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Abstract: Untreated hexamethylenetetramine (HMT) was discharged into the Tone River in the
central area of Japan, and the risk management plan in the watershed area has been strengthened
because HMT is the precursor of formaldehyde (FA) regulated by Japanese water supply law. The
release of HMT could occur not only in steady but also in unsteady environmental conditions. In this
context, no quantitative environmental risk assessments have dealt with the combined events of FA
precursor outflow and natural disasters, such as a massive tsunami attack. In this study, we estimated
the time course changes of HMT concentrations at the near water treatment plant (WTP) intakes due
to tsunami run-up in the river after HMT discharge from facilities along the river during a massive
tsunami attack, then potential ecological and health impacts were estimated. This method has a
strong analytical ability to reveal the relationship between wave source and inland water run-up
in consideration of 3D density flow. For ecological risk, the half maximal effective concentration
(EC50) was employed. We found that HMT concentration would not reach a level of concern even
after the accident. For potential health risk in terms of the possible maximum inlet concentration
of HMT at the WTP, the FA formation amount was 5.3 × 10−2 mg/L, which was below the water
quality standard.

Keywords: Natech (Natural hazard-triggered technological accidents); tsunami; water treatment
systems; disinfection by-product; risk assessment

1. Introduction

On 11 March 2011, the Great East Japan Earthquake generated massive tsunami waves,
then the tsunami propagation caused extreme multiple damages to inland industrial activi-
ties. Such a massive tsunami hazard has caused a secondary impact on industrial facilities,
such as manufacturing factories that utilize chemicals and metals. Due to the damage
caused by the Great East Japan Earthquake, comprehensive measures against natural disas-
ters should be further strengthened due to concerns about the occurrence of large-scale
earthquakes, such as the Nankai Trough earthquake. The Ministry of Education, Culture,
Sports, Science, and Technology’s Headquarters for Earthquake Research Promotion (2013)
estimated that the probability of a Nankai Trough earthquake occurring within 30 years is
70–80%; thus, local governments in areas where damage is expected should take immediate
measures against earthquakes [1].

In consideration of the propagation of the impact of natural hazards to industrial
facilities, recent research has investigated natural hazard-triggered technological accidents
(Natech) that occur frequently worldwide, but such phenomena are not well evaluated and
addressed. Moreover, Natech risk evaluation and management methods are still under
development. Kishimoto (2014) discussed a broader aspect of these issues, including the
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viewpoint of mixed land use, such as industrialization and urbanization, and the diffusion
of new technologies [2]. In accordance with the Natech literature survey by Camila et al.
(2019), the number of cases of tsunami Natech risk assessment and management is limited
compared with that for other natural disasters [3]. Tanaka et al. [4] scrutinized a tsunami
hazard in inland areas in terms of intrusion distance and flow discharge in rivers during the
2011 Tohoku Tsunami. This type of analysis is the basis for further risk analysis. Nagashima
and Yoneyama (2017) indicated that one of the effects of a tsunami on an inland area is the
water intake problem caused by the mixing of salt water at the intake of a water treatment
plant (WTP) in a river channel [5]. They quantitatively evaluated the spatial distribution
and temporal changes of salt water and the effect of salt water on water intake [5]. In Japan,
many industrial activities handle chemical substances. If chemical substances flow into a
river from facilities due to an earthquake, chemical substances that are toxic to humans
may affect the water intake. The motivation of our research starts here.

In 2012, untreated hexamethylenetetramine (HMT) was discharged into the Tone River,
and high levels of formaldehyde (FA) exceeding the water quality standard were detected
at a WTP. HMT is classified as a Class I Designated Chemical Substance under Japan’s
Pollutant Release and Transfer Register (PRTR) system. Thus, it is harmful to humans and
ecosystems. The Tone River distributes water to the Tokyo metropolitan area, and some
WTPs without advanced water purification systems, such as ozone water treatment, might
be affected by the suspension of water intake [6]. FA can be produced by the reaction
between chlorine and HMT injected during the water purification process [6]. Tsuruta
et al. (2015) evaluated the effectiveness of ozone treatment and found that an advanced
water purification flow in Osaka City could remove about 2 µM of HMT (a concentration
near the maximum detectable concentration of HMT at the time of the accident in the Tone
River system) [7]. However, only 5.9% of WTPs in Japan use advanced water purification
treatment systems [8]. In addition, even if WTPs have ozone treatment equipment, the
FA generated may not be fully treated and exceed the standard value because the ozone
treatment function may be affected during an earthquake. Therefore, in areas where a
large number of chemical facilities are located along the river, risk assessments should be
conducted assuming that high concentrations of HMT will be discharged into the rivers
due to earthquakes in order to prepare for water quality accidents during emergencies.

For HMT emissions [9], the Ministry of the Environment (2020) estimated that the
ratio of non-notified facilities (i.e., facilities with less than 20 employees and handling less
than 1 t of chemical substances) to notified facilities is 99:1 [10]. In terms of storage amount,
the total number of non-notified facilities is considered to be larger than that of notified
facilities. Therefore, a large number of outflows from non-notified facilities may occur
during an earthquake. However, risk assessments of spills from non-notified facilities have
not been conducted due to the lack of emission data.

Many studies have conducted risk assessment based on the direction of river flow
under normal conditions [11]. However, no study has performed risk assessments assum-
ing that chemical substances from downstream industrial facilities reach upstream water
intakes due to tsunami run-up.

Thus, it is necessary to use data that reflect the reality as much as possible to analogize
the upper limit of damage and evaluate the risk under a complex event for clarifying
whether enormous damage is necessary to assume. The purpose of this paper is to reveal
the importance of this combined risk estimation for chemical and natural hazards by
merging established methodologies for chemical risk assessment and numerical analysis.
In this study, we quantitatively evaluated the risk of water supply damage by predicting
the time course changes of HMT concentration at a WTP intake and the possible volume of
HMT intake due to the tsunami run-up in a river channel under the release of HTM by the
Nankai Trough earthquake.
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2. Target Area

As described in Figure 1, the target area is the western part of Japan that includes the
Yodo River area. The Yodo River has the largest water supply population in Japan, and
the Kunijima WTP has a water supply population of 2,725,006 [12], so many households
may be affected. The Great Yodo River Weir (Figure 1) is located 9.8 km from the mouth
of the Yodo River and consists of four central water control gates (55 m wide) and one
flow control gate on each side (40 m wide) [13]. The Great Yodo River Weir prevents salt
water from flowing upstream. The initial tide level was set to Tokyo Peil (a commonly used
elevation standard in Japan) +0.9 m, which is the high-water level at Osaka Bay [5].

Water 2021, 13, x FOR PEER REVIEW 3 of 19 
 

 

of HMT intake due to the tsunami run-up in a river channel under the release of HTM by 98 
the Nankai Trough earthquake. 99 

2. Target Area 100 
As described in Figure 1, the target area is the western part of Japan that includes the 101 

Yodo River area. The Yodo River has the largest water supply population in Japan, and 102 
the Kunijima WTP has a water supply population of 2,725,006 [12], so many households 103 
may be affected. The Great Yodo River Weir (Figure 1) is located 9.8 km from the mouth 104 
of the Yodo River and consists of four central water control gates (55 m wide) and one 105 
flow control gate on each side (40 m wide) [13]. The Great Yodo River Weir prevents salt 106 
water from flowing upstream. The initial tide level was set to Tokyo Peil (a commonly 107 
used elevation standard in Japan) +0.9 m, which is the high-water level at Osaka Bay [5]. 108 

 109 

 110 
Figure 1. Aerial view of the Great Yodo River Weir area. (a) The whole picture of the target area, the 111 
western Japan. dx shows the areal range of calculation. (b) The area around Osaka City (the target 112 
area). (c) The area around the Great Yodo River Weir, which is located at the junction of the Yodo 113 
River and its tributary, the Okawa River, and the industrial and domestic water intakes of the Ku- 114 
nijima WTP. 115 

3. Methods 116 
 The entire numerical simulation methods employed here were developed by previ- 117 
ous papers [5,14,15]. Their feature was to predict the propagation of the wave source to 118 
inland areas in a 2D way and in river channels. A 3D analysis was conducted in consider- 119 
ation of density flow. With these models, successful estimation of flow behavior was 120 
achieved, and physically meaningful results were justified [5,14]. The detail of the analyt- 121 
ical conditions and basic governing equations was explained there. Therefore, parameter 122 
calibration and model validation were performed, and the feasibility of these methods 123 
was examined. However, parameter calibration and model validation for specific sub- 124 
stances have not yet been performed because of the lack of observation results of HMT in 125 
an ambient water environment. Considering its physicochemical property, the authors 126 
supposed that the behavior of HMT was similar to that of salt, and emphasized the simu- 127 
lation studies. Here, only some of the specific important items are explained. 128 

3.1. Framework of Analysis 129 
Figure 2 shows the framework of the analysis. In the disaster and emission scenario, 130 

we assumed that the ground liquefied due to the earthquake and that the chemicals stored 131 
in the facilities were discharged into the river. In the emission estimation model, we esti- 132 
mated the handling amount of HMT using emission factors based on the PRTR data. We 133 
used the number of employees in all industries as a sorting index to estimate the storage 134 
amount of HMT in each mesh, and we selected the meshes that were thought to store the 135 
most HMT. We used the sum of the storage amounts of those meshes as the discharge to 136 
the river. We applied the discharge into the river to the tsunami model [5] to estimate the 137 
time changes of the concentration distribution of HMT. We estimated the amount of HMT 138 

Figure 1. Aerial view of the Great Yodo River Weir area. (a) The whole picture of the target area, the western Japan. dx
shows the areal range of calculation. (b) The area around Osaka City (the target area). (c) The area around the Great Yodo
River Weir, which is located at the junction of the Yodo River and its tributary, the Okawa River, and the industrial and
domestic water intakes of the Kunijima WTP.

3. Methods

The entire numerical simulation methods employed here were developed by previous
papers [5,14,15]. Their feature was to predict the propagation of the wave source to inland
areas in a 2D way and in river channels. A 3D analysis was conducted in consideration of
density flow. With these models, successful estimation of flow behavior was achieved, and
physically meaningful results were justified [5,14]. The detail of the analytical conditions
and basic governing equations was explained there. Therefore, parameter calibration and
model validation were performed, and the feasibility of these methods was examined.
However, parameter calibration and model validation for specific substances have not yet
been performed because of the lack of observation results of HMT in an ambient water
environment. Considering its physicochemical property, the authors supposed that the
behavior of HMT was similar to that of salt, and emphasized the simulation studies. Here,
only some of the specific important items are explained.

3.1. Framework of Analysis

Figure 2 shows the framework of the analysis. In the disaster and emission scenario,
we assumed that the ground liquefied due to the earthquake and that the chemicals stored
in the facilities were discharged into the river. In the emission estimation model, we
estimated the handling amount of HMT using emission factors based on the PRTR data. We
used the number of employees in all industries as a sorting index to estimate the storage
amount of HMT in each mesh, and we selected the meshes that were thought to store the
most HMT. We used the sum of the storage amounts of those meshes as the discharge
to the river. We applied the discharge into the river to the tsunami model [5] to estimate
the time changes of the concentration distribution of HMT. We estimated the amount
of HMT that is ultimately taken to the WTP, the amount of FA produced from HMT by
chlorination, and the concentration of FA in the feed water. Subsequently, we compared
the HMT concentrations with the current Japanese water quality standards. We used these
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analytical procedures to assess the potential impact of post-earthquake HMT discharged
into rivers on social infrastructure, human health, and aquatic organisms.
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The liquefaction risk was evaluated using the liquefaction potential factor PL, which
is defined as follows (Equations (1)–(4)) [16]:

PL =
∫ 20

0
F × W(Z)dZ (1)

F =

{
1 − FL (FL < 1.0)

0 (FL ≥ 1.0)
(2)

W(Z) = 10 − 0.5Z (3)

FL =
R
L

(4)

where, Z is the depth in meters, R is the in situ resistance (or undrained cyclic strength) of
a soil element to dynamic loads, and L is the dynamic load induced in the soil element by a
seismic motion [16].

We integrated the 250 m mesh maps of liquefaction risk for the Nankai Trough earth-
quake in Osaka Prefecture (2020) into a 1 km mesh [17]. We adopted the average of the
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median PL of the respective 250 m mesh maps (each mesh was classified by PL in 5) as the
PL for the 1 km mesh; the PL for meshes with PL of 25 or more was uniformly set to 27.5.

We selected four meshes whose liquefaction risk was particularly high and the esti-
mated HMT storage amount was 2 km × 2 km in size as the outflow areas. We assumed
that the HMT discharged from the chemical facility would flow into a virtual channel set
up in the mesh and then into the river [18].

3.2. Estimation of HMT Outflow during Disasters and Accidents

We estimated the mesh-specific storage amount of HMT at non-notified facilities
based on the methods of Nakakubo [11]; the Ministry of the Environment [10,19]; and
the Ministry of Economy, Trade and Industry [20]. The notified releases E (kg/year)
and the non-notified releases En (kg/year) represent the amount of HMT released to the
atmosphere, public water, soil, and landfill from notified and non-notified facilities in
Osaka Prefecture, respectively. We estimated the transfers of non-notified facilities in
Osaka Prefecture (Trn (kg/year)) from En (kg/year) [10] using the ratio of E (kg/year) to
Trans (kg/year) [21] (Equation (5)). The storage amount of chemical substances depends on
the handling amount at the industrial facility, but the releases and transfers do not include
the amount of chemical substances shipped as products. Therefore, we calculated the
handling amount from the releases and transfers by using the emission factor (Equation (6)).
The emission factor EF is the ratio of the total amount of releases and transfers at the
notified facilities to the handling amount HA [22] (Equation (6)). We calculated the HMT
handling amount HAn (kg/year) at the non-notified facilities (Equation (7)), assuming
that the HMT emission factor of the non-notified facilities is equal to that of the notified
facilities [11]. Fujiki et al. [23] adopted the median of the data obtained from the interview
survey conducted by the Kyoto City Water Supply and Sewerage Bureau on factories as the
storage amount conversion factor and set it to two weeks. However, in the actual survey,
some facilities stored three years’ worth of handling amount; thus, we adopted one year’s
worth of handling amount for a safer estimation (Equation (8)). We used the number of
employees in all industries, W [24], as a sorting index and calculated the HMT storage
amount Sm (kg/day) by mesh in non-notified facilities from the HMT storage amount
S [kg/day] for Osaka Prefecture as a whole (Equation (9)) and input data for each equation
are shown in Table 1:

Trn = En ×
Trans

E
(5)

EF =
E + Trans

HA
(6)

HAn =
En + Trn

EF
(7)

S = HAn (8)

Sm =
Wm

W
× S (9)

Variables Meaning
Trn Transfers (non-notified facilities in Osaka Prefecture) (kg/year)
En Releases (non-notified facilities in Osaka Prefecture) (kg/year)

Trans Transfers (notified facilities in Osaka Prefecture) (kg/year)
E Releases (notified facilities in Osaka Prefecture) (kg/year)

HA Handling amount (notified facilities in Osaka Prefecture) (kg/year)
EF Emission factor [–]

HAn Handling amount (non-notified facilities in Osaka Prefecture) (kg/year)
S Storage amount (non-notified facilities in Osaka Prefecture) [kg/day]

Sm Storage amount by mesh (non-notified facilities) [kg/day]
W Number of employees in all industries in Osaka

Wm Number of employees in all industries by mesh
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Table 1. The data used for estimating the HMT storage amount of non-notified facilities.

Releases (notified facilities in Osaka Prefecture) (kg/year) [21] 5
Transfers (notified facilities in Osaka Prefecture) (kg/year) [21] 4.8 × 103

Handling amount (notified facilities in Osaka Prefecture) (kg/year) [21] 2.3 × 105

Releases (non-notified facilities in Osaka Prefecture) (kg/year) [10] 95
Number of employees in all industries [24] 9.2 × 106

3.3. Leakage from Facilities

A large amount of chemical substances flowing into a river in a short time period will
lead to higher concentrations in the environment and more damage than a small amount
flowing into a river for a long time period. Therefore, we assumed that the entire storage
amount would leak out in a short time period due to a damaged storage tank during the
earthquake. Equation (10) represents the outflow rate q (m3/s) of the chemical per unit
time at time t. We assumed that the total amount of chemical Vtot (m3) will flow out at a
constant rate from time 0 (s) to the ending time Trelease (s):

q =
Vtot

Trelease
(10)

However, if t > Trelease, q = 0.
Where q (m3/s) is the amount of chemical substance released per unit time at time t,

Vtot (m3/s) is the storage amount of chemical substance, and Trelease (s) is the ending time
of the outflow.

Therefore, dV (m3) can be expressed as follows (Equation (11)):

dV = q × ∆t (11)

where dV (m3) is the volume of chemicals leaking from the storage tank at time ∆t, which
shows an increment of calculation time.

3.4. Discharge into River

We used the method of Takubo et al. [15] shown below to determine the concentration
of HMT in a river (Equations (12)–(14)):

Ṽt = Vt + dV (12)

C̃t =
Ct × 103 Vt + ρcdV

Ṽt
× 10−3 (13)

ρ̃t = ρtVt+ρcdV
Ṽt

= ρ0 + C̃t

(
1 − ρ0

ρc

)
× 103

(14)

where Vt (m3) is the volume at time t(≤ Trelease) of the chemical discharge cell, Ṽt (m3) is
the volume at time t(≤ Trelease) of the chemical discharge cell after release, Ct (mg/L) is the
chemical concentration, ρc (kg/m3) is the density of the chemical substance, C̃t (mg/L) is
the concentration of the chemical discharge cell after release, ρt (kg/m3) is the density of
the chemical discharge cell, ρ̃t is the density of the chemical discharge cell, and ρ0 (kg/m3)
is the density of water.

In the case of a chemical spill, if Ṽt exceeds the cell volume of the chemical discharge
cell, the excess volume is assumed to be added to the cell one level above in the vertical
direction. In that added cell, the chemical concentration and density are also set to C̃t and
ρt, respectively [15].
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3.5. River Runoff and Tsunami Analysis Models and Settings

Data used for this analysis were geographical, roughness, and embankment data
based on plane Cartesian coordinates from reported documents [15].

The model used in this study was a combination of a 3D numerical analysis method
and a planar 2D analysis method based on nonlinear long wave theory [5]. Wide-area
tsunami propagation, in-channel saline water behavior [5], and in-channel saltwater and
substance behavior analyses were conducted on the basis of continuity, motion, turbulence
evaluation, and convection diffusion equations as the governing equations in consideration
of density flow. In the river channel, 3D analysis can be actualized. Substance behavior was
estimated using convection diffusion equations; the application of the combination of these
equations has already been carried out, and the feasibility of this method has already been
evaluated [15]. In the current study, we replaced salinity with HMT in the analysis. The
densities of HMT and seawater are approximately 1331 and 1020–1035 kg/m3, respectively,
and are expected to show similar behavior.

The details of the analysis area and boundary conditions have been explained in
previous research [5,14]. As to the 2D tsunami propagation analysis, a five-layer nesting
analysis was performed, and the grid sizes were 810, 270, 90, 30, and 10 m. The boundary
condition was assumed to be fixed end for the north end, and others were assumed to be
free end [14]. As to the river channel analysis, 3D analysis with 5 m for horizontal and 1 m
for vertical was conducted (Table 2).

Table 2. Areal range of calculation.

Analysis Area Computational
Grid Size

Coordinate of the
South–West End

Range

East–West South–North

Horizontal 2D

810 (−716,000, −720,000) 1,215,000 801,900

270 (−173,300,−298,800) 186,300 178,200

90 (−108,500, −196,200) 81,000 72,900

30 (−61,700, −161,100) 32,400 34,200

10 (−58,100, −150,150) 26,300 21,150

3D 10/5 (−45,500,−142,180) 2950 2100
(unit: m).

3.6. Risk Assessment of HMT to Riverine Aquatic Organisms

We evaluated the ecological risk of exposure of riverine aquatic organisms to HMT
for a very short period of time by defining a Risk score as shown in Equation (15) and
comparing the cumulative exposure during the peak period from time t1 (s) to t2 (s):

Risk score =
∑t2

t=t1
CHMT

t ∆t
Cacute × Tacute

(15)

where CHMT
t (mg/L) is the concentration of HMT at time t at the concentration measure-

ment point, Cacute (mg/L) is the acute toxicity values in the HMT toxicity test results, and
Tacute (s) is the duration in the toxicity test. We calculated the product of concentration
and duration by adding the time width ∆t from time t1 to t2 when the high concentration
was estimated. A risk score greater than or less than 1 indicates an impact or no impact on
riverine aquatic organisms, respectively.

Given that the minimum toxicity data available for HMT for aquatic organisms is
the 48 h EC50 of 104 mg/L, which is an index of swimming inhibition for the crustacean
Daphnia magna [25], we set Cacute and Tacute as 104 mg/L and 172,800 s (48 h), respectively.
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3.7. Risk Assessment of Potential FA Production at WTP

We assumed that river water containing HMT is taken to a WTP and reacts with
chlorine in the chlorination process to produce FA. Moreover, we estimated the FA concen-
tration in the water supply during the peak period from time t1 (s) to t2 (s). To calculate the
potential FA production at the WTP, we assumed that the water treatment functions capable
of decomposing HMT, such as ozone treatment, were damaged due to the earthquake. At
the Kunijima WTP, we focused on the domestic water intake because no chlorination is per-
formed at the industrial water intake. The FA concentration in the water supply, CFA(mg/L),
is the estimated concentration under the condition of complete mixing (Equation (16)):

CFA =
Kproduction × ∑t2

t=t1
CHMT

t ∆t × Qintake

Qsupply × (t2 − t1)
(16)

where Kproduction is the mass of the largest FA produced by HMT per unit mass, Qintake(L/s)
is the amount of water intake per second, and Qsupply (L/s) is the amount of water supply
per second. The speed of water intake and water supply was calculated from the respective
quantities per day, assuming that their speed per hour is constant.

The mass of FA generated from HMT per unit mass is about 0.6–1.1 g according to
studies that evaluated the amount of FA generated by chlorination of HMT [26–29]. We
adopted the case with the largest amount of generation to estimate the safe side and set
Kproduction to 1.1. According to the Osaka City Waterworks Bureau (2019), the average
water intake in January, when the intake volume is the lowest during the low-water-
temperature period, is 64,041 m3/day for industrial water [13]. Qintake for industrial water
was calculated as 7.4 × 102 L/s. Meanwhile, domestic water is taken from the Kunijima and
Hitotsuya intakes, of which the average amount in January was 581,132 m3/day. The ratio
of intake capacity of the pumps at Kunijima and Hitotsuya intakes was 88:12 [12]. Thus,
Qintake for domestic water was calculated as 5.9 × 103 L/s. On the other hand, the average
water supply in January was 461,881 m3/day [12]; therefore, Qsupply was calculated as
5.3 × 103 L/s. We also compared the FA concentration in the water supply (CFA) with the
Japanese water quality standard for FA (8.0 × 10−2 mg/L) [30] to assess the risk. Water
quality standards are established based on chronic toxicity indicators [31,32].

3.8. Threshold for Risk Determination

The concentration of HMT in river water under normal conditions is estimated to
be 3.0 × 10−3 mg/L [33]. We took the significant figures into account and calculated the
Risk score for the concentration that changes the first significant figure of the concentration
in river water under normal conditions, that is, when the concentration of HMT in river
water increases by more than 5.0 × 10−5 mg/L due to the outflow. If the increase was
smaller than this value, we did not perform a risk assessment because rounding would
equal to the normal HMT concentration.

4. Case Study
4.1. Analysis Conditions

In this study, we based our analysis on the method of Nagashima and Yoneyama [5], as-
suming that the HMT is discharged into the river channel around the Great Yodo River Weir.

We assumed the case that would cause the most damage. We used the case with the
highest tsunami height reaching near the mouth of the Yodo River in the “Study Group on
the Great Earthquake Model of the Nankai Trough” [34] as the tsunami fault model. We
assumed a river flow rate of 62 m3/s, which is the minimum amount during a drought
when the tsunami is expected to have an impact farther upstream [5]. At this case, the river
water flow over the Great Yodo River Weir is 0 m3/s, and the river water flows into its
tributary (the Okawa River) [5].

We set the river water as freshwater with 0 mg/L salinity for the upstream and
downstream sides of the Great Yodo River Weir. The water temperature was set to 15 ◦C,
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assuming a period of low water temperature when chemical decomposition in water and
volatilization from the water surface to the atmosphere are unlikely to occur [15].

We set the molecular diffusivity of HMT to be 2.0 × 10−9 m2/s as in Nagashima
and Yoneyama [5]. In this study, we did not consider the decomposition or reaction of
HMT in water, its volatilization into the atmosphere, or its adsorption on suspended
solids in water. Therefore, the analysis in this study focuses only on the estimation of
the maximum concentration that appears in a short time. During calculation, only the
increased concentration due to the outflow was added, not the background concentration
of HMT (3.0 × 10−3 mg/L) [33]. However, the total concentration of HMT was taken into
account at the stage of risk assessment (see Sections 5.2.2 and 5.3.2).

4.2. Case Setting

We considered the following two cases. Figure 4 shows a 1 km mesh map of the storage
amount of HMT at non-notified facilities around the Yodo River in Osaka Prefecture and
the outflow area and location of the water intake for each case.

Case 1
We assessed the impact of an HMT discharge on the right bank downstream of the

Great Yodo River Weir.
During drought when the weir is completely closed, the flow rate over the weir is

zero. Therefore, if HMT is discharged downstream of the weir, it will not be diluted by the
flow of the river, and the high concentration of HMT will stay just below the weir until the
tsunami arrives.

Case 2
We assessed the impact of an HMT discharge on the water surface with a domestic

water intake at the Kunijima WTP.
In both cases, the outflow duration was set to 60 s, and the analysis was conducted

until 18,000 s (5 h) after the earthquake.

5. Results and Discussion
5.1. Examination of Water Flow at the Yodo River Weir, HMT Storage Amount, and
Outflow Amount

The estimated water flow at the location of the Yodo River weir is shown in Figure 3.
In this figure, a plus value means the flow direction, and a minus value means the run-up
direction in the river. The figure depicts that the first tsunami attack was approximately
11,000 (s).
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Figure 3. Overflow rate at the Yodo River weir.

The non-notified transfers of HMT in Osaka Prefecture were estimated to be 9.2 × 104 kg
from Equation (5), which is about 19 times higher than the notified transfers of HMT in Os-
aka Prefecture. The emission factor is 0.021 from Equation (6). The handling amount of non-
notified facilities in Osaka Prefecture calculated from Equation (7) was 4.3 × 106 kg, which is
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also about 19 times larger than that of notified facilities. Table 3 shows the estimation results
of the non-notified storage amount in the target mesh area using Equations (8) and (9).

Table 3. Estimation results of the non-notified storage amount of HMT by mesh.

Mesh Number Number of Employees [24] Non-Notified Storage Amount (kg) PL

1 3.9 × 104 1.8 × 104 26.9
2 1.2 × 104 5.6 × 103 25.9
3 3.9 × 104 1.8 × 104 25.9
4 1.4 × 104 6.7 × 103 23.3

The outflow amount is the sum of the estimated non-notified storage amount of HMT
in the four meshes surrounded by the white dotted lines in Figure 4, which is 4.9 × 104 kg.
The PL was larger than 15, indicating a large liquefaction potential for all meshes (Table 2).
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Figure 4 shows the mesh map of the non-notified storage amount, and Table 4 shows
the discharge points for case settings 1 and 2 determined from the storage amount per
mesh (Figure 4).

Table 4. Case setting.

Case Outflow Discharge Point * Distance from Discharge Point to
Water Intakes [m]

1 The total storage amount of a 2 km × 2 km
mesh with both high storage amount and

liquefaction risk along the Yodo River

Right bank downstream of the
Great Yodo River Weir

300 (industrial)
1000 (domestic)

2 Water surface just above the
domestic water intake

750 (industrial)
0 (domestic)

* The details of the points are shown in Figure 4.
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The storage amount was especially large in the area southwest of the Great Yodo
River Weir, with an estimated storage amount of over 30 t per mesh. These areas had large
storage amount due to their large population and large number of employees (Figure 4).
Given that the Kunijima WTP intakes are all located on the right bank of the Yodo River,
a large amount of HMT is expected to flow into the right bank intake when discharged
from the right bank mesh into the Yodo River. Therefore, as a scenario, we assumed that
all the HMT stored in the outflow area on the right bank (as shown in Figure 4) would be
discharged into the right bank of the Yodo River in 60 s due to an earthquake.

In Case 1, we assumed that the HMT is discharged from the right bank downstream
of the Great Yodo River Weir. Given that no water flows over the weir during drought, if
the HMT flows out at this point, it will not be diluted, and high concentrations of HMT
will remain until the tsunami arrives. In Case 2, we set the outflow point assuming that the
outflow would be in the vicinity of the domestic water intake.

5.2. Case 1
5.2.1. Behavior and Concentration Distribution of HMT

Figure 5a–d show the concentration distribution of HMT in the Yodo River channel.
Comparing Figure 5a–d, we can see that the highest HMT concentration is located around
the outflow point immediately after the outflow. Figure 5b shows the diagram just before
the arrival of the tsunami, which is diffused about 350 m downstream by the undertow of
the tsunami. Figure 5c shows the diagram when HMT is pushed upstream the most by the
tsunami, and the concentration is about 2.0 × 10−4 mg/L from the Great Yodo River Weir
to about 400 m upstream. In Figure 5d, the HMT concentration is less than 1.0 × 10−4 mg/L
up to 1 km upstream from the Great Yodo River Weir. Therefore, the HMT concentrations
during the tsunami will be diluted by the tsunami flow, and the concentrations will be
smaller than those in the case of normal river flow.
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Figure 6 shows the changes in HMT concentrations at the industrial and domestic
intakes of Kunijima WTP in Case 1. In Case 1, the tsunami reached the Great Yodo River
Weir about 2 h and 30 min after the earthquake, causing a temporary increase in HMT
concentration at the intake of the industrial water of Kunijima WTP. The maximum HMT
concentration at the industrial intake was 1.3 × 10−4 mg/L. After the HMT concentration at
the industrial intake started to increase, it remained above 1.0 × 10−5 mg/L for 2.2 × 103 s.
The concentration at the domestic intake was lower than the estimated concentration in
river water under normal conditions (3.0 × 10−3 mg/L) [33].
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5.2.2. Risk Assessment of HMT to Riverine Aquatic Organisms and Humans

The risk score for aquatic organisms around the industrial water intake was calculated
as the duration of the concentration of one-tenth of the maximum HMT concentration
(1.3 × 10−5 mg/L). The duration of the concentration was 1889 s, from 9986 s to 11,874 s.
The risk score was calculated by adding the estimated background HMT concentration
under normal conditions (3.0 × 10−3 mg/L), which was 3.2 × 10−7, indicating that the risk
to aquatic organisms was not a concern even near the industrial water intake where the
highest concentration was estimated.

Osaka City (2020) does not provide a specific concentration of HMT or FA for the
water quality standard of industrial water supply [35], and the toxicity of dermal HMT
administration has not been evaluated in animals. However, the results of patch tests
on workers exposed to HMT have shown positive reactions [36]. In addition, allergic
contact dermatitis, such as erythema, papules, pruritus, urticaria, and edema, as well as
asthma, allergic rhinitis, and allergic conjunctivitis, have been reported, suggesting that
HMT is a sensitizing substance to humans [36]. According to the results of this study, the
maximum HMT concentration in river water at the industrial water intake is smaller than
the estimated concentration in river water under normal conditions (3.0 × 10−3 mg/L) [33].
Thus, the risk of handling industrial water was not considered to be a concern.

Given that the HMT concentration at the domestic water intake was less than 5.0 ×
10−5 mg/L, we did not assess the risk of FA produced.
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5.3. Case 2
5.3.1. Behavior and Concentration Distribution of HMT

Figure 7a–d show the concentration distribution of HMT in the Yodo River channel.
Comparing Figure 7a–d, the HMT concentration around the outflow point immediately
after the outflow was the highest, with a maximum concentration of 2.5 × 10−1 mg/L. In
addition, Figure 7b shows the figure just before the arrival of the tsunami, where about
3.0 × 10−4 mg/L of HMT flowed 400 m in the downstream direction. Figure 7c shows the
figure when the HMT is pushed upstream the most by the tsunami, and the concentration is
about 2.0 × 10−4 mg/L from the outflow point to 100 m upstream. In Figure 7d, the water
is flowing down the river again, and the HMT concentration is less than 2.0 × 10−4 mg/L.
When the tsunami ran up the river, the HMT concentration was about 1/1000 of that
immediately after the spill.
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(a) immediately after the outflow (300 s), (b) before the arrival of the tsunami (8700 s), (c) after being diffused by the tsunami
(11,100 s), and (d) after returning to normal flow (18,000 s).

Figure 8a,b shows time change of HMT concentration near the intakes of Kunijima
WTP in Case 2. In Case 2, high concentrations of HMT flowed downstream immediately
after the outflow, and we can see high concentrations at the domestic water intake. The
maximum HMT concentration at the domestic water intake was 8.5 × 10−2 mg/L. The
reason for the multiple peaks immediately after the outflow is that the outflow of HMT
continued for 60 s and had the same speed; thus, minor fluctuations were observed
in the values until steady state was reached. However, the concentration temporarily
increased again when the tsunami arrived. The maximum HMT concentration observed
in the tsunami run-up was about 2.4 × 10−4 mg/L, which was less than one hundredth
of the concentration immediately after the outflow. At the industrial water intake, the
concentration was less than 5.0 × 10−5 mg/L.
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5.3.2. Risk Assessment of HMT to Riverine Aquatic Organisms and Humans

From the time of the earthquake until 18,000 s after the earthquake, the HMT concen-
tration at the industrial water intake of the Kunijima WTP was less than 5.0 × 10−5 mg/L.
Therefore, we concluded that the handling risk of industrial water intake was not a concern.
We calculated the risk score for aquatic organisms in the vicinity of the domestic water
intake based on the duration of the peak concentration. The peak was 78 s, from 12 s to
90 s, when the concentration was greater than 8.5 × 10−3 mg/L, which is one tenth of the
maximum HMT concentration. Even if the risk score is calculated by adding the estimated
HMT concentration under normal conditions (3.0 × 10−3 mg/L), it is still 2.3 × 10−7. Thus,
the risk to aquatic organisms is not at a level of concern.

The amount of HMT taken up at the domestic water intake during the period of the
same peak as the risk score was 2.6 × 104 mg, including the background HMT. On this basis,
the CFA was estimated to be 5.3 × 10−2 mg/L. This concentration is on the same order of
magnitude as the water quality standard value for FA of 8.0 × 10−2 mg/L [30]. However,
the water quality standard value is based on the chronic toxicity value for rats [32], whereas
the FA concentration in this study was of the same order as the standard value for 78 s.
Thus, the risk is not considered to be of concern. In the case of Osaka Prefecture (where
the liquefaction risk is high, facilities are located near the water intake, and the storage
amount is relatively large), the entire amount of HMT is discharged into the water surface
directly above the domestic water intake during an earthquake. This case is based on the
assumption that the maximum HMT concentration is taken at the intake. However, there is
room for further consideration in the evaluation method because the initial concentration
right after the outflow depends on the amount of diluted water at the input. In this case,
the risk of FAs being produced exceeding the water quality standards was not at a level
of concern.

6. Conclusions

In this study, tsunami attack model and chemical risk assessment method were com-
bined, and we estimated HMT released from the facilities in the Yodo River caused by a
tremor of the Nankai Trough earthquake. We estimated the risk of acute toxicity for human
and aquatic organisms, which would be caused by HMT outflow under the maximum
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risk in the input condition, that is, the outflow of the entire amount of HMT stored in a
2 km × 2 km area would occur during a drought.

We compared cases where the discharge was downstream of the intake (Case 1) and
near the intake and reached the intake before the tsunami run-up (Case 2).

In Case 1, where the highest HMT concentration was estimated, the risk score was
3.2 × 10−7 during the peak period, which is considered to be of low concern for aquatic
organisms. At the domestic water intake, the increased HMT concentration due to the
discharge was lower than 5.0 × 10−5 mg/L. Thus, the concern for aquatic organisms was
similarly low, and we did not assess the risk of FA that was taken up.

In Case 2, at the industrial water intake, the HMT concentration increased by the
discharge was lower than 5.0 × 10−5 mg/L. Thus, there was no risk from the intake.
The Risk score for the duration of the peak at the domestic water intake was 2.3 × 10−7,
suggesting no risk to aquatic organisms even in the vicinity of the outflow point, where the
highest HMT concentration is expected. Furthermore, the concentration of FA that can be
produced by chlorination at the WTP after domestic water intake is 5.3 × 10−2 mg/L, which
does not exceed the water quality standard value (8.0 × 10−2 mg/L). In the calculation
process of the concentrations, the difference between the volume of HMT for the input
and that of the water mass of the river would result in underestimation, which requires
further study.

The risk assessment model developed in this study can be applied to other chemical
outflow scenarios in Nankai Trough earthquake by changing the parameters related to
physical properties, outflow volume, and location and can quantitatively assess the risk
arising from each event.
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