (6) can be developed to express hFr as a function of Fr in a partially filled sewer
pipe. Although the wastewater hydraulic parameters were measured in this study, they
can be retrieved from existing calibrated hydrodynamic models when deployed, e.g., in
large sewer networks as performed in Section 2.8.

Fr =
uw√
g·Dw

(5)

hFr = fc ×
uw√
g·Dw

(6)

hFr is the new heat transfer coefficient between wastewater and in-sewer air as a function
of Froude number (W/m2·K), f c is the calibrating parameter for hFr (W/m2·K), uw is the
wastewater velocity (m/s), g is the acceleration due to gravity (m/s2), and Dw is the
hydraulic depth of wastewater in a sewer pipe (m).

2.4. Modelling

The model developed in this study is referred to as the “2020 model”. The calibration
of heat transfer parameters, using wastewater Froude numbers, is based on the principle
of energy balance over a pipe length and incorporates heat transfer equations assuming
slowly changing DWF conditions, that is, quasi-steady flow conditions relative to the
timescale of the heat fluxes. The model assumes that wastewater temperature variation
along a sewer pipe profile is due to heat being exchanged with the in-sewer air through
the flow surface area and with the surrounding soil through the wetted pipe wall. This
modelling technique is efficient since it only accounts for the most significant processes.
The model efficiency is crucial for simulating wastewater temperature within large sewer
networks to investigate optimum locations for potential heat recovery applications.

Referring to Figure 6, Equation (7) can be developed:

.
mcp,wdT = qwa + qws (7)
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where
.

m is mass flow rate (kg/s), cp,w is the specific heat capacity for wastewater (J/kg·K),
dT is the temperature difference between upstream and downstream ends (K), qwa is heat
transfer between wastewater and in-sewer air (Watt), and qws is the heat transfer between
wastewater and soil (Watt).

Equation (8) was originally formulated by Abdel-Aal (2015) [9] on the basis of
Equation (7) to estimate wastewater temperature variation along the sewer pipe profiles
and was also implemented in this study.

Tm+1 − Tm = −
( 1

Rwa
(Tm − Ta) +

1
Rws

(Tm − Tsoil)

ρwQcp,w
∆x

)
(8)

where T is the temperature (K), m is the nodal expression of the wastewater temperature
location along the pipe length, R is thermal resistivity (m.K/W) between wastewater
and in-sewer air (wa) and between wastewater and soil (ws), ∆x is the increment length
streamwise (m), ρw is the wastewater density (kg/m3), Q is the wastewater volumetric
flow rate (m3/s) and cp,w is the specific heat capacity for wastewater (J/kg·K).

Referring to Equation (8) and the newly proposed Equation (6), the expressions for the
thermal resistivity between wastewater and in-sewer air ( Rwa) and between wastewater
and soil (Rws) are given by Equations (9) and Equation (10), respectively:

Rwa =
1

hFrb
(9)

Rws =
tp

kp wet.p
+

ds

ks wet.p
(10)

where w, a, p and s denote for wastewater, air, pipe and soil, respectively, hFr is the new
convective heat transfer coefficient between wastewater and in-sewer air as a function of
the Fr number (Equation (6)) (W/m2·K), b is the surface width of wastewater in a sewer
pipe (m), tp is the pipe wall thickness (m), ds is the soil penetration depth (m), wet.p is the
sewer pipe wetted perimeter (m), and k is thermal conductivity (W/m·K).

2.5. Comparison with Existing Sewer Pipe Models

The model developed in this paper was compared with existing models developed by
Abdel-Aal (2015) [9], Durrenmatt and Wanner (2014) [8] and Elías-Maxil et al. (2017) [10].
The same measured parameters, i.e., wastewater flow and temperatures of wastewater,
in-sewer air and soil, were utilised for running the former models. The Durrenmatt and
Wanner (2014) [8] model (known as TEMPEST) is given by Equation (11):

δ(AW Tw)

δt
=

δ(QTw)

δx
+

1
ρwcp,w

(
qpwUpw − qwab− qewb + qCOD Aw) (11)

Elías-Maxil et al.’s (2017) [10] model, given by Equation (12 ), was based on TEMPEST
while omitting some parameters:

δ(AW Tw)

δt
+

δ(QTw)

δx
− 1

ρwcp,w
qpwUpw = 0 (12)

where AW is the wetted cross-sectional area of wastewater (m2), TW is the wastewater
temperature (K), q is the heat flux between the pipe wall and the wastewater (pw) (W/m2),
between wastewater and in-sewer air (wa) (W/m2), due to evaporation (ew) (W/m2)
and produced from biochemical reactions (COD) (W/m3). b is the wastewater surface
width (m).
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2.6. Calibration

Calibration of the key heat transfer parameters was based on the sensitivity of the
wastewater temperature model to the parameters, the availability of the parameter values
in published literature and the ability to measure them onsite. The heat transfer coeffi-
cient between wastewater and in-sewer air plays a major role in simulating wastewater
temperatures, as explained in Section 1, and hence it was important to calibrate the fc
parameter (Equation (6)). Sensitivity analysis performed by Abdel-Aal (2015) [9] indicated
that parameters related to soil, i.e., penetration depth (ds) and soil thermal conductivity
(ks), were more important when compared to pipe thermal conductivity. Soil penetration
depth is defined as the distance from the wetted area of the sewer pipe invert level at
which soil temperature becomes independent of the heat transferred between wastewater
and soil through the pipe wall. Determination of ds may prove impractical since it would
usually require accurate measurement of the temperature profile of the surrounding soil.
Soil thermal conductivity (ks) is difficult to determine since it varies with the soil type and
its saturation conditions (Mitchell and Soga, 1993) [22]. This led Abdel-Aal (2015) [9] to
calibrate both ds and ks. However, Abdel-Aal (2015) [9] concluded that calibrating both ds
and ks as separate parameters may compromise the accuracy of the calibrated parameter
values, as they were not independent. Hence, the obtained values of calibrated ds and ks
may not necessarily reflect their actual values. Therefore, it was decided to calibrate both
ds and ks as a single parameter in the form of the ds/ks ratio. Hence, the calibration pa-
rameters in this work are the calibrating parameter (fc) for heat transfer coefficient between
wastewater and in-sewer air (hFr) and the ratio of soil penetration depth to soil thermal
conductivity (ds/ks).

Optimisation of constrained nonlinear function in MATLAB 2020a [23] software was
employed to calibrate fc and ds/ks. An optimisation function with constraints was selected
since the values of calibrated parameters were known to be positive and ought to be within
a realistic range. The fc parameter was assumed to be varying between 0.01 and 100. This
was based on observing the calibration results of a wider range (0.01–500), which revealed
that fc would not exceed 100. The ds/ks range was estimated based on the available
values in the published literature. Hence, ks was assumed to be between 0.1 and 2.5
W/m.K (Mitchell and Soga, 1993) [22]. The penetration depth is a function of the thermal
diffusivity, which is related to the soil thermal conductivity and thermal capacity. A range
between 0.001 to 5 m was assumed for ds to ensure full coverage of possible penetration
depths, which is wider than that found in Durrenmatt and Wanner (2014) [8] (0.01 to 1 m).
Considering the above ds and ks ranges and since low ks values lead to shorter ds, the
calibrating parameter of ds/ks ranged from 0.01 to 2 m2·K/W.

The optimisation function operates by iterating values within the above pre-set ranges
to find the minimum of a target function. The target, in this case, was set to minimise
the difference between observed and modelled downstream wastewater temperatures
as given by Equation (13). This target was interpreted by the norm of the difference
between observed and modelled values as given by Equation (14), which was set to zero
in an attempt to minimise it. Setting the target of Equation (13) to zero assumes that the
distribution of the modelling error (Equation (15)) is close to normal. Abdel-Aal (2015)
showed that the modelling error was approximately normally distributed in most cases,
using a simpler form of sewer pipe modelling and a more limited dataset. Therefore, it is
reasonable that Equation (13) can be used for the target function:

|V| = 0 (13)

where V is the square root of the sum of the squared error array, as shown by Equation (14):

|V| =
√

∑N
n=1 error2

n (14)
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“error” is the modelling error as given by Equation (15):

error = ODSWW −MDSWW (15)

where N is a total number of time steps, n is the observed sample number, DS denotes
downstream, WW denotes wastewater, O is observed temperature, and M is modelled (or
predicted) temperature.

The calibrating parameter values obtained by Abdel-Aal (2015) [9] were found to
be varying with calendar months, and hence, the calibration process in this study was
performed on a monthly basis to examine temporal variations. The calibration was per-
formed using Equation (8) on residential and collector sewer data separately. Both sites 1
and 2 represent residential sewer characteristics, and site 1 data were arbitrarily selected
for calibrating the residential sewer model, while site 2 data were used for validating the
resulting model. For the collector sewer model, site 4 was used for calibration since it
provided more data, while site 3 data were used for validation.

2.7. Summarising the Models’ Performance

This section explains how the modelling accuracy was assessed using the probability
density function (PDF) and Taylor diagram plots.

2.7.1. Probability Density Function (PDF)

An effective way to compare modelling results is to plot the PDF of the modelling
error Equation (15). The PDF was plotted for the model results during both calibration and
validation for each calendar month.

2.7.2. Taylor Diagrams

Taylor diagram [14] was used to present the correlation between observed and mod-
elled wastewater temperature time-series, their normalised standard deviation and nor-
malised centered root mean square errors. The formulae used to compute the above
parameters are explained in this section. The correlation coefficient (R) between observed
(O) and modelled (M) wastewater temperatures is given by Equation (16). The advantage
of presenting correlation in this work is that the calibrated models (residential and collec-
tor) were based on time-series data, and hence plotting the correlation provides a clear
representation of the overall relationship between modelled and observed values across
the given calendar month, which is around 2000 time steps:

R =
1
N ∑N

n=1
(

Mn −M
)(

On −O
)

σMσO
(16)

where N is the total number of time steps, n is the observed sample number, M and O are
the modelled and observed wastewater temperatures, respectively (◦C), M and O are the
mean values for modelled and observed wastewater temperatures, respectively (◦C), σM
and σO are the standard deviations for modelled and observed wastewater temperatures,
respectively (◦C).

The root-mean-squared error (RMSE) was computed using Equation (17):

RMSE =

√√√√ 1
N

N

∑
n=1

(Mn −On)
2 (17)

In order to eliminate the effects of the overall bias (B), which is defined by Equation (19),
the means of modelled ( M) and observed ( O) wastewater temperatures were subtracted to
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produce the centered root mean square error (CRMSE). Hence, and based on Equation (17),
Equation (18) was formulated to show how CRMSE can be computed:

CRMSE =

√√√√ 1
N

N

∑
n=1

[(
Mn −M

)
−
(
On −O

)]2 (18)

B = M−O (19)

CRMSE can also be expressed in terms of standard deviations and correlation coeffi-
cient, as shown by Equation (20):

CRMSE =
√

σM2 + σO
2 − 2σMσOR (20)

The standard deviation for modelled (σM) and observed (σO) temperatures can be
expressed in a similar manner, as shown by Equations (21) and (22):

σM =

√
1
N ∑N

n=1

(
Mn −M

)2 (21)

σO =

√
1
N ∑N

n=1

(
On −O

)2 (22)

Thus, CRMSE, σM, σO and R for all modelled values can be plotted on a single Taylor
diagram. Since the wastewater temperatures were observed at different months and sites,
where the behavior of heat transfer mechanism is likely to vary (Abdel-Aal, 2015) [9], and
in order to compare the statistics of various models in one Taylor diagram for all sites, the
model statistics were normalised. Normalisation can be achieved by dividing the statistics
by the relevant observed standard deviation (σO). This will also account for the uncertainty
on the observed values, which is quantified by σO. Hence, normalised centered root mean
square error ( ˆCRMSE), normalised standard deviations ( ˆσM and σ̂O) are introduced by
dividing CRMSE, σM and σO by σO as shown in Equations (23)–(25), respectively. The
value of σ̂O was used as a reference point in the Taylor diagram:

ˆCRMSE =
CRMSE

σO
(23)

σ̂M =
σM
σO

(24)

σ̂O =
σO
σO

(25)

2.8. Estimating the Significance of the 2020 Model on a Sewer Network

The new heat transfer coefficient and the ds/ks ratio were utilised to predict the
viable potential heat recovery from a large 3000 sewer pipe network that serves 79,500 PE,
which is described by Abdel-Aal et al. (2018) [5] in more detail. In order to account for
the seasonal variations, the months of January, March and May were considered when
estimating the potential heat recovery. It was assumed that heat was being recovered
over a working day (24 h) in each of these months to estimate the consequent wastewater
temperature variations across the network and at the wastewater treatment plant (WwTP)
influent. Annual potential heat recovery was then estimated based on the daily predicted
amounts. It was assumed that a viable heat recovery would result in minimum wastewater
temperatures of 9 ◦C at the WwTP influent and 5 ◦C at the sewer pipes. This was based on
previous work done by the aforementioned authors. The 2015 and 2020 models used the
previously developed and the new heat transfer parameters, respectively, to observe the
differences in the predicted amounts of viable heat recovery.
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3. Results

This section shows the values of the calibrated parameters obtained by the optimi-
sation routine using the field data. In order to assess the accuracy of the model, PDFs of
modelling errors were plotted using data from sites 1, 2, 3, and 4. A Taylor diagram was
plotted to show R, ˆCRMSE and ˆσM for all sites over the four seasons for previous models,
including the 2015 model and the new 2020 model results.

3.1. Calibration Results

The calibrated parameters for the heat transfer coefficient between wastewater and in-
sewer air (fc) and the calibrated ratio of soil penetration depth to soil thermal conductivity
(ds/ks) are shown in Table 2 for both sewer categories. The new heat transfer coefficient
between wastewater and in-sewer air (hFr) was computed, using Equation (6), by consider-
ing fc, monthly average uw and Dw values and the results are presented in Table 2. Unlike
the 2015 model, fc and consequently hFr values for the 2020 model have close values in
winter and then decrease in summer. This is likely to be due to the dependency of the heat
transfer coefficient in the 2015 model (hwa) on parameters that were calibrated either by
Flinspach (1973) [17], i.e., the 5.85 value, or by Abdel-Aal (2015) [9], i.e., the in-sewer air
velocity, rather than being influenced by the physical variation in wastewater hydraulics,
represented by the Fr number.

Table 2. Values of the calibrated ratio of soil penetration depth to soil thermal conductivity (ds/ks), calibrated heat transfer
coefficient factor ( fc) for heat transfer between wastewater and in-sewer air, the heat transfer coefficient (hFr) and the
thermal resistivity values between wastewater and in-sewer (Rwa) and soil (Rws) for the 2020 model.

Month
ks/ds (W/m2·K) fc (W/m2·K) hFr (W/m2·K) Rwa (m·K/W) Rws (m·K/W)

Residential Collector Residential Collector Residential Collector Residential Collector Residential Collector

February No data 100 No data 236 No data 66 No data 0.02 No data 0.07
March 67 100 44 225 32 58 0.07 0.02 0.32 0.08
April 62 100 58 218 43 52 0.05 0.03 0.30 0.08
May 63 100 9 209 7 50 0.28 0.03 0.31 0.08
June 7 33 8 163 6 49 0.37 0.02 0.60 0.11
July 4 No data 7 No data 5 No data 0.40 No data 0.83 No data

The probability density function (PDF) was plotted for modelled results using cali-
bration data from site 1, for the residential sewer model, and from site 4, for the collector
sewer model, as shown in Figure 8. The PDF plots show the distribution of modelling
errors (Equation (15)) to represent the relative probability of error ranges when modelling
wastewater temperatures.

The distribution of errors for site 1 was relatively close for the majority of the months.
However, May has shown a slightly skewed PDF for site 1, which may be due to steeper
wastewater temperature variations (Figure 1) where calibration performance may have
been compromised by such variations. The summer months (May–July) have shown
lower hFr values, which is likely to be caused by the variation in air thermal conductivity.
It is clear that the collector sewer shows a more normal PDF of errors compared to the
residential sewer, where the symmetry is almost around zero modelling error for site 4.

3.2. Validation Results

Observed data from the real sewer pipes (Table 1) was utilised to validate the 2020
model. Figure 9 shows the validation results by plotting a PDF of modelling errors using
data from residential (site 2) and collector (site 3) sewers.
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Figure 8. Probability density function (PDF) of modelling errors for sites 1 (a) and 4 (b), used for
calibrating residential and collector sewer models, respectively.

Similar to the calibration results, the residential sewer PDF from the validation data
was less symmetric than that of collector sewers (Figure 9). However, site 3 presented
symmetry at around −0.1 ◦C modelling error, which occurred in all months.

3.3. Assessing Model Performance through the Taylor Diagram

The correlation coefficient (R), normalised centered root mean square error ( ˆCRMSE)
and normalised standard deviation ( ˆσM), for 2020 (developed in this paper), 2015 and
Elías-Maxil models were all plotted on a Taylor diagram using equations 16 to 22, as shown
in Figure 10. For clarity, an additional Taylor diagram was plotted in Figure 11 to include
the TEMPEST model results. For each model, the statistics are shown for sites 1, 2, 3
and 4 in all months. The horizontal and vertical axes represent ˆσM and the blue dashed
contour lines reflect the ˆCRMSE values. The arc between the horizontal and vertical axes
shows the correlations between observed and modelled values. Figure 10 shows that a
model may have a relatively low correlation yet produce low ˆσM and ˆCRMSE. A highly
accurate model would show statistic values near the reference point. Some plotted values
in Figure 10 overlap and cannot appear, e.g., 3 June.
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Figure 9. Probability density function (PDF) of modelling errors for sites 2 (a) and 3 (b), used for
validating residential and collector sewer models, respectively.

The normalised standard deviation ( ˆσM) was mostly close to 1 for the 2020 model,
where 60% are of ˆσM values are greater than 0.9 and less than 1.1. April, particularly at
site 1, which was used for validating the 2015 model, presented lower correlation and
higher ˆCRMSE values than other months. April 1 in the 2015 model had a CRMSE value of
0.41 ◦C and a low σO of 0.35 ◦C, which results in a relatively high ˆCRMSE. April can be a
challenging month for calibration since the variation of observed wastewater temperature
was high, as shown by having the second-lowest σO. Furthermore, 1 April in the 2015
model presented a relatively high variation of the modelled results, expressed by σM. The
performance of a model, in terms of ˆCRMSE is influenced by the difference between σO
and σM, the higher the difference, the higher the ˆCRMSE (Equation (18)), which indicates a
larger model discrepancy. March 1 in the 2015 model had similar characteristics to 1 April
of the same model, yet σO was slightly higher than that of April and hence the relatively
lower ˆCRMSE. The high ˆCRMSE values are due to CRMSE being close to or above the
observed standard deviation (σO) (Equation (23)). The 2020 model has generally shown
less discrepancy than the 2015 model, as demonstrated by the average RMSE of 0.27 ◦C,
compared to 0.35 ◦C for the 2015 model. Furthermore, the ranges of some key statistics
were considerably reduced in the 2020 model. For example, The RMSE values ranged
between 0.15 and 0.50 ◦C for all months at all sites in the 2020 model, which is a tighter
range than its 2015 model equivalent where RMSE varied from 0.14 to 0.83 ◦C. The 2020
model also has shown less variation in the bias range (−0.14 to 0.40 ◦C) than that of the
2015 model (−0.50 to 0.74 ◦C). The three models, presented in Figure 10, seem more capable
of predicting sites 3 and 4 compared to sites 1 and 2. The Elías-Maxil model has presented
higher modelling errors than the 2020 and 2015 models with maximum ˆCRMSE of around
1.5, which is 50% higher than its equivalent in the 2020 model. Nevertheless, the Elías-Maxil
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model showed a much higher correlation and ˆCRMSE values than that of TEMPEST, as
shown in Figure 11. This suggests that omitting some parameters from TEMPEST may
improve the modelling accuracy.

Figure 10. Taylor diagram for modelled wastewater temperatures at downstream ends at all sites using 2020, 2015 and
Elías-Maxil models. 1, 2, 3 and 4 refer to model statistics from sites 1, 2, 3 and 4, respectively. The normalised centered
root-mean-square errors ( ˆCRMSE) is proportional to the radial distance from the reference point and are represented by the
blue dashed contour lines.
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Figure 11. Taylor diagram for modelled wastewater temperatures at downstream ends at all sites using 2020, 2015, TEMPEST
and Elías-Maxil models.

The RMSE for each month, computed using Equation (17), are plotted in Figure 12
for all models. TEMPEST has shown relatively large RMSEs, and hence it has a separate
vertical axis. It is clear from Figure 12 that the 2020 model showed the lowest RMSE in
most months or slightly higher than the 2015 models, e.g., in February and March at site 3.

3.4. The Significance of the 2020 Model in Estimating Potential Heat Recovery

Comparing the outputs of the 2015 and 2020 models using the 3000 sewer-pipe
network (Section 2.8), viable annual heat recovery from each model is shown in Table 3.
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Figure 12. Root-mean-squared errors (RMSE) values for all models.

Table 3. Annual potential heat recovery from the 2015 and 2020 models.

Month
Heat Recovery (GWh/Year)

2015 Model 2020 Model

January 50.81 63.51
March 50.81 63.51
May 71.83 81.03

4. Discussion

Observed wastewater temperatures showed an expected overall pattern of variation
in residential sewers (sites 1 and 2) and collector sewers (sites 3 and 4), where wastewater
temperature patterns followed those of in-sewer air temperature. The wastewater flow
rates in the residential sewers generally presented a low, stable DWF with some flow spikes
that reflect the rainfall events. The collector sewers have shown different wastewater flow
variations, where sites 3 and 4 presented steady drops in flow rates from February to April.
This is likely to be caused by higher infiltration rates during the winter months. This type
of long-term flow data, combined with temperature data, may be utilised in the future to
make more accurate predictions of groundwater infiltration.

The residential sewers showed similar values of heat transfer coefficient between
wastewater and in-sewer air (hFr) during March and April, which was followed by a
noticeable drop, from 43 W/m2·K in April to 7 W/m2·K in May, reflecting the higher
thermal resistivity between wastewater and in-sewer air (Rwa). This suggests that the
behaviour of heat transfer between wastewater and in-sewer air in residential sites is
season-dependent. The average in-sewer air temperature in residential sewers was around
20 ◦C in summer (May to July), which is approximately twice that in winter (March to
April). Assuming the moisture content in sewers is constant, the lower temperature in
winter can increase the relative humidity, as can be observed from a hygrometric chart.
For example, the in-sewer air relative humidity of 50% at 20 ◦C would increase to 90% if
the temperature drops to 10 ◦C. The higher relative humidity can increase the air thermal
conductivity, which may explain the larger winter values for the calibrated parameter (fc)
in residential sewers. Since Fr was almost constant in all months of each sewer category,
the variation of heat transfer coefficient (hFr) is directly proportional to fc. Unlike the
urban sewers, the collector sites have generally presented more consistent fc values in
winter and summer. The average in-sewer air temperature in collector sewers was around
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11 ◦C in summer, excluding June, and 9 ◦C in winter, which limits the variation in relative
humidity and hence the closer fc values. However, June has shown a slightly lower fc
value in collector sewers, which may be due to the relatively high in-sewer air temperature
of around 15 ◦C. It is also worth noting that in-sewer air has less influence on the heat
exchange in collector sewers than that in residential sewers as the ratio of wastewater depth
to diameters in the former is around 40% compared to approximately 5% in residential
sewers.

An additional process that may be necessary to consider when simulating wastewater
temperatures is the heat transfer between the in-sewer air and the ambient air. This could
particularly improve the modelling accuracy in April at residential sewers, which resulted
in the largest modelling discrepancy in the 2015, 2020 and Elías-Maxil models. Preliminary
calibration of the thermal resistivity between in-sewer air and ambient air (Raa) in April,
using the 2020 model at urban sewers, was performed to investigate the impact of the heat
transfer within the air on the modelling performance. It was estimated that if Raa was
around 0.001 m.K/W and the temperature difference between in-sewer air and ambient air
was 3 ◦C, the 2020 model accuracy, represented by the bias, can be improved by around
50%. However, more details, e.g., local ambient temperatures and in-sewer air pressure, is
needed to perform a more in-depth calibration of Raa. Unfortunately, this level of detail
was not available and is beyond the scope of the paper. A simplified heat transfer model in
a partially filled pipe can be created in the future, e.g., using a computational fluid dynamic
(CFD) software package, to investigate impact of heat exchanged between in-sewer and
ambient air.

The calibrated ratios of soil thermal conductivity to penetration depth (ks/ds) were
often larger in colder months in residential and collector sewers. The high ks/ds (or
low ds/ks) ratios result in low thermal resistivity between wastewater and soil (Rws)
(Equation (10)). Higher soil thermal resistivity was observed in residential sewers during
warmer months (Table 2). This is likely since the temperature difference between wastew-
ater and soil was generally higher, by 3 ◦C than that between wastewater and in-sewer
air. Hence, the energy balance (Equation (7)) would imply higher soil thermal resistivity.
Nevertheless, key parameters related to soil thermal resistivity, e.g., soil structure, type,
void size and saturation level, were unavailable which made it difficult to confirm the exact
physical causes of soil thermal resistivity variations. The high flow rate in collector sewers
indicates high thermal energy, which means more heat needs to be dissipated, thus the
lower thermal resistivity in collector sites.

The 2020 model has generally improved the accuracy of predicting wastewater tem-
peratures, as proven by the majority of modelled values showing correlation coefficients
higher than 0.9 (Figure 10). The ˆCRMSE values of the 2020 model were relatively low, with
around 60% being equal to or less than 0.4, compared to 40% in the case of the Elías-Maxil
model. A ˆCRMSE value of 0.4 is considered low for the purpose of predicting wastew-
ater temperatures; for example, March at site 3 (March 3) has a ˆCRMSE of 0.36, and a
corresponding CRMSE of 0.10 ◦C, which is close to the measurement accuracy. Therefore,
reducing the model error would require more accurate sensors. The CRMSE has the advan-
tage of representing the absolute error of the model, which is independent of the overall
bias. Thus, when neglecting the bias between modelled and observed temperatures, e.g., in
May at site 1 of the 2020 model, the CRMSE was relatively low (0.3 ◦C) and hence showed
better accuracy than that interpreted by the PDF plot (Figure 8).

The RMSE of the 2020 model ranged between 0.15 and 0.5 ◦C, which was relatively
low in comparison to the 2015 model (0.12 to 0.87 ◦C), Elías-Maxil (0.16 to 0.8 ◦C) and
TEMPEST (0.8 ◦C to 7.8 ◦C). Overall, the 2020 model average RMSE (among all months)
was 0.27 ◦C, which is slightly lower than that of previous models, e.g., 0.35 ◦C in the
2015 model, 0.42 ◦C in Elías-Maxil. Nevertheless, the Elías-Maxil model presented higher
absolute errors, as shown by the high ˆCRMSE, of up to 1.5 in comparison to 1 in the
2020 model, and low correlation values that reached 0.25 in comparison to 0.72 in the
2020 model. The TEMPEST model has presented the highest overall RMSE values with
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an overall average of 2.0 ◦C. It is worth noting that TEMPEST was validated on shorter
datasets and limited time periods that excluded months like April, which particularly
presented higher variation in observed temperatures.

Overall, the 2020 model has presented more accurate results that showed considerable
differences when predicting the potential viable heat recovery in comparison to the 2015
model. Abdel-Aal (2015) [9] performed a sensitivity analysis on all model parameters for
urban and large collector sewers. The sensitivity of the model to ds and ks is much less
(e.g., by 50%) than that of the heat transfer coefficient between wastewater and in-sewer air.
Therefore, and through close examination of the model behaviour, the reason behind the
improved accuracy is the new relation developed in this paper.

The 2020 model requires few input parameters that are accessible, measurable or
predictable through existing hydrodynamic models; these are mainly the upstream wastew-
ater temperature, depth and velocity in addition to the in-sewer air temperature. This is
important for the model’s practicality and deployment in large sewer networks, which can
save considerable computational time. Enhancing the model’s practicality facilitates its
implementation in existing hydrodynamic software packages.

Collector sewers have generally shown lower errors than residential sewers. This
was expected because of the higher wastewater flow rates, around 35-fold, than that of
residential sewers. The higher flow rates demand more energy to be dissipated from
wastewater to drop its temperature by 1 ◦C. This is due to the heat capacity of wastewater,
i.e., the multiplication product of specific heat capacity (cp,w) and the wastewater mass
flow rate. Therefore, the model is less sensitive to the calibrated parameters when collector
sewers’ data were utilised for calibration, using either model, in comparison to that of the
residential sewers. This explains the lower collector sewer ˆCRMSE values and the more
symmetric collector sewer PDF plots.

5. Conclusions

A novel relationship to estimate the heat transfer coefficient between wastewater and
in-sewer air was developed to better predict the behaviour of heat exchange mechanisms
at the wastewater-air boundary in combined sewers. Case study results predicting temper-
atures with the novel relationship indeed indicate the importance of including in-sewer
air–water boundary heat transfer. The new relations enabled more accurate predictions of
the potential heat recovery from sewers, which can result in estimating up to 25% additional
viable heat recovery in winter.

The new heat transfer coefficient between wastewater and in-sewer air (hFr), which
ranged between 5 and 58 W/m2·K, was estimated and calibrated as a function of the
wastewater Froude number using seasonal data from small residential and large collector
sewers. The model was validated on larger independent datasets for both residential
and collector sewers. The calibrated parameter for the heat transfer coefficient between
wastewater and in-sewer air (fc) had a stable value for periods of several months, indicating
that the proposed parameterisation was an improvement on previous approaches and
appeared to work well in both residential and collector sewers. Warmer weather presented
lower but stable fc values to reflect the change in the heat transfer processes during warmer
periods. The new parameterisation improved the modelling accuracy as presented by
the absolute errors and is based on available hydrodynamic data that can facilitate the
simulation process.

A normalised Taylor diagram was effective in summarising modelling errors graphi-
cally and comparing between various models, where the majority of the 2020 model results
were close to the observed reference point, which demonstrates a generally high modelling
accuracy. This accuracy is adequate for the purpose of the 2020 model, which is to assess
the viability of heat recovery from individual sewers in large sewer networks. The PDF
of the 2020 model results has shown over-prediction and underprediction of wastewater
temperatures, which can overall minimise the modelling error when it is implemented to
assess the viability of heat recovery from large networks.
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Observed wastewater temperatures show seasonal variations in both residential and
collector sewers and showed wastewater temperature patterns following air temperature
patterns. Hence, considering seasonal data as well as in-sewer air–water boundary heat
transfer is important when studying the process of heat transfer in sewers.

Although the modelling error in April at urban sewers was reduced by the 2020 model,
it has particularly shown the largest discrepancy, and this requires further investigations.
It is envisaged that additional processes, such as heat transfer between in-sewer air and
ambient air, may need to be considered in order to further improve the modelling accuracy.
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