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Abstract: The loss of nitrogen and phosphate fertilizers in agricultural runoff is a global envi-
ronmental problem, attracting worldwide attention. In the last decades, the constructed wetland
has been increasingly used for mitigating the loss of nitrogen and phosphate from agricultural
runoff, while the substrate, plants, and wetland structure design remain far from clearly under-
stood. In this paper, the optimum substrates and plant species were identified by reviewing their
treatment capacity from the related studies. Specifically, the top three suitable substrates are gravel,
zeolite, and slag. In terms of the plant species, emergent plants are the most widely used in the
constructed wetlands. Eleocharis dulcis, Typha orientalis, and Scirpus validus are the top three opti-
mum emergent plant species. Submerged plants (Hydrilla verticillata, Ceratophyllum demersum, and
Vallisneria natans), free-floating plants (Eichhornia crassipes and Lemna minor), and floating-leaved
plants (Nymphaea tetragona and Trapa bispinosa) are also promoted. Moreover, the site selection meth-
ods for constructed wetland were put forward. Because the existing research results have not reached
an agreement on the controversial issue, more studies are still needed to draw a clear conclusion of
effective structure design of constructed wetlands. This review has provided some recommendations
for substrate, plant species, and site selections for the constructed wetlands to reduce nutrients from
agricultural runoff.

Keywords: substrates; plants; site selection; construction

1. Nitrogen and Phosphorus in Agricultural Runoff

Nitrogen (N) and phosphorus (P) are the main pollutants in agricultural runoff,
contributing to the diffused pollution. Hazards caused by N and P residues in agricultural
runoff have posed serious threats to the sustainable development of many countries,
particularly the developing countries [1,2]. Excessive N and P from agricultural runoff can
pollute the environment [3,4], cause algae bloom [5,6], disturb fisheries and tourism [7–9],
and threaten water safety [10–12].

It is very challenging to consistently reduce the use of N and P fertilizers to protect
the agroecosystems [13,14] because world grain production still largely depends on N and
P fertilizers [15,16]. Farmers often overuse fertilizers to pursue high crop yield [17,18].
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Therefore, fertilizer use has been increasing continuously at a growth rate of around
5% per year [19]. However, only 30–35% of N and 10–20% of P are absorbed by crops,
and the majorities are lost along with the agricultural runoff, exacerbating the diffused
pollution [20]. Currently, excessive N and P retention in the aquatic environment has
become a worldwide environmental problem [21], and it is vital and urgent to find an
effective solution to mitigate N and P from agricultural runoff.

Some countries have started to take some measures to limit the total consumption
of chemical fertilizers to mitigate the environmental damages [22,23], but pollution from
overuse fertilizers has been a chronic problem [24]. Because of the characteristics of
diffusion, N and P in agricultural runoff need to be treated in large areas and specific
locations [25]. Ecological engineering is one of the main approaches to control agricultural
diffused pollution, including source control and process weakening [26]. Compared with
source control, process weakening is a more widely used methodology. Process weakening
refers to the process of intercepting pollutants and recycling by constructing ecological
facilities. Constructed wetland is one of the widely used approaches for process weakening.
Therefore, it is of great significance to review comprehensively the documents related to
the removal of N and P using the constructed wetland.

The main aims of this review are to (i) identify the optimum substrates and plant
species of constructed wetland for mitigating N and P from agricultural runoff, (ii) elucidate
the site selection of constructed wetland based on Geographic Information System (GIS)
technology, and (iii) sort out the relations of wetland constructional structure and the
mitigating performances of N and P in agricultural runoff. In addition to the perspectives
of economic feasibility, regional suitability, and environmental sustainability, this article
reviewed the substrates and plant performances, technical methods of site selection, and
structural designs to mitigate N and P from agricultural runoff. The abstract picture of the
review is shown in Figure 1.

Figure 1. Graphical abstract of constructed wetland mitigating N and P from agricultural runoff.

2. Optimum Substrates and Plants of Constructed Wetland to Mitigate Nitrogen
and Phosphorus

Constructed wetland is an artificial coordinated system composed of substrate, plant,
microorganism, and soil [27]. In the last decade, it has played an increasingly important
role in the treatment of urban domestic sewage, industrial sewage, and agricultural wastew-
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ater [28–30]. In general, constructed wetlands can be divided into three types—surface flow,
subsurface flow, and vertical flow constructed wetlands [28,31]. Purification capacities of
different types of constructed wetland vary greatly, especially for the specific pollutants.
Pollutant removal by the constructed wetland involves several processes, including sedi-
mentation, photolysis, hydrolysis, microbial degradation, adsorption, degradation, and
plant uptake. However, it is difficult to separate the individual process clearly because it is
a complex process [32] and also due to its interactions with other pollutants [33].

In terms of N and P removal, N removal is related to the processes of ammonification,
nitrification, plant absorption, and ammonia adsorption [34], and P removal is achieved
through the combination of substrates, plants, and microorganisms [28]. For the ecological
benefits of constructed wetlands, scholars have conducted many studies, but most studies
are theoretical studies at the laboratory, posing a shortcoming in the practical application.

2.1. Substrates’ Identification for Mitigating Nitrogen and Phosphorus from Agricultural Runoff

Substrate plays an important role in the mitigation of N and P. The commonly used
substrates are generally divided into three types—natural materials, industrial by-products,
and manufactured products.

Various substrates have been used in the constructed wetlands, including gravel,
clay, marble, bentonite, limestone, shale, wollastonite, zeolite, sand, calcite, vermiculite,
dolomite, shell, peat, maerl, activated carbon, compost, ceramsite, lightweight aggregate,
calcium silicate hydrate, coal cinder, fly ash, slag, hollow brick crumbs, wollastonite tailing,
alum sludge, Moleanos limestone, oil palm shell, and others. Table 1 summarizes the
characteristics, including both advantages and disadvantages, of ever-used substrates.

Table 1. Characteristics of substrates used in the constructed wetland.

Type of substrates Characteristics References

Natural material

Gravel Widespread and common; good adsorption; low cost; phosphorus and nitrate removal is
not good. [35]

Clay Plentiful and cheap; excellent effect, green environmental protection; high adsorption of
organic compounds; low removal rate of COD, NH3-N, and TN. [36]

Marble High removal ability of phosphorus and ammonia nitrogen; economic accessibility;
susceptible to weathering and dissolution. [37]

Bentonite Natural adsorbents with strong adsorption capacity; good coordination with the
environment. [38]

Shale
High removal ability of phosphorus and ammonia; good overall performance; derived
from the lower limestone group of the Carboniferous system; high content of acid; higher
specific surface area.

[39]

Apatite material Lasting effect on the adoption of P; high economic cost of quality apatite. [40]

Zeolite
High displacement ability to target ions; high porosity; high surface ratio; provide the
environment for wetland system microorganisms; super to gravel in removing
biodegradable-organics and nitrides; environmental damage caused by zeolite mining.

[41]

Sand Widely distributed; low adsorption capacity and weak cation exchange capacity. [42]
Calcite Efficient removal of phosphorus and ammonium nitrogen; inefficient removal of nitrate. [43]

Vermiculite Good adsorption and ion exchange performance; selective adsorption for ammonia
nitrogen; high ammonia nitrogen saturation adsorption capacity; low price. [44]

Dolomite Composed of calcium carbonate and magnesium carbonate; high phosphorus removal
rate; low adsorption capacity and cation exchange capacity. [45]

Shell A sea-culture by-product or agriculture by-product; waste reuse; good adsorption
capacity of P and N. [46]

Bauxite Excellent source of Al and Fe oxides; strong p-combining ability; high efficient adsorption
capacity for toxic metals; high alkalinity treated water. [47]

Rice straw Agricultural waste; carbon source removal of nitrogen compounds; low cost; no
secondary pollution; availability limited to harvest time. [48]

Peat Complex material composition; large amount; strong phosphorus adsorption capacity;
lack of research on species. [49]
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Table 1. Cont.

Type of substrates Characteristics References

Artificial products

Activated carbon Environmentally friendly; high cost and low adsorbing effect; complex
production process. [50]

Biochar
Wide source of raw materials; realize recycling; high porosity, high CES, and high surface
area ratio; high efficiency of organic matter and nutrient removal; emission reduction
N2O; high energy consumption of pyrolysis.

[51]

Compost Low investment; simple technology; recycling of resources; not environmental-friendly. [52]

Ceramsite
Made of coal fly ash, sediment, etc., with drying and heating; high mechanical strength
and developed microporous structures; re-utilization of waste; efficient in N and P
removal; high preparation cost.

[48]

Lightweight aggregate Hydraulic performance; light and handy; high cost; low intensity. [53]
Calcium silicate
hydrate

Porous; Large specific surface area; strong surface activity; lightweight; poor compatibility
with organic polymers. [54]

Polyethylene plastic High porosity; no in-depth study. [55]

Industrial by-product

Fly ash
Solid waste discharged from coal-fired boilers such as coal-fired power plants; plentiful
and cheap; large specific surface area; high activation energy, abundant pore structure,
and strong adsorption; not environmental-friendly.

[56]

Slag
Made from smelting industry waste; low cost; abundant raw material; recycling waste;
high P adsorption capacity of arc furnace steel slag; different physicochemical properties
of different slags.

[57]

Hollow brick crumbs Active nitrogen and phosphorus adsorb abilities; construction waste; utilization of waste. [50]
Wollastonite tailing Efficient phosphorus removal; general adsorbability. [58]

Alum sludge A waste of waterworks; abundant; waste reuse; high transportation cost; high efficiency
of phosphorus removal; low efficiency of nitrogen removal. [59]

Moleanos limestone Low cost and good usability; good performance in phosphorus removal. [60]

Wood mulch
By-products of wood industry; waste reuse; abundant;
Organic carbon source of heterotrophic denitrification;
Strong ability to remove nitrogen compounds; no practical application.

[61]

Anthracite High-density coal; long-lasting and efficient phosphorus removal effect; mining anthracite
destroying the environment. [62]

Calcite
Crushed stone and brick mixed; good for the growth of plants and microorganisms;
ability to absorb phosphorus; facilitate microorganisms and plant growth; effective in
P adsorption.

[63]

PHBV and PLA blend A polymer biodegraded by microorganisms; improving nitrogen removal ability as a
carbon source. [64]

Red mud A waste of aluminum industry; abundant; cheap; reuses waste; strong alkalinity; having
ability to remove phosphorus. [65]

For the selection of substrates used in the constructed wetland, cost and availability
of raw materials should be given priority, especially in economically deprived areas [66].
Considering the cost and availability of raw materials, gravel, bentonite, shale, zeolite,
sand, shell, rice straw, fly ash, hollow brick crumbs, and slag are suitable for mitigating N
and P in agricultural runoff. To select the substrates with low cost and wide availability,
the N and P removal capacities of 10 substrates were reviewed in detail.

Gravel is a commonly used filler substrate, with physical adsorption to achieve
pollutant removal [67]. By artificial aeration, the constructed wetland with gravel can
remove 58% of total nitrogen (TN) [67]. As a wetland substrate, bentonite can remove
66% of total phosphorus (TP) [68], showing good application prospects. In two con-
structed wetlands with shale as substrate and reed as plant, around 98–100% of P was
removed in 10-month cycling time [69]. In the constructed wetland with reeds as the
plant, ammonia–nitrogen was removed nearly entirely; in the constructed wetland with-
out reeds, the removal rate was only 40–75% [69]. The zeolite, a natural ore, has a large
adsorption rate for N and P due to its internal composition and spatial structure [70].
Specifically, zeolite-filters can enhance the removal ability of constructed wetland, with the
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removal percentages of organic matter, N and P being 95%, 80%, and 70%, respectively [71].
When the zeolite was used as the hybrid substrate, the removal rate of TN reached
80.3–92.1% [72]. In constructed wetland with tall sheep grass as the plant, sand-soil
was better than coarse sand soil in removing N [73]. In the wetland with sand as substrate,
the removal capacity of P was 42~91% [74]. Shells from both aquaculture and agriculture
were proved to be effective removal of N and P [46]. For instance, palm kernel shells were
effective in improving the N removal efficiency in constructed wetlands, compared with
the counterpart with sand as the substrate [75]. Rice straw is also an effective material
to remove nitrogenous compounds. In the floating constructed wetlands with rice straw
as the substrate, the average removal rates of TN, ammonium nitrogen (NH4

+-N), and
nitrate–nitrogen (NO3

−-N) were 78.2%, 81.2%, 62.1%, respectively [48]. Hollow brick
crumbs and fly ash are also superior in the removal of TN and TP. The constructed wetland
with hollow brick crumbs mixed with fly ash can cut down 89% of NH4+-N and 81% of
TP [28,76]. Slag was effective for the treatment of wastewater in constructed wetlands,
and the removal rate of P was maintained at a high level [57,77,78]. Slag was 20% higher
than gravel in respect of adsorption capacity of TP and the experiments witnessed a quick
absorption saturation of TP by slag. A two-year experiment indicates similar N removal
rates for slag and gravel [79].

The above review indicates that some substrates have been examined in the field, while
others remain theoretical tests in the laboratory. The combination of substrates can enhance
the removal performance of N and P. Considering the removal performance, availability,
cost, toxicity, and recyclability [80], the top three optimum substrates for mitigating N and
P from agricultural runoff are gravel, zeolite and, slag (including coal slag).

2.2. Plants Identification for Mitigating Nitrogen and Phosphorus from Agricultural Runoff

The plants commonly used in constructed wetlands can be divided into emergent
plants, submerged plants, and free-floating plants [28]. More than 150 kinds of macro-
phytes have been used in constructed wetlands, but a systematic study in the field is still
lacking [81]. Emergent plants have been identified as the most widely used plants in con-
structed wetlands [81] to treat agricultural runoff [82]. The plant species in wetlands play
an important role in purifying agricultural runoff, which has been investigated in many
countries, including China, Australia, Finland, Ireland, Italy, Korea, Norway, Singapore,
Poland, Spain, Sweden, Ukraine, UK, and the USA (Table 2).

Table 2. Constructed wetland plants for the purification of N and P from agricultural runoff.

Vegetation Country References

Phragmites sp. (australis)
Australia, China, Poland,
Spain, UK, Ukraine, France,
Slovenia

[83–88]

Phragmites sp. (japonica) Korea [89]
Phragmites sp. (karka) Singapore [90]
Scirpus sp. (californicus) USA [91]
Scirpus sp. (bulrush) USA [91]
Scirpus sp. (validus) Australia [84]
Scirpus sp. (sylvaticus) Finland [92]
Scirpus sp. (mucronatus) Singapore [90]
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Table 2. Cont.

Vegetation Country References

Typha sp. (latifolia) Finland, Norway, Poland,
Sweden, UK, USA, France [86–88,92–95]

Typha domingensis USA [91]
Typha sp. (Cattail) USA [91]
Typha sp. (angustifolia) Singapore, Korea [89,90]
Iris sp. (pseudacorus) Finland, Norway, UK [88,92,93]
Phalaris sp. (arundinaces) Finland, Norway [92,93]
Alisma sp. (plantago-aquatica) Finland [92]
Filipendula sp. (ulmaria) Finland [92]
Juncus sp. (conglomeratus) Finland [92]
Carex sp. (riparia) UK [88]
Juncus sp. (effuses) Korea [89]
Miscanthus sp. (sinensis) Korea [89]
Eleocharis sp. (dulcis) Singapore [90]
Lepironia sp. (articulate) Singapore [90]
Sparganium sp. (erectum) Norway, UK [88,93]
Zizania sp. (caduciflora) China, Korea [85,89]
Glyceria maxima Poland [87]
Typha orientalis China, Korea [85,89]
Cyperus malaccensis China [85]
Juncus effusus Korea [89]

Table 2 indicates that Typha spp., Phragmites spp. and Scirpus spp. are the most
frequently used plants in the purification of agricultural runoff. Similarly, Vymazal et al. [96]
found that Phragmites spp. (Poaceae), Scirpus spp. (Cyperaceae), Typha spp. (Typhaceae), Juncus
spp. (Juncaceae), Iris spp. (Iridaceae), and Eleocharis spp. (Spikerush) are the most commonly
used emergent plants in constructed wetlands. Compared with submerged plants and
floating plants, emergent plants are more frequently used in constructed wetlands [81].
Hence, priority was given to the review of emergent plants for mitigating N and P in
constructed wetlands.

The wetland planted with Phragmites australis can remove 60.74% TN, 93.07% NH4-N,
and 47.76% TP in an overall hydraulic residence time of four months [97]. Wetlands planted
with Phragmites sp. and Typha sp. can remove TN by 79% and 77%, PO4-P by 21% and
14%, within the overall hydraulic residence periods of 21 h and 27 h, respectively [98].
Similarly, Typha angustifolia was investigated in a pilot-scale constructed wetland, removing
80% NH4

+-N and 40% NO3
−-N [99]. In the wetland planted with Typha orientalis, the

TN, NH4-N, and TP removal efficiencies were 60.94%, 88.27%, and 63.21%, respectively,
in an overall hydraulic residence time of four months [97]. Comparatively, the NO3

−-N,
NH4

+-N, and P removal efficiencies of Scirpus grossus and Typha angustifolia were 52.1%,
59.4%, and 11.2%, and 51.6%, 56.5%, and 9.1%, respectively [100]. The wetland planted
with Scirpus mucronatus witnessed the obvious reductions of TN (66.86%), NH4-N (89.35%),
and TP (66.53%) in an overall hydraulic residence time of four months [97]. Similarly,
remediation efficiency of Juncus effuses was examined, showing that Juncus plants fixed
N and P around 28.5 g/m2 and 1.69 g/m2 [101]. Moreover, storm-water experienced
a constant decline in TN (15.7%) and TP (47.7%) after 13 months of reaction in Juncus
effuses planted wetlands [102]. Wetlands planted with Iris pseudacorus testified drops of
TN, NH4-N, and TP by 39.47%, 84.65%, and 26.28%, respectively, after an overall hydraulic
residence time of four months [97]. Likewise, Eleocharis dulcis also showed the removal of
TN and TP by 64.4% and 24.4%, respectively [103]. Apart from the most common emergent
plants reviewed above, researchers also recommended Eleocharis dulcis, Typha angustifolia,
and Scirpus mucronatus as the optimum plant species in surface flow wetlands [103].

In addition to single plant species, the combination of different plant species, substrate,
climate, and management of constructed wetland all can affect the performance of N and P
removals [104]. For example, the combination of Typha spp. with Phragmites spp. witnessed
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a gradual increase in the removal efficiency of nutrients such as N and P in constructed
wetlands, which confirms the enhanced purification capacity by the combined plants [105].
The combination of plants with substrates can also improve the removal efficiency. Iris
pseudacorus planted wetlands with fine gravel removed 49.4% TN and those with coarse
gravel removed 31.4% TN, while unplanted wetlands were less (43.4% and 26.8%) [106].

Some researchers have compared the removal efficiencies of N and P between different
species in the same conditions. For example, Sim et al. [103] ranked four common emergent
plant species on the P removal (Eleocharis dulcis > Scirpus mucronatus > Typha angustifolia >
Phragmites karka) and TN removal (Eleocharis dulcis > Typha angustifolia > Scirpus mucronatus
> Phragmites karka). In addition, Wu et al. [97] compared the removal efficiencies of TN,
NH4

+-N, and TP by Typha orientalis, Iris pseudacorus, Phragmites australis, and Scirpus validus.
The four plants demonstrated the order of TP removal abilities (Typha orientalis > Scirpus
validus > Phragmites australis > Iris pseudacorus).

By reviewing the above comparative studies, these commonly used emergent plants
can be ranked on the mitigation of N and P in the following order: Eleocharis dulcis > Typha
orientalis > Scirpus validus > Phragmites australis > Iris pseudacorus.

Compared with emergent plants, submerged plants and floating plants are less promi-
nent in the constructed wetland. Among the submerged plants, Ceratophyllum demersum,
Hydrilla verticillata, Myriophyllum verticillatum, Vallisneria natans, and Potamogeton crispus are
commonly used in constructed wetland [28]. Ceratophyllum demersum played an important
role in the removal of TN and TP, with 27.5% and 86.19%, respectively [107]. Hydrilla verti-
cillata dominated constructed wetland experienced a fall in TP concentration from 126 µg/L
to 106 µg/L [108]. Myriophyllum verticillatum, a plant in surface flow constructed wetlands,
displayed the outstanding removal ability of TP by roughly 70.1% [77]. Potamogeton Crispus
with Hydrilla verticillata in the wetland can remove organic N and organic P by 81.28% and
83.54%, respectively [109]. Despite no study stating clearly the purification capacity of
Vallisneria natans, it was verified that P absorption by Vallisneria natans can be promoted
by organic acids [110]. Some studies have compared the N and P removal performance of
different submerged plants in the same conditions. The highest removal efficiency of N and
P occurred in Hydrilla verticillata, followed by Ceratophyllum demersum, Vallisneria natans,
Myriophyllum spicatum, and Potamogeton maackianus, in laboratory simulated hydrostatic
conditions [111]. Therefore, the top optimum three submerged plants in the constructed
wetland are Hydrilla verticillata, Ceratophyllum demersum, and Vallisneria natans.

Different from emergent plant and submerged plants, floating plants are divided
into free-floating species and floating-leaved species. The commonly used free-floating
plants in constructed wetlands include Lemna minor, Eichhornia crassipes, Salvinia natans, and
Hyrocharis dubia. Meanwhile, floating-leaved species in constructed wetlands are mainly
Nymphoides peltata, Trapa bispinosa, Nymphaea tetragona, and Marsilea quadrifolia [28].

Applying Lemna minor in constructed wetlands, the removal rates of TN and TP
exceeded 50% and 90% [112]. Moreover, Najas minor’s removal efficiencies on TN and TP
were 55% and 93% [113]. Eichhornia crassipes and Salvinia natans used for the wastewater
treatment can remove 53.0% TN and 56.6% TP [114]. A 100-day reaction indicated that
Eichhornia crassipe removed 57% TN and 52% TP, while Hydrocharis dubia eliminated less
(46% TN and 45% TP) [115]. Moreover, Nymphaea tetragona [116], Trapa bispinosa, and
Marsilea quadrifolia were used as constructed wetland plants to remove N and P [117]. Some
scholars have compared the removal performances of floating plants. For the free-floating
plants, the highest N and P removal performances occurred in Eichhornia, followed by Lemna,
Salvinia [118]. Eichhornia is also far superior to Hydrocharis dubia in the view of removing
N and P [119]. For the floating-leaved plants, Greenway [120] ranked the plants on the N
and P removal (Lemna minor > Nymphaea tetragona > Nymphoides peltate). Moreover, Marion
and Paillisson [121] sorted three species on the N and P removal performance in the order:
Nymphaea tetragona > Trapa bispinosa > Nymphoides peltata.



Water 2021, 13, 476 8 of 16

Based on the above comparative studies, it can be drawn that Eichhornia crassipes and
Lemna minor are the optimum free-floating plants, and Nymphaea tetragona and Trapa bispinosa
are the optimum floating-leaved plants for mitigating N and P from agricultural runoff.

Among the aquatic plants mentioned above, emergent plants are most widely used
in constructed wetlands [81]. Phragmites spp. is the most frequent species in Asia and
Europe [82]. Scirpus spp., including lacustris, validus, and californicus, are commonly used
in North America, New Zealand, and Australia [28]. Juncus and Eleocharis spp. are utilized
commonly in Europe, North America, and Asia [82]. Iris spp. is mainly used in tropical
and subtropical regions [122].

Overall, to mitigate N and P in the agricultural runoff by constructed wetland, in
terms of emergent plants, Eleocharis dulcis, Typha orientalis, and Scirpus validus are the top
three optimum species; as regards to submerged plants, Hydrilla verticillata, Ceratophyllum
demersum, and Vallisneria natans are advocated; for the free-floating plants, Eichhornia cras-
sipes, and Lemna minor are appropriate; and regarding the floating-leaved plants, Nymphaea
tetragona and Trapa bispinosa are the promoted species.

3. Site Selection of Constructed Wetland to Mitigate Nitrogen and Phosphorus in
Agricultural Runoff

During the process of selecting sites for constructed wetlands, multiple factors should
be considered comprehensively, completely, and correctly [123]. From the perspective
of practical operation, a series of maps containing the topographic map, geological map,
aerial image map, soil survey map, and hydrological map should be compiled for the
comprehensive selection of wetland sites [124]. Many studies have demonstrated the
importance of climate, rainfall, geography, surface water, soil, biology, and socio-economic
factors [125–127].

Natural factors play an important role in the site selection of constructed wetland,
especially the elemental items—(i) closing to pollution sources as possible as it can, (ii)
minimizing earthwork by maximizing natural slope, and (iii) estimating watershed area to
control wastewater retention time. Apart from natural factors, the protection of human and
natural resources is an assignable part, requiring keeping away from nature reserves, his-
torical and cultural reserves, archaeological control areas, planned and construction areas,
and others. The Geographic Information System (GIS) is one of the important technologies
for geographic exploration, which has been widely used in land administration, traffic
planning, environmental analysis, and planning [128]. At present, it has been increasingly
used in the site selection of public service facilities such as hospitals and schools. Further-
more, GIS combined with remote sensing (RS) has been used to map the isolated wetlands
in a karst landscape [129]. Moreover, GIS has been used for site evaluation of constructed
wetlands and restored wetlands in the agricultural catchment [130]. Combining the existing
research and the characteristics of constructed wetlands, this paper reviewed and sorted
out the technical method using GIS for the site selection of constructed wetlands to mitigate
N and P from agricultural runoff (Figure 2).
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Figure 2. Technical route of constructed wetland site selection using Geographical Information
System (GIS).

4. Structural Design of Constructed Wetland to Mitigate Nitrogen and Phosphorus in
Agricultural Runoff

The design parameters of constructed wetlands consist of wetland substrate, plants,
water depth, aspect ratios, and others [131]. These substantial factors are possibly expressed
in various forms, for instance, water depth, hydraulic load and retention time, and feeding
mode of the inlet [132].

Fillers play a key role in the construction of wetlands. Various substrates have been
elaborated in Section 2.1. When the substrate species were selected, attention will be paid
to the particle size of the filler, which has a significant effect on the removal efficiency [133].
The comparison of four types of wetland beds with different particle sizes in the same
environmental conditions indicates that the smaller the particle size, the better the P re-
moval efficiency [134]. Specifically, the maximum P adsorption capacities of three filter
media with the sizes of 4–10 mm, 2–4 mm, 0.1–2 mm were 7.7 mg/kg, 11.6 mg/kg, and
22.5 mg/kg, respectively, indicating that the adsorption capacity increased with the de-
crease of media sizes [135].

In addition to particle size, the substrates with additives, for example, iron oxides, iron
hydroxides, Lu oxides, Lu hydroxides, and calcium, can increase the P removal efficiency
of constructed wetlands [135–137]. The comparison of adding Ca, Mg, Al, and Fe to a
filter medium indicated that Ca had the maximum enhancement of nutrient removal [135].
Similarly, a study on the oyster shell as the additive indicated that adding 2% of oyster shell
could increase the adsorption capacity of P from 23 mg/kg to 36 mg/kg, and adsorption
capacity rose until the oyster shell concentration came over 60% [135].

Plants are an important part of constructed wetlands, and different species have been
reviewed in Section 2.2. Notably, priority should be given to local plants to prevent the
invasion of alien species [138].

Water depth is an important factor affecting the water load and oxygen permeabil-
ity [139]. A comparison in the denitrification effects of subsurface flow horizontal wetlands
between depths of 0.27 m and 0.50 m indicated that the wetlands at depth of 0.27 m worked
better than those of 0.50 m [140].

In addition, the ratio of length to width of wetland bed can affect the removal of N
and P [141]. The ratio can affect the linear velocity of water flow, causing head loss [142].
Therefore, the ratio should not be too large. On the other hand, some scholars suggest that
the ratio of length to width had a limited effect on N and P removal [140]. However, the
existing research related to the ratio of length to width has not yet reached an agreement.
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Therefore, the impact of the length-width ratio of constructed wetland on its performance
is far from clearly understood and further study is still necessary.

5. Concluding Remarks and Future Outlooks

Constructed wetland plays an irreplaceable role in the mitigation of N and P, espe-
cially in the economically deprived areas. Despite many studies on the related topics
of constructed wetland, most of the studies only focused on the interaction of a certain
substance with the performance of constructed wetland under artificially designed ex-
perimental conditions, suggesting the limited practical application of the findings. This
review summarized the principles, influencing factors, site selection, and structural design
of constructed wetlands in the treatment of N and P from agricultural runoff, which has a
strong application.

This review suggests that the top three recommended substrates for mitigating N and
P from agricultural runoff are gravel, zeolite, and slag (including coal slag). Emergent
plants are the most widely used plants in constructed wetlands, and Eleocharis dulcis,
Typha orientalis, and Scirpus validus have better performance in mitigating N and P from
agricultural runoff. Similarly, Hydrilla verticillata, Ceratophyllum demersum, and Vallisneria
natans are the recommended submerged plants; Eichhornia crassipes and Lemna minor are the
advocated free-floating plants; and Nymphaea tetragona and Trapa bispinosa are the promoted
floating-leaved plants. Moreover, the selection of wetland site was summarized, and the
technical route of site selection using GIS was put forward. However, the optimal structure
design of constructed wetland has not been obtained, due to the lack of systematic research
on the wetland structure design.

Despite the progress of the studies on the constructed wetlands, research gaps still
exist in our understanding of constructed wetlands for mitigating N and P in agricultural
runoff. In addition, climate change will further influence the N and P diffusion pollution
from agricultural runoff [143]. To fill these research gaps, the following issues deserve
more attention:

(1) It is important to conduct more comparative studies on substrates’ performance under
the same external conditions in different climatic regions.

(2) The current plant selection focused on the effects of plant species on the mitigation
of N and P, ignoring the complexity of plants’ contribution to the performance con-
structed wetland. It is essential to study the competitive effects between different
plant species and the interactions between plants and substrates.

(3) Because the relationship between constructed wetland structure and performance is
still debated, more studies on the effect of wetland structure on its performance of
removing N and P are largely needed.
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15. Kvakić, M.; Pellerin, S.; Ciais, P.; Achat, D.L.; Augusto, L.; Denoroy, P.; Gerber, J.S.; Goll, D.; Mollier, A.; Mueller, N.D.; et al.

Quantifying the limitation to world cereal production due to soil phosphorus status. Glob. Biogeochem. Cycles 2018, 32, 143–157.
[CrossRef]

16. Dawson, C.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus.
Food Policy 2011, 36, S14–S22. [CrossRef]

17. Cole, J.C.; Smith, M.W.; Penn, C.J.; Cheary, B.S.; Conaghan, K.J. Nitrogen, phosphorus, calcium, and magnesium applied individ-
ually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient
concentration and content of field-grown tomato plants. Sci. Hortic. 2016, 211, 420–430. [CrossRef]

18. Yang, H.; Shen, X.; Lai, L.; Huang, X.; Zhou, Y. Spatio-temporal variations of health costs caused by chemical fertilizer utilization
in China from 1990 to 2012. Sustainability 2017, 9, 1505. [CrossRef]

19. Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural production and greenhouse gas emissions from world regions—The major
trends over 40 years. Glob. Environ. Chang. 2016, 37, 43–55. [CrossRef]

20. Yang, H. China’s soil plan needs strong support. Nature 2016, 536, 375. [CrossRef]
21. García, J.; Ortiz, A.; Álvarez, E.; Belohlav, V.; García-Galán, M.J.; Díez-Montero, R.; Álvarez, J.A.; Uggetti, E. Nutrient removal

from agricultural run-off in demonstrative full scale tubular photobioreactors for microalgae growth. Ecol. Eng. 2018, 120, 513–521.
[CrossRef]

22. Yang, H. China must continue the momentum of green law. Nat. Cell Biol. 2014, 509, 535. [CrossRef]
23. Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. Enforcement key to China’s environment. Science 2015, 347, 834–835. [CrossRef]
24. Gregoire, C.; Elsaesser, D.; Huguenot, D.; Lange, J.; Lebeau, T.; Merli, A.; Mose, R.; Passeport, E.; Payraudeau, S.; Schuetz, T.; et al.

Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems—A review. In Climate Change,
Intercropping, Pest Control and Beneficial Microorganisms; Springer International Publishing: Dordrecht, The Netherlands, 2009; pp.
293–338.

25. Kumwimba, M.N.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of non-point source
pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management
strategies, and future directions. Sci. Total Environ. 2018, 639, 742–759. [CrossRef]

26. Balana, B.B.; Vinten, A.; Slee, B. A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD:
Key issues, methods, and applications. Ecol. Econ. 2011, 70, 1021–1031. [CrossRef]

27. Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [CrossRef]
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