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Abstract: Documenting how ground- and surface water systems respond to climate change is cru-
cial to understanding water resources, particularly in the U.S. Great Lakes region, where drastic
temperature and precipitation changes are observed. This study presents baseflow and baseflow
index (BFI) trend analyses for 10 undisturbed watersheds in Michigan using (1) multi-objective
optimization (MOO) and (2) modified Mann–Kendall (MK) tests corrected for short-term autocorre-
lation (STA). Results indicate a variability in mean baseflow (0.09–8.70 m3/s) and BFI (67.9–89.7%)
that complicates regional-scale extrapolations of groundwater recharge. Long-term (>60 years) MK
trend tests indicate a significant control of total precipitation (P) and snow- to rainfall transitions
on baseflow and BFI. In the Lower Peninsula Rifle River watershed, increasing P and a transition
from snow- to rainfall has increased baseflow at a lower rate than streamflow; an overall pattern
that may contribute to documented flood frequency increases. In the Upper Peninsula Ford River
watershed, decreasing P and a transition from rain- to snowfall had no significant effects on baseflow
and BFI. Our results highlight the value of an objectively constrained BFI parameter for shorter-term
(<50 years) hydrologic trend analysis because of a lower STA susceptibility.

Keywords: streamflow; chemical mass balance; baseflow index; objective hydrograph separation;
groundwater–surface water interaction; recursive digital filter; watershed; Great Lakes

1. Introduction

Considered to be in the “bullseye” of climate change, watersheds in the U.S. Great
Lakes Basin, and in the state of Michigan in particular, have undergone dramatic hydro-
logic transformations [1]. Despite the documented increases in temperature and extreme
precipitation events [2–4], resulting effects on water balance parameters (e.g., total precipi-
tation, evapotranspiration, groundwater recharge) have shown to be highly complex [4–8],
as evidenced by the spatiotemporal variability of precipitation, streamflow, groundwa-
ter, and lake level trends [5,8–10]. Of the hydro-climate time series data used for trend
evaluations of water balance parameters, baseflow (defined as the streamflow component
sourced from groundwater) is usually not included. This likely reflects the uncertainty
associated with the various estimation procedures [11,12] or data shortage from unreg-
ulated/undisturbed watersheds [7,13,14]. Nevertheless, baseflow constraints are of key
importance in the assessment of water quality and stream biodiversity in droughts [15–22],
as well as in the calibration of hydrologic models of groundwater recharge [6,23–26].
Moreover, a comparison of the concurrent trends of hydrograph components through
the baseflow index (BFI = ratio of mean baseflow over mean streamflow) allows for
an assessment of the relative impacts of climatic stressors on groundwater and surface
water resources.

Baseflow is commonly estimated from streamflow records using hydrograph sep-
aration techniques such as graphical-, recession-curve-, chemical mass balance (CMB)-,
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and/or recursive digital filter (RDF)-based methods. Although widely accepted, each of
these methods relies on subjective input parameters such as the choice of algorithm to
draw connecting lines in the streamflow hydrograph [27–29], the distinction of recession
periods [30,31], the selection of appropriate groundwater and surface runoff end-member
chemistries [18,32,33], or the choice of filter parameters in the RDF methods [11,34–36].
While some guidance exists for method implementation and choice of input parameters
based on hydrogeologic regime and data availability [29,34,36–38], uncertainty is generally
not addressed based on the informed choice of input parameter range applicable to a
specific setting, but rather through the use of multiple methods run on default parame-
ters [11,12,25,36].

A recent study [39] presented a new objective hydrograph separation approach
that accounts for both saline and dilute baseflow sources of variable residence times.
The approach combines RDF and CMB methods through multi-objective optimization
(MOO), where the first objective aims to reproduce measured, daily stream specific con-
ductance (SC), and the second objective minimizes the occurrences in which the measured
stream SC exceeds the baseflow SC end-member. This end-member varies in time and is
generated through linear interpolation of stream SC on baseflow days determined by the
RDF in the optimization. The method has been successfully implemented for an alpine
headwater stream in eastern California, but its utility for analyses of lowland streams,
such as those of the U.S. Great Lakes Basin, has not yet been tested.

The purpose of this investigation is to evaluate how recent changes in temperature,
total precipitation, and associated snow- to rainfall transitions in the U.S. Great Lakes
region have individually affected baseflow and surface runoff components of the stream
hydrograph. This is accomplished through a sequence of steps in which we (1) establish
multidecadal baseflow and BFI records for various stream gages through multi-objective
optimization (MOO), and (2) evaluate these records through a series of Mann–Kendall
(MK) trend analyses, corrected for short-term autocorrelation effects via pre-whitening,
variance correction, and block bootstrapping techniques. We focus this study on the U.S.
state of Michigan (Figure 1) because of the availability of daily streamflow and stream SC
records from pristine and largely undisturbed watersheds. However, the investigation
steps outlined in this study could be extended to comparable settings, adding to the existing
efforts to quantify climate change effects on sustainable groundwater yields.

Figure 1. State of Michigan, land use and U.S. Geological Survey (USGS) stream gages that fit
outlined selection criteria for undisturbed streams.
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2. Materials and Methods
2.1. Study Area and Datasets

The state of Michigan is located in the Great Lakes region of the northern United States
(Figure 1). Approximately 58% of the state consists of forest and woodland. Agriculture
and developed urban land cover are primarily concentrated in the state’s more populated
Lower Peninsula. Much of the surficial geology of Michigan is a result of Late Wisconsin
glaciation, resulting in generally low relief topography and a nearly ubiquitous surficial
layer of outwash, till, and lacustrine and/or moraine deposits [40].

This study was conducted on watersheds and gaging stations (Table 1) selected
from available U.S. Geological Survey (USGS) water data for the nation network [41].
Selection criteria were as follows: (1) availability of consecutive daily discharge and SC
data for >1 year; (2) data spanning a time frame extending until >2010; (3) absence of major
diversions or regulations through, e.g., dams, inflow from reservoirs, irrigation return flows
or hydro electrical power plants; and (4) limited (i.e., <5%) urbanization or agriculture
land use/land cover upstream of the stream gauge. For a reliable MK trend analysis,
gages furthermore had to (5) exhibit a record of at least 50 years of daily streamflow
records. All selected gages are unevenly distributed across the state, due mainly to flow
regulation as well as urban/agricultural development in the state’s Lower Peninsula
(Figure 1). Of the 10 gages that fit selection criteria 1 to 4, only two, Ford and Rifle River,
fit selection criterion 5.

Table 1. Site locations and data records.

USGS Gage ID Lat. Long. Streamflow
Record

Stream SC
Record

Missing Data
Streamflow (%) Missing Data SC (%)

Boardman R
above Brown

Bridge Road near
Mayfield

44◦39’24” 85◦26’12” 1997-09-10–
current

1997-11-05–1998-
09-30 0 9.09

Falls River near
L’Anse 46◦44’05” 88◦26’35” 2014-07-01–

current
2014-09-30–2020-

03-03 0 14.5

Ford River near
Hyde 45◦45’18” 87◦12’07” 1954-10-01–

current
1975-09-24–

current 0 29.8 a

Gomanche Creek
at Indian Road

near L’Anse
46◦45’04” 88◦21’42” 2007-10-01–2013-

09-29
2007-10-01–2013-

09-29 0 35.9

Rifle River near
Sterling 44◦04’21” 84◦01’12” 1937-01-13–

current
1975-08-28–

current 0 12.4 b

Salmon Trout
River near Big

Bay
46◦46’56” 87◦52’39” 2004-12-01–

current
2004-12-01–2020-

07-29 0 13.5 c

East Branch
Salmon Trout

River near Dodge
City

46◦47’09” 87◦51’08” 2005-10-01–
current

2005-12-06–
current 0 1.95

Silver River near
L’Anse 46◦48’15” 88◦19’01” 2001-10-01–

current
2005-10-15–2013-

09-29 0 35.2

Silver River
Upstream of East

Branch near
L’Anse

46◦43’16” 88◦19’48” 2008-10-01–2013-
09-29

2008-09-30–2013-
09-29 0 35.2

Yellow Dog River
near Big Bay 46◦42’49” 87◦50’26” 2004-12-01–2016-

10-17
2004-12-22–2017-

01-23 0 1.86

SC, specific conductance. a Calculation excludes no SC data period 1980-09-29 to 2011-04-25. b Calculation excludes no SC data period
1981-10-01 to 2011-06-07. c Calculation excludes no SC data period 2005-09-30 to 2013-06-28.

Daily discharge data of all considered gages reveal a seasonality related to precipitation
and snowmelt trends, with peaks usually occurring between March and April and troughs
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in August through September. Daily SC data reveal an opposite pattern with the lowest
values in spring, likely reflecting dilution from snowmelt, and the highest in summer/fall,
consistent with more intense evapotranspiration and baseflow. There is a remarkable SC
scatter among the different sites with mean values ranging from as low as 58.6 µS/cm at
Yellow Dog River to as high as 420 µS/cm at Rifle River. This range in SC data could reflect
the spatial variability of watershed bedrock and aquifer mineralogies. All Upper Peninsula
rivers, with the exception of Ford River, drain Archean-age igneous and metamorphic
rocks and associated sediments [42]. These lithologies consist primarily of low-solubility
aluminosilicate minerals, which should produce low-SC stream- and groundwater [43,44].
By contrast, Ford, Boardman, and Rifle rivers drain larger proportions of more soluble
carbonate/dolomite units of the Michigan Basin (e.g., Bayport Limestone, Niagara/Clinton
Formations, etc.), which could explain the higher SC values of those streams. The overall
SC variability attests to the importance of establishing temporally and spatially constrained
and locally representative SC source end-members for a reliable hydrograph separation.

2.2. MOO Modeling of Baseflow
2.2.1. Conceptual Approach

This study estimates baseflow through optimization of the Lyne and Hollick (LH)
RDF [45] (Equation (1)) via CMB benchmarks (Equation (2)) as follows:

qi = kqi − 1 +
1 + k

2
(yi − yi−1); with yi = bi + qi (1)

SCyi =
SCbibi + SCqiqi

yi
(2)

where bi, qi, and yi denote baseflow, quickflow (i.e., surface runoff), and total discharge
on day i, respectively, and k is the RDF parameter. SCbi and SCqi are specific conductance
values of the baseflow and quickflow sources on day i, and SCyi represents the modeled
stream SC value on day i. The approach is based on the assumption that when yi = bi,
SCbi = SCyi and when yi > bi, SCbi > SCyi > SCqi.

Two minimizing objective functions (F1, F2) are considered for the solution of
Equations (1) and (2). The first gages the model’s performance of reproducing stream
SC (SCy) via the normalized Nash–Sutcliffe efficiency index (nNSE) [46] as follows:

F1 = 1− nNSE,with nNSE = 1− 1

(nt + 1)2 and nt =
Standard Deviation

RMSE
(3)

The second objective function, F2, minimizes the occurrence of unrealistic events in
which the measured river SCy exceeds an interpolated baseflow SCb end-member. To
avoid optimization toward a local optimum (i.e., F2 = 0) by converging on a very low
baseflow output (high k parameter) and short optimization period, F2 compares the sum
of unrealistic SCyi > SCbi events to that of the more realistic SCbi > SCyi events as follows:

F2 =
n

∑
i=1

(SCy > SCb)i −
n

∑
i=1

(SCb > SCy)i (4)

Only optimization results for non-baseflow days (yi > bi, SCyi 6= SCbi 6= SCqi) were
considered. Periods of missing SC data (Table 1) were excluded, as were SC interpolation
segments falling on a baseflow day coinciding with a missing SC record.

For the LH RDF in Equation (1), we followed the approach of [39] and (1) set the initial
condition as y = q; (2) passed the LH RDF over the data up to three times (i.e., forward,
backward, forward); (3) replaced the time step i −1 with i+1 when running the backward
pass; (4) substituted yi after the first pass by the computed baseflow calculated from the
previous pass; (5) assigned baseflow to be equal to the current yi if qi is smaller than zero;
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and (6) applied ≥60 days flow prior to and at the end of the SC time series to resolve issues
of “warm up” and “cool down” as the RDF is passed through the dataset [34].

The parameters k (Equation (1)) and SCq (Equation (2)) are adjustable continuous
variables determined via optimization. SCb (Equation (2)) was generated via linear inter-
polation of SCy records for consecutive baseflow days (i.e., y = b, q = 0) determined by the
RDF in a given pass scenario in the optimization. This approach assumes that, when base-
flow equals streamflow, the stream SC (SCy) is representative for inflowing groundwater
(SCb). The interpolation of SCy for all baseflow days is assumed to generate a baseflow SCb
time series that is representative for groundwater on baseflow days and when streamflow
exceeds baseflow. Because of the baseflow and baseflow day timing dependency on k
and RDF pass number, each iteration of k and pass number in the optimization translates
into changing baseflow day occurrences, associated SCb values, and period of daily SCb
interpolation. k optimization bounds were determined from trial runs for individual stream
sites and were set from 0 (highest possible number of baseflow days) to an upper bound of
>0.999 that was manually derived for each site to ensure >1 baseflow days.

To account for seasonality with potential differences in contributions from dilute
snowmelt in spring vs. more saline surface runoff in summer/fall, SCq was set as an
adjustable parameter for three distinct seasonal time frames [47,48], i.e., November through
February, March through June, and July through October. SCq optimization bounds were
set from a low of 0 µS/cm to an upper bound corresponding to the lower 25th percentile of
the measured stream SC in the specific season. The selection of the lower 25th percentile
over the absolute minimum reflects the influences of outliers, measurement error, as well as
a priori uncertainty regarding the representativeness of the specific seasons for the studied
river system.

2.2.2. MOO Algorithm

This study applied the Mixed Integer Distributed Ant Colony Optimization (MI-
DACO) algorithm [49] programmed in MATLAB. MIDACO is based on probability density
functions that generate samples of iterates, referred to as ants or individuals [50,51] for the
decision variables (in this study: k and SCq) to be optimized. The ants cooperate on finding
solutions to the problem through communication mediated by artificial pheromone trails.
The seed operator introduces random changes into iterates, thereby, assisting in the search’s
escape from local optima. Performance evaluations against other genetic algorithms such
as Nondominated Sorting Genetic Algorithm (NSGA-II) [52,53] and Multi-Objective Parti-
cle Swarm Optimization (MOPSO) [54] indicate MIDACO to compare favorably [55,56].
This and the demonstrated performance on CPU time-expensive problems [57–59] support
the utility of the algorithm for multiyear datasets as used in this study.

2.2.3. MOO Performance Evaluation

MOO generates not one unique solution, but a set of nondominated trade-off or
compromise solutions (i.e., Pareto optimum solutions; see Figures 2 and 3) from which one
optimum can be selected [60–62]. MIDACO applies a Utopia–Nadir balance decomposition
concept [59] to concentrate the search effort for the optimum trade-off solution on a
particular segment of the Pareto front (Figure 2). The utopia (U) represents the global
optimum (i.e., minimum) of the respective objective, while the nadir (N) corresponds to
the worst possible (i.e., maximum) objective function. The search for a trade-off solution
on the Pareto front is based on the average distance of a solution with respect to the U and
N points of each objective. In MIDACO, the search is focused with the balance parameter
(Figure 2). Set to zero, as done in this study, MIDACO will identify the trade-off solution on
the central (or middle) part of the Pareto front to yield the best equally balanced solution
among all objectives [49].
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Figure 2. Illustration of the Utopia (U)–Nadir (N) balance decomposition concept for the selection of
a trade-off solution in multi-objective optimization (MOO) (modified after [56]). The applied balance
value of 0 indicates equal importance of both objectives.

Figure 3. Pareto optimum fronts of the two-pass (2p) and three-pass (3p) MOO scenarios for all
10 stream gages. Selected trade-off solutions are highlighted in green.

Another performance evaluation challenge relevant to this study is that there is
no clear consensus on the optimum number of applied RDF passes. Running the RDF
over multiple passes (forward, backward, forward, etc.) attenuates peaks and generates
smoother baseflow hydrographs [63] and a lower total number of baseflow days [39],
but this may come at a trade-off of missing short-term baseflow peaks typical for more
flashy systems [11]. Based on previous baseflow analyses [11,39,64,65] that showed that
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both two-pass and three-pass implementations provide the best calibration results, we
used outputs from both two-pass and three-pass model optimizations as a measure of
uncertainty. All outputs were evaluated based on nNSE statistics (Equation (3)) of obtained
trade-off solutions (Table 2).

Table 2. MOO results for trade-off solutions.

Site and Model
Scenario a F1 F2 k (–)

SCq
Nov–Feb
(µS/cm)

SCq
Mar–Jun
(µS/cm)

SCq
Jul–Oct
(µS/cm)

Mean
Baseflow

(m3/s)
BFI (%) b

Boardman 2p 0.11 −120 0.96 248 159 242 3.16 91.6
Boardman 3p 0.10 −117 0.96 248 159 242 2.95 85.4

Falls 2p 0.14 −660 0.74 77 73 103 1.33 74.6
Falls 3p 0.14 −698 0.88 89 83 115 1.14 63.8

Ford 2p 0.17 −961 0.36 216 194 223 9.22 90.0
Ford 3p 0.19 −1169 0.56 246 219 259 8.19 79.9

Gomanche 2p 0.14 −545 0.41 104 84 113 0.09 84.1
Gomanche 3p 0.17 −545 0.10 111 98 126 0.10 86.4

Rifle 2p 0.16 −1576 0.25 247 235 327 8.68 90.6
Rifle 3p 0.18 −1653 0.27 309 280 354 8.34 87.1

Salmon Trout 2p 0.21 −448 0.50 69 43 58 0.16 91.8
Salmon Trout 3p 0.26 −411 0.66 69 53 63 0.15 87.7

East Branch
Salmon Trout 2p 0.14 −1896 0.79 77 55 88 0.47 84.9

East Branch
Salmon Trout 3p 0.14 −2067 0.99 85 62 91 0.39 69.1

Silver 2p 0.10 −816 0.72 66 46 76 1.49 74.3
Silver 3p 0.12 −898 0.71 76 55 84 1.35 67.3

Silver Upstream
2p 0.16 −519 0.27 20 25 29 0.61 84.6

Silver Upstream
3p 0.15 −482 0.90 32 41 50 0.37 51.2

Yellow Dog 2p 0.19 −1694 0.89 28 13 46 0.62 72.1
Yellow Dog 3p 0.21 −1620 0.83 33 17 47 0.61 70.6

a 2p/3p indicates the use of either the two-pass or three-pass Lyne and Hollick recursive digital filter (RDF) in the MOO. b Baseflow index
= mean baseflow to mean streamflow ratio.

2.3. Mann–Kendall Trend Analysis
2.3.1. Conventional MK Test

The nonparametric MK test was used to determine the statistical significance of time
trends for modeled baseflow, streamflow, and BFIs for the Ford and Rifle rivers for a
concurrent study period 12/01/1955–09/08/2020. As a first step in the test, datasets were
reclassified into monthly, seasonal, and annual mean datasets to analyze short-term and
long-term fluctuations (e.g., multiyear, decadal, and multidecadal events). The seasonal
classification was based on the previously discussed three time frames of November
through February, March through June, and July through October. Annual data refer to
water years, which represent the 12-month period from October 1 through September 30,
designated by the calendar year in which it ends.

After reclassification, the S statistic was calculated to predict an upward or downward
trend of identically and independently distributed data as follows [66]:

St =
n−1

∑
c=1

n

∑
d=c+1

sign(Xd − Xc) (5)
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where Xc and Xd correspond the ranked values of the data, n is the length of the data
record and

sign(Xd − Xc) =


1 when Xd > Xc
0 when Xd = Xc
−1 when Xd < Xc

(6)

Next, the variance of S (σ2) was calculated assuming identically distributed data with
a zero mean [67]:

σ2 =

{
n(n− 1)(2n + 5)−

n

∑
c=1

tc(c)(c− 1)(2c + 5)

}
/18 (7)

where tc is the sum of t, which is the number of tied values to the extent of c [47]. Finally,
the standardized MK statistic, Z (Equation (8)), was computed as a measure of significance
of the trend [68]:

Z =


St−1√
σ2 if St > 0

0 if St = 0
St+1√
σ2 if St < 0

(8)

If |Z| > Zα/2, where α represents the chosen significance level (in this study: 5% with
Z0.025 = 1.96), then the null hypothesis is invalid, implying that the trend is significant and
either positive (positive Z) or negative (negative Z).

2.3.2. Modified MK Test

Although the traditional MK test is appropriate for time series that are independent
and identically distributed, autocorrelation (i.e., the persistence of previous observations)
can cause an inflation of p-values resulting in increased type I errors; that is, accepting a
trend as significant when, in fact, no trend exists [5]. The effect of long-term autocorre-
lation [69] was not considered a major concern for this study (<65 years of streamflow).
However, short-term autocorrelation (STA) is of potential concern in trend analysis of
monthly, seasonal, and annual mean hydrologic data [70]. In this study, we screened data
for STA using the Ljung–Box test [71] from the R stats package. Following the approach
of [5], we considered STA statistically significant for p-values ≤ 0.1 for lags ≤ 3 in the
time series.

STA was accounted for in a modified MK analyses using six correction measures as im-
plemented in the modifiedmk R package [72], specifically: pre-whitening (pw),
bias-corrected pre-whitening (bcpw), trend-free pre-whitening (tfpw), variance correction
after Hamed and Rao [73], variance correction after Yue and Wang [74] (hereafter referred
to as vcHR98 and vcYH04, respectively), and block bootstrapping (bbs). Detailed descrip-
tions on individual correction measures are provided elsewhere [73,75–79]; but briefly
summarized, the pw, tfpw, and bcpw approaches are all based on the assumption that the
time series of hydrological variables can be adequately described by an autoregressive
process of order one, i.e., AR(1). In tfpw, a linear trend component is removed from the
original data prior to pre-whitening [79], while in bcpw, ordinary least squares are used to
bias-correct the lag-1 serial correlation coefficient [80]. The vc approach detrends data using
Sen’s slope and the lag-1 autocorrelation coefficient of the ranks of the data. It calculates
effective sample size using the ranks of significant serial correlation coefficients, which are
used to correct the inflated (or deflated) variance of the test statistic. The vcHR98 method
uses only significant lags of autocorrelation coefficients in calculating the effective sample
size, whereas the vcYH04 approach uses correlation coefficients for all lags [72]. In bbs,
predetermined block lengths are used in resampling the original time series, thus retaining
the memory structure of the data. The test statistic is then calculated for each sample,
and its probability distribution is estimated. Because any existing trend will be eliminated
due to shuffling, the derived distribution is that of the test statistic for trend-free data [78].
Assuming a confidence interval of 95% and a sampling size of 2000 [81], the hypothesis of
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no trend is rejected if the trend of the original data series is outside the 5% and 95% per-
centiles of the ranked trends of the resamples. Block lengths are automatically selected in
modifiedmk using the number of contiguous significant serial correlations and a default eta
(η) parameter of 1 as per [77]. Results of all MK tests are listed in Supplementary Table S1.

3. Results and Discussion
3.1. Baseflow Results

The results of the MOO models are shown in Figure 3 and Table 2. Pareto opti-
mum fronts for all 10 USGS gages clearly highlight the opposing nature of the objective
functions, as an optimized F1 (Equation (3)) is accomplished by an increased error in F2
(Equation (4)) and vice versa. Pareto optimum fronts furthermore exhibited nonconvex,
as well as disconnected segments (Figure 3), which is consistent with the nonlinear na-
ture of the optimization problem [62]. All trade-off solutions reveal a seasonality in the
calibrated SCq that follows the expected pattern of more saline composition in the dry
period July through October and more dilute SCq in the snowmelt period March through
June (Table 2). Importantly, all calibrated SCq values were well below the optimization
bounds, i.e., the lower 25th of the seasonal SCy. These observations and the good to very
good nNSE (i.e., 1−F1) statistics [46] of the trade-off solutions indicate that the applied
modeling approach describes the watersheds well (see, e.g., Figure 4a).

Figure 4. (a) Calibrated model outputs of streamflow, baseflow, stream SC, and baseflow SC for the
two-pass (2p) scenario at Falls River, Michigan. (b) Close-up results showing the pattern of modeled
baseflow and baseflow SC, which depends on the timing and stream SC value on consecutive
baseflow days (vertical lines) determined through the optimization. Note the underprediction of
modeled baseflow SC (i.e., SCb < SCy) on several occasions (e.g., February 2020), which increases the
error in objective function 2.

The two-pass scenario generally yields superior results for objective function 1 but is
outperformed by the three-pass scenario for objective function 2. This can be explained
by the attenuating effect of an RDF pass number increase from 2 to 3 on the baseflow
hydrograph that results in (1) lower occurrences of baseflow days, (2) less pronounced
baseflow responses to short-term discharge peaks, and (3) lower overall occurrences of
SCy exceeding SCb. This is accomplished at the trade-off of potentially missing several
short-term or “flashy” baseflow SCb dilution events required for a better objective function
1 calibration. On the other hand, short-term SCb dilutions are well reproduced by the
two-pass scenario at the cost of not representing many of those as dilute quick flow peaks,
and thus not capturing all SCy peaks underneath the SCb interpolation line (Figure 4b).
There is a tendency for the MOO to counteract the attenuating effect on baseflow amounts
from increasing the LH RDF pass number from 2 to 3 by decreasing the k parameter.
This pattern is one of the key advantages of the applied method over traditional baseflow
quantification measures, as it limits the uncertainty in the baseflow and BFI outputs to
relatively narrow ranges (e.g., BFI = 70.6–72.1% at Yellow Dog River).

Mean baseflow estimates obtained from both the two-pass and three-pass MOO
scenarios vary between 0.09 ± 0.001 m3/s at Gomanche Creek and 8.70 ± 0.51 m3/s at
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Ford River. BFIs range from 67.9% ± 16.7% at the Silver River upstream to 89.7% ± 2.04%
at Salmon Trout River. Seasonal patterns of baseflow are similar for all gages, with the
lowest values in the annual dry period of late summer/early fall (August–October) and the
highest values in the spring snowmelt period (March–May) and in the fall/early winter
(November–December). The latter distinct “fall bump” in baseflow (Figure 5) that follows
snowmelt recession is attributed to a reversal in the hydraulic gradient as stream levels
and rates of evapotranspiration drop [33,82]. The lag between the annual streamflow and
mean baseflow maxima is relatively short, ranging from 0 days at Falls River, Gomanche
Creek, and Rifle River to up to 10 days at Salmon Trout River East Branch.

Figure 5. Mean daily streamflow (y) and baseflow (b) hydrographs for Silver River Upstream (a) and
Silver River Downstream (b) gages. Note the distinct “fall bump” in baseflow starting around Day of
the Year 250.

Using concurrent data for the Silver River watershed, for which data from two stream
gages were analyzed, mean baseflow increases downstream from 0.49 to 1.38 m3/s while
the mean BFI decreases downstream from 0.68 to 0.70. This spatial pattern is consistent
with hydraulic loading toward the lowlands, which increases baseflow volume but not the
BFI due to the cumulative effects of tributary inflow. Additionally, the thicker unsaturated
zone at the higher-altitude upstream site should result in less pronounced head reversals
and, thus, a lower “fall bump” in baseflow (Figure 5a,b).

There is a strong positive correlation (Pearson R = 0.97, p < 0.001) between our MOO-
derived baseflow estimates and previous estimates [83] derived upon the more standard-
ized HYSEP program [27] which applies simple graphical methods for baseflow quantifica-
tion (Figure 6). It is, however, not clear to what degree deviations from the regression line in
Figure 6 should be attributed to methodological differences or comparison of streams with
data from different time periods. To the authors’ knowledge, there is no clear information
about the specific dataset length of the HYSEP-based estimates. We, however, have found
striking temporal patterns in our estimates that could very well explain the deviations
from the trendline. As an illustration, for the two streams for which long-term data are
available—Ford and Rifle rivers—there is a near 30-year SC data gap from 1980/1981
until 2011 (Table 1). Mean baseflow estimates for the Ford and Rifle rivers change from
7.82–7.88 m3/s, respectively, if the concurrent streamflow and SCy dataset of 1975–1981 is
used, to values of 9.29–9.94 m3/s, respectively, if the concurrent dataset of 2011–2020 is
used. This and the remarkable variability in streamflow and SC values of the sites consid-
ered highlight the dynamic characteristics of this setting and the associated challenge of
reliable hydrologic trend analysis in this area.
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Figure 6. Regression of MOO-derived mean baseflow (this study) vs. mean baseflow obtained via the
HYSEP program [83]. Error bars reflect range obtained by MOO for two- and three-pass scenarios.

3.2. Autocorrelation Results

For both long-term monitoring sites, significant STA is documented, particularly in
the higher-frequency (monthly/seasonal) baseflow and streamflow time series (Table 3).
As typically seen in hydrologic data [70], STA is positive (Ljung–Box statistics > 0) for all
timeseries, in that, high values are followed by high values and low values are followed
by low values. Interestingly, STA is most significant in baseflow, followed by streamflow
and BFI (Table 3). This observation is consistent with the stronger memory effect of slower
moving groundwater and baseflow as compared to streamflow (and BFI) that are more
influenced by sudden, quickflow responses to short-term rain events [84]. Comparing
results for a concurrent time period from both sites, STA is slightly more pronounced at
Rifle River (mean lag 1 to lag 3 Ljung–Box test statistic: 58.7, p = 0.04) than at Ford River
(mean lag 1 to lag 3 Ljung–Box test statistic: 45.9, p = 0.09). This observation is consistent
with the higher overall BFI value for the Rifle River (Table 2).

The presence of STA generally mandates large sampling sizes (i.e., multidecade moni-
toring durations) for hydrologic trend analysis [70]. However, the lower degree of STA in
the BFI time series (Table 3) indicates that the BFI parameter may be a useful alternative
over streamflow or baseflow data for trend analyses over shorter time frames.
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Table 3. Ljung–Box (L-B) test results for 1956–2019 time series.

USGS
Site Data Time

Series

L-B Test
Statistic
lag 1

p-Value
Lag 1

L-B Test
Statistic
Lag 2

p-Value
Lag 2

L-B Test
Statistic
Lag 3

p-Value
Lag 3 STA b

FORD
RIVER
NEAR
HYDE,
MI

Streamflow
Monthly 104 <0.1 105 <0.1 136 <0.1 yes
Seasonal 8.60 <0.1 17.2 <0.1 105 <0.1 yes
Annual 2.15 0.14 2.84 0.24 3.20 0.36 no

Baseflow
Monthly 109 <0.1 110 <0.1 139 <0.1 yes
Seasonal 7.56 <0.1 16.1 <0.1 102 <0.1 yes
Annual 1.99 0.16 2.64 0.27 3.05 0.38 no

BFI a
Monthly 48.0 <0.1 49.7 <0.1 54.4 <0.1 yes
Seasonal 9.49 <0.1 24.1 <0.1 72.8 <0.1 yes
Annual 0.86 0.35 2.64 0.27 3.30 0.35 no

RIFLE
RIVER
NEAR
STER-
LING,
MI

Streamflow
Monthly 168 <0.1 177 <0.1 185 <0.1 yes
Seasonal 7.28 <0.1 17.9 <0.1 101 <0.1 yes
Annual 3.63 <0.1 4.84 <0.1 5.15 0.16 no

Baseflow
Monthly 193 <0.1 206 <0.1 213 <0.1 yes
Seasonal 7.51 <0.1 18.6 <0.1 105 <0.1 yes
Annual 3.44 <0.1 4.41 0.11 4.80 0.19 no

BFI a
Monthly 24.5 <0.1 24.9 <0.1 27.2 <0.1 yes
Seasonal 1.45 0.23 5.96 <0.1 52.8 <0.1 no
Annual 4.04 <0.1 8.85 <0.1 10.0 <0.1 yes

a Baseflow index = mean baseflow to mean streamflow ratio. b STA = short-term autocorrelation based on the highest p-value of lag
1–3 analyses.

3.3. MK Test Results

Despite the concurrent data, proximity of the monitoring stations (~313 km), and the
largely undisturbed nature of both watersheds, MK trend analysis reveals strikingly con-
trasting results for Ford and Rifle rivers (Supplementary Table S1 and Figure 7). For Ford
River, all analyses yielded no significant trend, with the exception of annual BFI analyzed
via the vcYH04 method (Z value = 2.09). For Rifle River, nearly all MK tests revealed statis-
tically significant trends, i.e., positive for streamflow and baseflow (Z value = 1.74 to 15.9;
mean value = 3.67) and negative for BFI (Z value = −1.94 to −14.7; mean value = −4.26).
Trends were most significant in the monthly and least significant in the annual time series.
Among the different methods applied for Rifle River, the vcHY04 method produced the
most significant results while the pw method produced the least significant Z values.

Even though numerous studies have tested appropriate MK approaches for addressing
potential effects of STA, these approaches are not universally accepted, and studies have
applied multiple correction methods as a measure for uncertainty [68,85]. We have no
preference for any of the applied correction methods and, thus, rely on the results of all
procedures as a measure for uncertainty. Nevertheless, the annual BFI trend at Ford River
from the vcYH04 method is considered a Type I error because (1) it was the only statistically
significant result and (2) the variance correction approach has shown to be particularly
prone to such errors at small sampling sizes, i.e., annual data as compared to seasonal or
monthly time series [78]. We, therefore, conclude no significant climate change effects on
streamflow and groundwater recharge in the Upper Peninsula Ford River watershed. In the
Lower Peninsula Rifle watershed, increases in baseflow (and by implication, groundwater
recharge) are observed, albeit at a lower rate than the surface runoff component (decreasing
BFI). The more attenuated increase in baseflow suggest groundwater recharge to be less
impacted by climatic drivers than surface runoff components; the latter likely contributing
to the reported flood frequency increases in the region [2,10].
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Figure 7. Annual trends in streamflow (left panel), baseflow (mid panel) and BFI (right panel) for
Ford River (a) and Rifle River (b) long-term monitoring sites. Z values reflect results from block
bootstrapped Mann–Kendall (MK) test. Significant trends are highlighted in red. Note the consistent
trends for BFI and inconsistent trends for streamflow and baseflow for the different time periods:
1956–2019 (this study) and 1960–2015 [5].

To further evaluate the potential causes for the trends (and lack thereof), results were
compared to previously reported trend analyses for climatic parameters in the region, i.e.,
1960−2015 total precipitation (P), minimum temperature (Tmin), and maximum tempera-
ture (Tmax) [5], as well as 1960−2009 total snowfall (SF) and snow depth (SD) [86]. For these
climatic parameters, there were also strikingly different results between Michigan’s Upper
and Lower Peninsula. The former exhibited a significant decline in P coupled with signifi-
cant upward trends in Tmin and SF and no significant trends in Tmax and SD. The reported
trends are generally indicative for evapotranspiration rate (ET) increase [87], extended
growing season length [88], a transition from rain to snow precipitation [86], larger accu-
mulation of spring snowmelt pulses [3] and shifts in snowmelt-related streamflow timing
to earlier dates [85]. These patterns have apparently not caused any significant baseflow
or BFI trends; however, despite the concurrent decrease in P, which should exacerbate
streamflow and baseflow declines caused by more intense ET. As will be discussed at more
detail later, the lack of Ford River stream- and baseflow trends is likely associated with
the high-water-flow years 1960, 2017, and 2019 (see Figure 7a, left and middle panels),
which were not accounted for in the P, Tmin, Tmax, SF, and SD trend analyses.

In the Lower Peninsula, P and Tmin increased, SD decreased, and no significant trends
were reported for Tmax or SF. In contrast to the Northern Peninsula, these findings are
generally more indicative for a snow- to rain transition [86], as well as a lower accumula-
tion of snowpack storage and a lower snowmelt pulse [3]. In the Rifle River watershed,
these patterns apparently led to increases in baseflow and streamflow; the latter increasing
at a higher rate, as evidenced by the decreasing BFI. A compounding factor on these trends
in the Rifle watershed could be the documented increasing frequency and intensity of heavy
rain events, which reportedly have contributed to more frequent flooding [2] and appar-
ently favor the surface runoff over the baseflow component. Interestingly, the significant
upward trend in Tmin, and by association ET, in the Lower Peninsula also does not appear
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to exert significant effects, as it is insufficient to offset the upward trend in P. Time series
major ion and stable isotope data may provide further insights as to the specific effects of
ET changes on the stream hydrograph [89–91].

3.4. Transferability of Results

It is important to note that the previously published P, SF, SD, Tmin, and Tmax trends we
used for the comparison with baseflow and BFI trends were derived upon slightly shorter
study periods and should, as such, be treated with caution for longer-term implications.
The importance of this limitation is well exemplified when comparing our annual mean
streamflow MK test results to those previously reported (Figure 7). For their study period
1960−2015, [5] discerned a statistically significant downward trend in streamflow for Ford
River and an insignificant upward trend in streamflow for Rifle River. We were able to
reproduce these results through the traditional and modified MK tests for this particular
time frame. However, extending the time period to include the years 1956, 1957, 1958,
1959, 2016, 2017, and 2018 completely changes these results (Figure 7), with Ford River
streamflow trends becoming insignificant and Rifle River trends becoming significant,
even if STA is accounted for (as shown by the block bootstrapped Z values shown in
Figure 7). This change in MK trend test results for the Ford River is likely associated
with the fact that both tails of the 1956−2019 time period, specifically the water years
1960, 2017, and 2019, coincide with the highest flow water years of the study period.
While a change in the study period from 1960−2015 to 1956−2019 alters calculated annual
streamflow and baseflow trends for both rivers, there is no change in the BFI trend in that it
remains insignificant for Ford River and significant (i.e., negative) for Rifle River (Figure 7).
This persistence again highlights the value of the BFI parameter, if objectively constrained,
for a refined hydrological trend analysis for watersheds where streamflow or baseflow
statistics indicate no significant trend.

As a first step to discern potential long-term BFI trends across the study area, i.e.,
in the remaining eight stream sites that meet selection criteria 1 through 4 (see Section 2.1),
a linear regression analysis was conducted against concurrent monthly BFI data from the
long-term record stream sites, Ford and Rifle Rivers (Figure 8). The results show a strong
effect of spatial autocorrelation, in that, stream gages closest to the long-term sites show
stronger positive correlation coefficients for monthly BFI and vice versa. This suggests
that the MK test results for Ford River (no trend in BFI) could also apply to the other
sites located in the Upper Peninsula, while Rifle River MK test results (negative BFI)
are potentially also valid for Boardman River; the sole other gage considered from the
Lower Peninsula. Interestingly, of all sites considered, only the Silver River Upstream gage
exhibited a strong and significant (Pearson R > 0.5, p-value <0.01) correlation with data
from both Ford and Rifle rivers. This suggests somewhat of an intermediate BFI pattern
in Silver River in relation to the long-term monitoring sites and should be investigated
further. Conversely, the Salmon Trout East Branch site shows only a moderate (Pearson
R < 0.5; p < 0.01) correlation for both sites, which indicates a more localized response to
temperature and precipitation change. However, because this correlation analysis relies on
concurrent BFI data covering different time spans, a comparison of correlation statistics
between different sites should be treated with some caution [92]. Moreover, despite the
variability of recession properties across the study catchments, recent work has shown that
streamflow (and potentially also BFI) spatial correlation among neighboring watersheds
can be overwhelmed by the spatial variability of frequency and intensity of effective rainfall
events [93]. A detailed analysis of watershed-specific trends in P, SF, SD, Tmin, and Tmax
and a comparison with associated BFI patterns may provide more valuable predictors for
trends in ungaged watersheds.
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Figure 8. Pearson R correlation coefficients for concurrent monthly BFI of stream sites against long-
term monitoring sites. Samples plotting close to the Rifle River end-member could be affected by a
similar long-term trend of increasing baseflow and decreasing BFI.

4. Conclusions and Implications

This study highlights the value of MOO for objective baseflow modeling and long-
term hydrologic trend analysis in lowland streams. One key advantage of the hydrograph
separation method presented in this paper is that it accounts for difficult-to-measure spatial
and temporal variations in baseflow and quickflow chemistry (i.e., SC). Our study specifi-
cally emphasizes the importance of site-specific determinations of MOO parameters k, SCq,
and SCb rather than the application of non-distributed parameters for one region. As such,
our results should be treated as cursory estimates of baseflow trends in undisturbed parts
of the state that should be refined and validated not only with new daily flow and SC
geochemical data for MOO, but also with estimates from other, independent baseflow
quantification approaches [94].

The MK trend analysis reveals an important finding, i.e., decreasing P, increasing
Tmin, and a shift in P from rain- to snowfall in the state’s Upper Peninsula exerted no
significant effects on baseflow or BFI, while increasing P, Tmin, and a transition from
snow- to rainfall in the Lower Peninsula have increased baseflow and decreased the
BFI. The latter observation suggests an attenuated effect on groundwater recharge that
should be considered carefully in future groundwater availability projections. Unlike the
streamflow and baseflow parameters, the trend for BFI is persistent for both a shorter-term
(1960−2015) and longer-term (1956−2019) dataset. This finding in conjunction with the
lower degree of STA effects supports the value of the BFI parameter in trend analysis over
shorter (i.e., <50 year) time frames.

Future research should address extrapolation of our baseflow and BFI values to
ungaged watersheds for more refined regional assessments of climate-change-induced
trends. Studies should furthermore test the utility of the presented MOO approach to
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calibrate and validate soil water balance models in complex watersheds with pronounced
spatiotemporal variability in the stream hydrograph and SC.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1:
Mann–Kendall test results.

Author Contributions: B.H. wrote the manuscript and conducted MOO and MK trend test analysis.
C.M. conducted the literature review and GIS analyses. This work was conceptualized by B.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported through NSF HS-1936671 to B.H. and a California State University
Long Beach student research assistantship to C.M.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data (i.e., MATLAB and R codes) that support the findings of this
study are available from the corresponding author upon reasonable request.

Acknowledgments: The authors would like to thank the researchers of the Michigan Department of
Environment, Great Lakes, and Energy and the U.S. Geological Survey for compiling the datasets
that made this study possible.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. U.S. Global Change Research Program. Fourth National Climate Assessment Chapter 21: Midwest. Available online: https:

//nca2018.globalchange.gov/chapter/21 (accessed on 22 September 2020).
2. Wuebbles, D.; Cardinale, B.; Cherkauer, K.; Davidson-Arnott, R.; Hellmann, J.; Infante, D.; Johnson, L.; de Loë, R.; Lofgren, B.;

Packman, A.; et al. An Assessment of the Impacts of Climate Change on the Great Lakes by Scientists and Experts from Universities and
Institutions in the Great Lakes Region; Environmental Law & Policy Center: Chicago, IL, USA, 2019; p. 74.

3. Christiansen, D.E.; Walker, J.F.; Hunt, R.J. Basin-Scale Simulation of Current and Potential Climate Changed Hydrologic Conditions in
the Lake Michigan Basin, United States; Scientific Investigations Report; U.S. Geological Survey: Reston VA, USA, 2014; p. 86.

4. Markstrom, S.L.; Hay, L.E.; Ward-Garrison, D.C.; Risley, J.C.; Battaglin, W.A.; Bjerklie, D.M.; Chase, K.J.; Christiansen, D.E.;
Dudley, R.W.; Hunt, R.J.; et al. Integrated Watershed-Scale Response to Climate Change for Selected Basins across the United States;
Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2012; p. 153.

5. Norton, P.A.; Driscoll, D.G.; Carter, J.M. Climate, Streamflow, and Lake-Level Trends in the Great Lakes Basin of the United States and
Canada, Water Years 1960–2015; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2019; p. 58.

6. Gebert, W.A.; Walker, J.F.; Kennedy, J.L. Estimating 1970-99 Average Annual Groundwater Recharge in Wisconsin Using Streamflow
Data; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2011.

7. Neff, B.P.; Day, S.M.; Piggott, A.R.; Fuller, L.M. Base Flow in the Great Lakes Basin; Scientific Investigations Report; U.S. Geological
Suvey: Reston, VA, USA, 2005.

8. Hodgkins, G.A.; Dudley, R.W.; Aichele, S.S. Historical Changes in Precipitation and Streamflow in the U.S. Great Lakes Basin, 1915–2004;
Scientific Investigations Report; Geological Survey (U.S.): Reston, VA, USA, 2007.

9. Croley, T.; Luukkonen, C. Potential Effects of Climate Change on Ground Water in Lansing, Michigan. JAWRA J. Am. Water
Resour. Assoc. 2007, 39, 149–163. [CrossRef]

10. Gronewold, A.D.; Rood, R.B. Recent Water Level Changes across Earth’s Largest Lake System and Implications for Future
Variability. J. Gt. Lakes Res. 2019, 45, 1–3. [CrossRef]

11. Zhang, J.; Zhang, Y.; Song, J.; Cheng, L. Evaluating Relative Merits of Four Baseflow Separation Methods in Eastern Australia.
J. Hydrol. 2017, 549, 252–263. [CrossRef]

12. Shao, G.; Zhang, D.; Guan, Y.; Sadat, M.A.; Huang, F. Application of Different Separation Methods to Investigate the Baseflow
Characteristics of a Semi-Arid Sandy Area, Northwestern China. Water 2020, 12, 434. [CrossRef]

13. Zhang, Y.; Ahiablame, L.; Engel, B.; Liu, J. Regression Modeling of Baseflow and Baseflow Index for Michigan USA. Water 2013, 5,
1797–1815. [CrossRef]

14. Ahiablame, L.; Chaubey, I.; Engel, B.; Cherkauer, K.; Merwade, V. Estimation of Annual Baseflow at Ungauged Sites in Indiana
USA. J. Hydrol. 2013, 476, 13–27. [CrossRef]

15. Beatty, S.J.; Morgan, D.L.; McAleer, F.J.; Ramsay, A.R. Groundwater Contribution to Baseflow Maintains Habitat Connectivity for
Tandanus Bostocki (Teleostei: Plotosidae) in a South-Western Australian River. Ecol. Freshw. Fish 2010, 19, 595–608. [CrossRef]

www.mdpi.com/xxx/s1
https://nca2018.globalchange.gov/chapter/21
https://nca2018.globalchange.gov/chapter/21
http://doi.org/10.1111/j.1752-1688.2003.tb01568.x
http://doi.org/10.1016/j.jglr.2018.10.012
http://doi.org/10.1016/j.jhydrol.2017.04.004
http://doi.org/10.3390/w12020434
http://doi.org/10.3390/w5041797
http://doi.org/10.1016/j.jhydrol.2012.10.002
http://doi.org/10.1111/j.1600-0633.2010.00440.x


Water 2021, 13, 564 17 of 19

16. Boutt, D.F.; Hyndman, D.W.; Pijanowski, B.C.; Long, D.T. Identifying Potential Land Use-Derived Solute Sources to Stream
Baseflow Using Ground Water Models and GIS. Groundwater 2001, 39, 24–34. [CrossRef]

17. Choi, B.; Kang, H.; Lee, W.H. Baseflow Contribution to Streamflow and Aquatic Habitats Using Physical Habitat Simulations.
Water 2018, 10, 1304. [CrossRef]

18. McCallum, J.L.; Cook, P.G.; Brunner, P.; Berhane, D. Solute Dynamics during Bank Storage Flows and Implications for Chemical
Base Flow Separation. Water Resour. Res. 2010, 46, W07541. [CrossRef]

19. Murray, B.; Zeppel, M.; Hose, G.; Eamus, D. Groundwater-Dependent Ecosystems in Australia: It’s More than Just Water for
Rivers. Ecol. Manag. Restor. 2008, 4, 110–113. [CrossRef]

20. Power, G.; Brown, R.S.; Imhof, J.G. Groundwater and Fish—Insights from Northern North America. Hydrol. Process. 1999, 13,
401–422. [CrossRef]

21. Reichard, J.S.; Brown, C.M. Detecting Groundwater Contamination of a River in Georgia, USA Using Baseflow Sampling.
Hydrogeol. J. 2009, 17, 735–747. [CrossRef]

22. Malcolm, I.A.; Soulsby, C.; Youngson, A.F.; Hannah, D.M.; McLaren, I.S.; Thorne, A. Hydrological Influences on Hyporheic Water
Quality: Implications for Salmon Egg Survival. Hydrol. Process. 2004, 18, 1543–1560. [CrossRef]

23. Combalicer, E.; Lee, S.-K.; Ahn, S.; Kim, D.; Im, S. Comparing Groundwater Recharge and Base Flow in the Bukmoongol
Small-Forested Watershed, Korea. J. Earth Syst. Sci. 2008, 117, 553–566. [CrossRef]

24. Arnold, J.G.; Muttiah, R.S.; Srinivasan, R.; Allen, P.M. Regional Estimation of Base Flow and Groundwater Recharge in the Upper
Mississippi River Basin. J. Hydrol. 2000, 227, 21–40. [CrossRef]

25. Nielsen, M.G.; Westenbroek, S.M. Groundwater Recharge Estimates for Maine Using a Soil-Water-Balance Model—25-Year Average,
Range, and Uncertainty, 1999 to 2015; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2019; p. 68.

26. Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Spatial Distribution of Groundwater Recharge and Base Flow: Assessment
of Controlling Factors. J. Hydrol. Reg. Stud. 2015, 4, 349–368. [CrossRef]

27. Sloto, R.A.; Crouse, M.Y. HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis: U.S. Geological Survey
Water-Resources Investigations Report 96–4040; U.S. Geological Survey: Reston, VA, USA, 1996; p. 46.

28. Aksoy, H.; Kurt, I.; Eris, E. Filtered Smoothed Minima Baseflow Separation Method. J. Hydrol. 2009, 372, 94–101. [CrossRef]
29. Wahl, K.L.; Wahl, T.L. Determining the Flow of Comal Springs at New Braunfels, Texas; Texas Water ’95; American Society of Civil

Engineers: San Antonio, TX, USA, 1995; pp. 77–86.
30. Rammal, M.; Archambeau, P.; Erpicum, S.; Orban, P.; Brouyère, S.; Pirotton, M.; Dewals, B. Technical Note: An Operational

Implementation of Recursive Digital Filter for Base Flow Separation. Water Resour. Res. 2018, 54, 8528–8540. [CrossRef]
31. Rorabaugh, M.I. Estimating Changes in Bank Storage and Ground-Water Contribution to Streamflow. Int. Assoc. Sci. Hydrol. 1964,

63, 432–441.
32. Cartwright, I.; Gilfedder, B.; Hofmann, H. Contrasts between Estimates of Baseflow Help Discern Multiple Sources of Water

Contributing to Rivers. Hydrol. Earth Syst. Sci. 2014, 18, 15–30. [CrossRef]
33. Miller, M.P.; Susong, D.D.; Shope, C.L.; Heilweil, V.M.; Stolp, B.J. Continuous Estimation of Baseflow in Snowmelt-Dominated

Streams and Rivers in the Upper Colorado River Basin: A Chemical Hydrograph Separation Approach. Water Resour. Res. 2014,
50, 6986–6999. [CrossRef]

34. Ladson, A.R.; Brown, R.; Neal, B.; Nathan, R. A Standard Approach to Baseflow Separation Using The Lyne and Hollick Filter.
Australas. J. Water Resour. 2013, 17, 25–34. [CrossRef]

35. Nathan, R.J.; McMahon, T.A. Evaluation of Automated Techniques for Base Flow and Recession Analyses. Water Resour. Res.
1990, 26, 1465–1473. [CrossRef]

36. Eckhardt, K. A Comparison of Baseflow Indices, Which Were Calculated with Seven Different Baseflow Separation Methods.
J. Hydrol. 2008, 352, 168–173. [CrossRef]

37. Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated Base Flow Separation and Recession Analysis Techniques.
Groundwater 1995, 33, 1010–1018. [CrossRef]

38. Rutledge, A.T. Computer Programs for Describing the Recession of Ground-Water Discharge and for Estimating Mean Ground-Water
Recharge and Discharge from Streamflow Records-Update; Water-Resources Investigations Report; U.S. Geological Survey: Reston,
VA, USA, 1998.

39. Hagedorn, B. Hydrograph Separation through Multi Objective Optimization: Revealing the Importance of a Temporally and
Spatially Constrained Baseflow Solute Source. J. Hydrol. 2020, 125349. [CrossRef]

40. Rapp, G.; Liukkonen, B.W.; Allert, J.D.; Sorensen, J.A.; Glass, G.E.; Loucks, O.L. Geologic and Atmospheric Input Factors Affecting
Watershed Chemistry in Upper Michigan. Environ. Geol. Water Sci. 1987, 9, 155–171. [CrossRef]

41. USGS Water Data for the Nation. Available online: http://Waterdata.Usgs.Gov/Nwis (accessed on 8 December 2020).
42. UM University of Michigan. Bedrock Geology of Michigan | U-M LSA Earth and Environmental Sciences. Available online:

https://lsa.umich.edu/earth/community-engagement/downloadable-resources/bedrock-geology-of-michigan.html (accessed
on 8 February 2021).

43. Hagedorn, B.; Whittier, R.B. Solute Sources and Water Mixing in a Flashy Mountainous Stream (Pahsimeroi River, U.S. Rocky
Mountains): Implications on Chemical Weathering Rate and Groundwater–Surface Water Interaction. Chem. Geol. 2015, 391,
123–137. [CrossRef]

http://doi.org/10.1111/j.1745-6584.2001.tb00348.x
http://doi.org/10.3390/w10101304
http://doi.org/10.1029/2009WR008539
http://doi.org/10.1046/j.1442-8903.2003.00144.x
http://doi.org/10.1002/(SICI)1099-1085(19990228)13:3&lt;401::AID-HYP746&gt;3.0.CO;2-A
http://doi.org/10.1007/s10040-008-0382-2
http://doi.org/10.1002/hyp.1405
http://doi.org/10.1007/s12040-008-0052-8
http://doi.org/10.1016/S0022-1694(99)00139-0
http://doi.org/10.1016/j.ejrh.2015.07.005
http://doi.org/10.1016/j.jhydrol.2009.03.037
http://doi.org/10.1029/2018WR023351
http://doi.org/10.5194/hess-18-15-2014
http://doi.org/10.1002/2013WR014939
http://doi.org/10.7158/W12-028.2013.17.1
http://doi.org/10.1029/WR026i007p01465
http://doi.org/10.1016/j.jhydrol.2008.01.005
http://doi.org/10.1111/j.1745-6584.1995.tb00046.x
http://doi.org/10.1016/j.jhydrol.2020.125349
http://doi.org/10.1007/BF02449948
http://Waterdata.Usgs.Gov/Nwis
https://lsa.umich.edu/earth/community-engagement/downloadable-resources/bedrock-geology-of-michigan.html
http://doi.org/10.1016/j.chemgeo.2014.10.031


Water 2021, 13, 564 18 of 19

44. Harrington, G.A.; Herzceg, A.L. The Importance of Silicate Weathering of a Sedimentary Aquifer in Central Australia Indicated
by Very High Sr-87/Sr-86 Ratios. Chem. Geol. 2003, 199, 281–292. [CrossRef]

45. Lyne, V.; Hollick, M. Stochastic Time-Variable Rainfall-Runoff Modelling; Hydrology and Water Resources Symposium; Institution of
Engineers: Perth, Australia, 1979.

46. Ritter, A.; Muñoz-Carpena, R. Performance Evaluation of Hydrological Models: Statistical Significance for Reducing Subjectivity
in Goodness-of-Fit Assessments. J. Hydrol. 2013, 480, 33–45. [CrossRef]

47. Nalley, D.; Adamowski, J.; Khalil, B. Using Discrete Wavelet Transforms to Analyze Trends in Streamflow and Precipitation in
Quebec and Ontario (1954–2008). J. Hydrol. 2012, 475, 204–228. [CrossRef]

48. Chen, Y.; Guan, Y.; Shao, G.; Zhang, D. Investigating Trends in Streamflow and Precipitation in Huangfuchuan Basin with Wavelet
Analysis and the Mann-Kendall Test. Water 2016, 8, 77. [CrossRef]

49. Schlüter, M. Mixed Integer Distributed Ant Colony Optimization (MIDACO)-Solver. User Manual. Available online: http:
//midaco-solver.com/ (accessed on 10 February 2020).

50. Blum, C. Ant Colony Optimization: Introduction and Recent Trends. Phys. Life Rev. 2005, 2, 353–373. [CrossRef]
51. Socha, K.; Dorigo, M. Ant Colony Optimization for Continuous Domains. Eur. J. Oper. Res. 2008. [CrossRef]
52. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
53. Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 2,

221–248. [CrossRef]
54. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
55. Lenz, M.; Jöst, D.; Thiel, F.; Pischinger, S.; Sauer, D.U. Identification of Load Dependent Cell Voltage Model Parameters from

Sparse Input Data Using the Mixed Integer Distributed Ant Colony Optimization Solver. J. Power Sources 2019, 437, 226880.
[CrossRef]

56. Zobaa, A.F. Mixed-Integer Distributed Ant Colony Multi-Objective Optimization of Single-Tuned Passive Harmonic Filter
Parameters. IEEE Access 2019, 7, 44862–44870. [CrossRef]

57. Schlueter, M. MIDACO Software Performance on Interplanetary Trajectory Benchmarks. Adv. Space Res. 2014, 54, 744–754.
[CrossRef]

58. Schlueter, M.; Erb, S.O.; Gerdts, M.; Kemble, S.; Rückmann, J.-J. MIDACO on MINLP Space Applications. Adv. Space Res. 2013, 51,
1116–1131. [CrossRef]

59. Schlueter, M.; Yam, C.H.; Watanabe, T.; Oyama, A. Parallelization Impact on Many-Objective Optimization for Space Trajectory
Design. Int. J. Mach. Learn. Comput. 2016, 6, 9.

60. Wang, Z.; Rangaiah, G.P. Application and Analysis of Methods for Selecting an Optimal Solution from the Pareto-Optimal Front
Obtained by Multiobjective Optimization. Ind. Eng. Chem. Res. 2017, 56, 560–574. [CrossRef]

61. Coello, C.A. Multi-objective optimization. In Handbook of Heuristics; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 177–204.
62. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 978-0-471-

87339-6.
63. Spongberg, M.E. Spectral Analysis of Base Flow Separation with Digital Filters. Water Resour. Res. 2000, 36, 745–752. [CrossRef]
64. Li, L.; Maier, H.R.; Partington, D.; Lambert, M.F.; Simmons, C.T. Performance Assessment and Improvement of Recursive Digital

Baseflow Filters for Catchments with Different Physical Characteristics and Hydrological Inputs. Environ. Model. Softw. 2014, 54,
39–52. [CrossRef]

65. Li, L.; Maier, H.R.; Lambert, M.F.; Simmons, C.T.; Partington, D. Framework for Assessing and Improving the Performance of
Recursive Digital Filters for Baseflow Estimation with Application to the Lyne and Hollick Filter. Environ. Model. Softw. 2013, 41,
163–175. [CrossRef]

66. Hirsch, R.M.; Slack, J.R. A Nonparametric Trend Test for Seasonal Data With Serial Dependence. Water Resour. Res. 1984, 20,
727–732. [CrossRef]

67. Adamowski, K.; Bougadis, J. Detection of Trends in Annual Extreme Rainfall. Hydrol. Process. 2003, 17, 3547–3560. [CrossRef]
68. Yagbasan, O.; Demir, V.; Yazicigil, H. Trend Analyses of Meteorological Variables and Lake Levels for Two Shallow Lakes in

Central Turkey. Water 2020, 12, 414. [CrossRef]
69. Cohn, T.A.; Lins, H.F. Nature’s Style: Naturally Trendy. Geophys. Res. Lett. 2005, 32. [CrossRef]
70. Spooner, J.; Harcum, J.B.; Meals, D.W.; Dressing, S.A.; Richards, R.P. Chapter 7 Data Analysis. In Monitoring and Evaluating

Nonpoint Source Watershed Projects - Monitoring Guide; U.S. Environmental Protection Agency: Washington, DC, USA, 2016; 118p.
71. Ljung, G.; Box, G. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65. [CrossRef]
72. Patakamuri, S.K.; O’Brien, N. Modifiedmk: Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests. Available

online: https://CRAN.R-project.org/package=modifiedmk (accessed on 4 July 2020).
73. Hamed, K.H.; Rao, A.R. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [CrossRef]
74. Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological

Series. Water Resour. Manag. 2004, 18, 201–218. [CrossRef]
75. Dinpashoh, Y.; Mirabbasi, R.; Jhajharia, D.; Abianeh, H.Z.; Mostafaeipour, A. Effect of Short-Term and Long-Term Persistence on

Identification of Temporal Trends. J. Hydrol. Eng. 2014, 19, 617–625. [CrossRef]

http://doi.org/10.1016/S0009-2541(03)00128-1
http://doi.org/10.1016/j.jhydrol.2012.12.004
http://doi.org/10.1016/j.jhydrol.2012.09.049
http://doi.org/10.3390/w8030077
http://midaco-solver.com/
http://midaco-solver.com/
http://doi.org/10.1016/j.plrev.2005.10.001
http://doi.org/10.1016/j.ejor.2006.06.046
http://doi.org/10.1109/4235.996017
http://doi.org/10.1162/evco.1994.2.3.221
http://doi.org/10.1016/j.jpowsour.2019.226880
http://doi.org/10.1109/ACCESS.2019.2903910
http://doi.org/10.1016/j.asr.2014.05.002
http://doi.org/10.1016/j.asr.2012.11.006
http://doi.org/10.1021/acs.iecr.6b03453
http://doi.org/10.1029/1999WR900303
http://doi.org/10.1016/j.envsoft.2013.12.011
http://doi.org/10.1016/j.envsoft.2012.11.009
http://doi.org/10.1029/WR020i006p00727
http://doi.org/10.1002/hyp.1353
http://doi.org/10.3390/w12020414
http://doi.org/10.1029/2005GL024476
http://doi.org/10.1093/biomet/65.2.297
https://CRAN.R-project.org/package=modifiedmk
http://doi.org/10.1016/S0022-1694(97)00125-X
http://doi.org/10.1023/B:WARM.0000043140.61082.60
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000819


Water 2021, 13, 564 19 of 19

76. Hamed, K.H. Trend Detection in Hydrologic Data: The Mann–Kendall Trend Test under the Scaling Hypothesis. J. Hydrol. 2008,
349, 350–363. [CrossRef]

77. Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of Hydrological Trends in the Presence of
Serial and Cross Correlations: A Review of Selected Methods and Their Application to Annual Flow Regimes of Canadian Rivers.
J. Hydrol. 2009, 368, 117–130. [CrossRef]

78. Önöz, B.; Bayazit, M. Block Bootstrap for Mann–Kendall Trend Test of Serially Dependent Data. Hydrol. Process. 2012, 26,
3552–3560. [CrossRef]

79. Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series.
Hydrol. Process. 2002, 16, 1807–1829. [CrossRef]

80. Hamed, K.H. Enhancing the Effectiveness of Prewhitening in Trend Analysis of Hydrologic Data. J. Hydrol. 2009, 368, 143–155.
[CrossRef]

81. Svensson, C.; Kundzewicz, W.Z.; Maurer, T. Trend Detection in River Flow Series: 2. Flood and Low-Flow Index Series / Détection
de Tendance Dans Des Séries de Débit Fluvial: 2. Séries d’indices de Crue et d’étiage. Hydrol. Sci. J. 2005, 50, 811–824. [CrossRef]

82. Huntington, J.L.; Niswonger, R.G. Role of Surface-Water and Groundwater Interactions on Projected Summertime Streamflow in
Snow Dominated Regions: An Integrated Modeling Approach. Water Resour. Res. 2012, 48. [CrossRef]

83. MDEGLE Base Flow of Michigan Streams—Michigan Department of Environment, Great Lakes and Eneregy. Available online:
http://gis-michigan.opendata.arcgis.com/datasets/base-flow-of-michigan-streams (accessed on 29 August 2020).

84. Chiaudani, A.; Di Curzio, D.; Palmucci, W.; Pasculli, A.; Polemio, M.; Rusi, S. Statistical and Fractal Approaches on Long
Time-Series to Surface-Water/Groundwater Relationship Assessment: A Central Italy Alluvial Plain Case Study. Water 2017, 9,
850. [CrossRef]

85. Dudley, R.; Hodgkins, G.; McHale, M.R.; Kolian, M.; Renard, B. Trends in Snowmelt-Related Streamflow Timing in the
Conterminous United States. J. Hydrol. 2017. [CrossRef]

86. Suriano, Z.; Robinson, D.; Leathers, D. Changing Snow Depth in the Great Lakes Basin: Implications and Trend. Anthropocene
2019, 26. [CrossRef]

87. Xu, Y.-P.; Pan, S.; Fu, G.; Tian, Y.; Zhang, X. Future Potential Evapotranspiration Changes and Contribution Analysis in Zhejiang
Province, East China. J. Geophys. Res. Atmospheres 2014, 119, 2174–2192. [CrossRef]

88. Bai, X.; Wang, J. Atmospheric Teleconnection Patterns Associated with Severe and Mild Ice Cover on the Great Lakes, 1963–2011.
Water Qual. Res. J. 2012, 47, 421–435. [CrossRef]

89. Guo, X.; Tian, L.; Wang, L.; Yu, W.; Qu, D. River Recharge Sources and the Partitioning of Catchment Evapotranspiration Fluxes
as Revealed by Stable Isotope Signals in a Typical High-Elevation Arid Catchment. J. Hydrol. 2017, 549, 616–630. [CrossRef]

90. Haiyan, C.; Yaning, C.; Weihong, L.; Xinming, H.; Yupeng, L.; Qifei, Z. Identifying Evaporation Fractionation and Streamflow
Components Based on Stable Isotopes in the Kaidu River Basin with Mountain–Oasis System in North-West China. Hydrol. Process.
2018, 32, 2423–2434. [CrossRef]

91. Simpson, H.J.; Herczeg, A.L. Salinity and Evaporation in the River Murray Basin, Australia. J. Hydrol. 1991, 124, 1–27. [CrossRef]
92. Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources—Hydrologic Analysis and Interpretation: Techniques of Water-Resources

Investigations of the U.S. Geological Survey, Chap. A3, Book 4; Elsevier: Amsterdam, The Netherlands, 2002.
93. Betterle, A.; Radny, D.; Schirmer, M.; Botter, G. What Do They Have in Common? Drivers of Streamflow Spatial Correlation and

Prediction of Flow Regimes in Ungauged Locations. Water Resour. Res. 2017, 53, 10354–10373. [CrossRef]
94. Partington, D.; Brunner, P.; Simmons, C.T.; Werner, A.D.; Therrien, R.; Maier, H.R.; Dandy, G.C. Evaluation of Outputs from

Automated Baseflow Separation Methods against Simulated Baseflow from a Physically Based, Surface Water-Groundwater Flow
Model. J. Hydrol. 2012, 458–459, 28–39. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2007.11.009
http://doi.org/10.1016/j.jhydrol.2009.01.035
http://doi.org/10.1002/hyp.8438
http://doi.org/10.1002/hyp.1095
http://doi.org/10.1016/j.jhydrol.2009.01.040
http://doi.org/10.1623/hysj.2005.50.5.811
http://doi.org/10.1029/2012WR012319
http://gis-michigan.opendata.arcgis.com/datasets/base-flow-of-michigan-streams
http://doi.org/10.3390/w9110850
http://doi.org/10.1016/j.jhydrol.2017.01.051
http://doi.org/10.1016/j.ancene.2019.100208
http://doi.org/10.1002/2013JD021245
http://doi.org/10.2166/wqrjc.2012.009
http://doi.org/10.1016/j.jhydrol.2017.04.037
http://doi.org/10.1002/hyp.13176
http://doi.org/10.1016/0022-1694(91)90003-Z
http://doi.org/10.1002/2017WR021144
http://doi.org/10.1016/j.jhydrol.2012.06.029

	Introduction 
	Materials and Methods 
	Study Area and Datasets 
	MOO Modeling of Baseflow 
	Conceptual Approach 
	MOO Algorithm 
	MOO Performance Evaluation 

	Mann–Kendall Trend Analysis 
	Conventional MK Test 
	Modified MK Test 


	Results and Discussion 
	Baseflow Results 
	Autocorrelation Results 
	MK Test Results 
	Transferability of Results 

	Conclusions and Implications 
	References

