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Abstract: Freshwaters in China are affected by point and non-point sources of pollution. The Wujiang
District (Suzhou City, China) has a long history of canals, rivers, and lakes that are currently facing
various water quality issues. In this study, the water quality of four rivers and a lake in Wujiang was
assessed to quantify pollution and explore its causes. Seventy-five monthly samples were collected
from these water bodies (five locations/samples per area) from August to October 2020 and were
compared with nine control samples collected from a water protection area. Fifteen physicochemical,
microbiological, and molecular–microbiological parameters were analyzed, including nutrients,
total and fecal coliforms, and fecal markers. Significant monthly variation was observed for most
parameters at all areas. Total phosphorus, phosphates, total nitrogen, ammonium–nitrogen, and fecal
coliforms mostly exceeded the acceptable limits set by the Chinese Ministry of Environmental
Protection. The LiPuDang Lake and the WuFangGang River were the most degraded areas. The
studied parameters were correlated with urban, agricultural, industrial, and other major land use
patterns. The results suggest that fecal contamination and nutrients, associated with certain land use
practices, are the primary pollution factors in the Wujiang District. Detailed water quality monitoring
and targeted management strategies are necessary to control pollution in Wujiang’s watersheds.

Keywords: water quality; nutrients; fecal contaminations; lakes and rivers; land use; Wujiang district

1. Introduction

Freshwater pollution from natural processes and human activities is a major threat for
aquatic ecosystems and human health [1]. Freshwater quality assessments are routinely
carried out worldwide to ensure clean water for humans (drinking water supply and other
domestic uses) and aquatic organisms [2]. Identifying sources of pollution and applying
appropriate management strategies is crucial to minimize potential water-quality induced
risks for public health [3]. Pollutants affecting freshwater quality are introduced into
freshwaters by point and non-point sources [4]. Point sources are clearly identifiable,
e.g., urban sewage or industrial wastewater discharges. In contrast, non-point sources
cannot be easily located, e.g., storm-water runoff and sewage overflows, or runoffs from
urban or agricultural land uses [5]. Runoffs from these sources may lead to excessive
nutrient concentrations, and leaks of toxic chemicals and pathogenic microorganisms. Thus,
accurate freshwater monitoring is required to facilitate appropriate management strategies
identifying pollution and potential outbreaks of waterborne diseases [6]. In addition,
freshwater quality assessments enable the identification of key factors that cause spatio-
temporal water quality variation, facilitating the improvement and ultimate optimization
of a watershed’s freshwater quality [7].
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Watersheds are important for biodiversity and also for providing habitat for aquatic
species, many of them with high social and economic values [8]. The structure and connec-
tivity of watersheds have been proven to be highly influenced by the local hydrological
cycle and biogeochemical processes in the watershed [9]. Additionally, watersheds act
like sponges for cities, reducing the risks associated with flooding [10]. Watersheds and
urban water systems in China face various environmental and human health challenges.
Freshwaters, such as lakes, rivers, and canals, are affected by point and non-point pollution
sources. Wujiang is located at the Taihu Lake basin, bordering the Jiangsu and Zhejiang
provinces [11], and belongs to the Yangtze River Delta, which is the core urban area in
China with large density of population, high levels of urbanization, and rapid economic
development [12]. Due to the rapid urbanization of the region, freshwater systems are
affected by various sources such as domestic sewage, industrial wastewater, and agricul-
tural runoff, which result in poor water quality and ecosystem health [6,13]. Pollutants
in urban freshwater systems depend not only on the level of urbanization, but also on
the land use and management strategies such as policies for restructuring and upgrading
industries and commercial businesses [14]. The complex interactions between natural
processes and anthropogenic activities make the tracing of pollutants difficult, compro-
mising the restoration of polluted waterbodies [13]. Therefore, identifying the sources of
pollution and assessing the extent of water pollution in Wujiang’s waterbodies are crucial
steps to develop appropriate management strategies to minimize potential public health
risks [7]. Apart from traditional physicochemical analyses, microbiological parameters
such as fecal coliform (or thermotolerant coliform) counts can be used as indicators of
fecal contaminations [15]. However, the detection and quantification of fecal coliforms
alone does not indicate the source of fecal contamination, which is important for applying
appropriate public health measures [16]. Microbial source tracking (MST) can provide
information on the host-associated (human, animal, or avian) fecal contaminations in
an affected environment [4].

In Wujiang, dynamic freshwater monitoring methods have not been established; there-
fore, manual monitoring and analysis of water quality are required for further improve-
ment and the sustainable management of Wujiang’s waterbodies. Yet, detailed analyses of
the water quality in rivers and lakes across Wujiang and assessments of sources of fecal
contamination are limited. Vadde et al. [6] applied a combination of physicochemical,
microbiological, and statistical methods to evaluate the pollution level in Tiaoxi River,
a major inflow river of Taihu Lake, and identified locations of increased pollution risk.
Kogure et al. [11] assessed the water status of Taipu River in Wujiang using chemical
analysis and bioassays and compared their results. Further analysis is required to assess
water pollution, especially in low flow rates caused by the region’s flat relief.

The purpose of this study was to assess the water quality of a lake (LiPuDang, LPD)
and four rivers (XiDaGang, XDG; WuFangGang, WFG; DeDeTang, DDT; ZiXingTang,
ZXT) of the Wujiang District, Suzhou, China. LPD is an important source for agriculture
and aquaculture, while all four rivers are water sources for agriculture, large and small
scale animal farms, and industrial processing units. All these activities deteriorate the
watershed’s water quality. The ZXT River connects Jiangsu and Zhejiang provinces, and is
a part of the inter-provincial shipping routes. It also flows through the towns of Taoyuan
and Wuzhen, which are world-famous historical towns with high touristic value [17].
To assess the water quality of these waterbodies, we used a comprehensive combination
of monthly physicochemical, microbiological, molecular and land use analyses, aiming
to suggest targeted measures for the sustainable management of Wujiang’s freshwater
resources, which could be also applied in other regions with similar characteristics.

2. Materials and Methods
2.1. Study Area and Sampling Locations

The study was carried out in the Wujiang District, Suzhou, China. Water samples
were collected from four rivers namely the XiDaGang River (XDG), the WuFangGang River
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(WFG), the DaDeTang River (DDT), the ZiXingTag River (ZXT) and one lake, the LiPuDang
Lake (LPD) (Figure 1). At each river or the lake, monthly water samples were collected
from five locations from August to October 2020. Water samples were also collected from
three locations in the water protection area of the Taihu Lake and used as control samples
(Figure 1; Table S1) resulting in a total of 3 months × 5 locations × 5 areas + 3 months ×
3 control locations = 84 samples.

Figure 1. Maps of study areas in Wujiang District, Suzhou, China (A); Maps of sampling locations in
the lake and rivers in Wujiang District (B).

2.2. Land Use Analysis

Land use maps were prepared by using the ArcGIS 10.3 and ArcGIS Pro Geographical
Information Systems (Environmental Systems Research Institute Inc, Redlands, CA, USA).
On the basis of Google Earth China Service Map of Suzhou city, we created one layer of
buffer zone with radius of 1000 m around all sampling locations of the four rivers and
a lake. By referencing the official land use maps of Wujiang District of Suzhou as well as
Google maps covering the sample areas, we digitized the detailed land use types within
these buffer zones in accordance with the National Code for Classification of Urban Land
Use and Planning Standards of Development Land (GB50137-200), and calculated the land
use composition within the areas of buffer zones.

2.3. Field Sampling and Sample Processing

The surface water samples were collected in sterile 5 L polypropylene containers
for molecular microbiological analyses and kept at ambient temperature until they were
brought to the laboratory. The samples for nutrients and the microbiological parameters
were transported to the laboratory in ice. The parameters including air temperature,
water temperature, pH and conductivity were measured on site. The water samples for
physicochemical and microbiological analyses were processed within 8 h after collection.
The samples for molecular microbiological analyses were filtered through 0.45 µm pore
size mixed cellulose ester (MCE) membrane filters (Millipore, UK) in triplicate to collect the
microorganisms for DNA extraction. The filters were stored at −25 ◦C prior to extraction.

2.4. Physicochemical Analyses

The following physicochemical analyses of water were carried out in this study. Air
temperature (AT), water temperature (WT), electrical conductivity (EC), and pH were
measured onsite using a portable EC/TDS TEMP Waterproof Combo Meter (C-100, HM
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Digital Inc, Culver City, CA, USA) and a portable pH meter, respectively. Total nitrogen
(TN), total phosphorous (TP), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), am-
monium nitrogen (NH4-N), phosphate (PO4-P), total organic carbon (TOC), dissolved
oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and
potassium permanganate (KMnO4) were measured by chemical testing methods following
the China National Standards (Table S2). In addition, chlorophyll a (Chl a) was measured
using 90% acetone by spectrophotometry, following the methods of the American Public
Health Association [18].

2.5. Microbiological Analyses

The total coliforms (TC) and fecal coliforms (FC) or thermotolerant coliforms counts
were determined to assess the microbiological quality of the water as reported in our
previous studies [6,19]. In brief, 100 µL samples of serially diluted water samples were
plated on HarlequinTM E. coli/coliform medium (LabM, Heywood, UK) [20], and the plates
were incubated at 37 ◦C for 24 h. The E. coli and coliforms were counted to determine
the average number of total colony forming units (cfu) per mL of water. The FC in the
water samples were carried out by the membrane filtration method suggested by American
Public Health Association [18]. After dilution, 2 mL of water samples were filtered through
IsoporeTM 0.45 µm polycarbonate membrane filters (Millipore, Cork, Ireland), after which
the membrane filters were placed on mFC agar medium (HopeBio, Qingdao, China). The
agar plates were incubated in water bath at 44.5 ◦C for 24 h, and the colonies with blue
shades were counted to determine the number of FC colony forming units (cfu) per 100 mL.

2.6. Quantification of Host-Specific Fecal Markers

The Genomic DNA was extracted from membrane filters using the PowerSoil DNA
isolation kit (Mo Bio, Carlsbad, CA, USA) using the manufacturers protocol. The extracted
DNA was quantified using NanoDrop ND 2000C spectrophotometer (Thermo Scientific,
Marietta, OH, USA) and stored at −25 ◦C until they were used for quantitative PCR (qPCR).
The qPCR assays were performed to assess the universal (BacUni) and human (HF183
Taqman), avian (AV4143), and swine (Pig-2-Bac) [21–24] associated fecal markers. All the
qPCR reactions were run in triplicates, and the final reaction volume used was 20 µL. The
primers and probes, the methods used to determine the accuracy and efficiency of the
standard curves, are described in Vadde et al. [16]. The qPCR standard curve for each essay
was generated using a seven-point 10-fold serial diluted plasmid DNA. Samples collected
at three time points (August, September, and October 2020) from each location were used
to assess the detection frequency and the abundance of host-specific fecal markers.

2.7. Statistical Analyses

Statistical analyses were applied in R.v4.0.3 [25]. A one-way analysis of variance
(ANOVA) was used to analyze potential differences between samples or between sampling
periods (months) based on each sampled parameter. A two-way ANOVA was performed
to determine whether the interactions of study area and month (time) had significant influ-
ences on each physicochemical and microbiological parameter. The correlation between
physicochemical parameters, microbiological parameters, and land use percentages was
analyzed using Spearman’s non-parametric rank correlation test. Samples collected from
five study areas in three months were pooled for this analysis. A principal component
analysis (PCA) was applied to find the most influential factors of the dataset and reduce
the complexity of a data dimensions with a minimum loss of the actual information [26].
The PCA was carried out using physicochemical, microbiological, and molecular data
(host-specific fecal markers), except for DO and TC, for which data were not available from
control locations on one occasion, and therefore, we removed these data from the PCA. The
data were log-transformed and all analyses were applied in R v4.03. The Kaiser–Meyer–
Olkin (KMO) and Bartlett’s tests were applied on the data set prior to the PCA to ensure
that PCA results well represent the effects of factors.
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3. Results and Discussions
3.1. Physicochemical Results and Variation

Air temperature (AT) varied significantly between months at all sampling areas
(p < 0.01; Tables S3–S8). Warmer temperatures were observed in August (31–35.8 ◦C) com-
pared to September (24.4–35.0 ◦C) and October (20.7–24.4 ◦C). AT did not vary between
sampling locations at each area. However, significant AT differences (p < 0.001) were ob-
served between the sampling areas (Table S9). WT varied significantly between the months
and the sampling areas (p < 0.001; Tables S3–S9). Warmer WT were observed in August
(31–35.0 ◦C) compared to September (24.4–27.8 ◦C) and October (20.4–24.5 ◦C). The WT
varied significantly between months sampled and the sampling areas; however, the values
did not vary significantly between sampling locations in each river/lake (Tables S3–S7).
The variations in temperatures between sampling areas in the same month might be caused
by varied time on the sampling day.

The pH values ranged from 8.14 to 8.94 in LPD lake, and the values did not show any
significant difference between the months sampled or between locations (Table S3). The pH
values observed for the LPD lake were higher than those of values observed for the rivers,
XDG (7.7–8.24), WFG (7.49–7.96), DDT (7.2–7.36), and ZXT (7.2–7.7) (Tables S4–S7). The
pH varied significantly between the months and the sampling areas (Table S9). However,
the values observed in all the sampling locations were within the guideline value (pH 6–9)
of Ministry of Environmental Protection (MEP) of China for Surface water Class III. As
reported in a previous study [27], the natural water bodies require a pH range of 6.5–8 to
support the aquatic life.

EC varied significantly between months (p < 0.01; Tables S3–S7) at LPD, ranging from
371 to 429 µS/cm, and XDG, ranging from 305 to 430 µS/cm, but no significant monthly
variation was observed (p > 0.05) for WFG (260–464 µS/cm) or DDT (310–521 µS/cm and
ZXT (288–626 µS/cm). EC varied significantly between sampling areas and the months
(p < 0.001); however, the interaction between both were insignificant (p > 0.05, Table S9).
All EC values were below the pollution risk limits (1000 µS/cm) set by the international
standards [27] and fell within the common range reported for the freshwater environments
(10 to 1000 µS/cm) [28]. The conductivity in streams and rivers is affected by factors such
as the presence of clay soils, bedrocks, and inorganic dissolved solids. The chloride, nitrate,
and phosphate ions from the sewage or wastewater discharge were reported to increase
the conductivity in water [29].

The DO, BOD, COD, and KMnO4 values highly varied between the sampling areas.
DO, COD, and KMnO4 also changed with the month of sampling. Significant interactions
between months and areas were observed in COD (p < 0.05) and KMnO4 (p < 0.001)
(Figure 2 and Table S9). No significant interactions were observed between five sampling
locations in any of the rivers or lake (p > 0.05, Tables S3–S7). DO levels varied significantly
between months in LPD, XDG, and DDT (p < 0.05, Tables S3, S4 and S6). Among the samples
collected in three months, DO levels did not meet the MEP guideline values (≥5 mg/L) in
at least one of the samples from LPD (4.19–8.92 mg/L, Table S3), XDG (4.07–8.55 mg/L,
Table S4), and ZXT (4.69–8.51, Table S7). In WFG, DO ranged from 3.63 to 7.31 mg/L,
with the average DO levels in September and October lower than the MEP guideline
value (Table S5). In DDT, DO ranged from 4.26 to 7.58 mg/L. The average DO level in
DDT in September was lower than the MEP guideline value (Table S6). The DO is the
amount of oxygen that is present in water. Low levels of oxygen (hypoxia) or no oxygen
levels (anoxia) can occur when excess organic materials, such as large algal blooms, are
decomposed by microorganisms.
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Figure 2. The variation in dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD),
and potassium permanganate (KMnO4) values observed in different sampling locations and months. The individual value
for each parameter (A) and boxplots (B) with minimum and maximum values (whiskers), median value (line within each
box), and quartile interval (box) are shown.

BOD5 varied significantly between sampling locations only in XDG and ZXT. No
significant variations between months were observed for this parameter. BOD5 levels
were high in LPD (ranged from 1.6 to 27.2 mg/L), especially in August and September,
when the average levels were above the acceptable limit set by MEP (≤4 mg/L, Table S3).
Some sampling locations showed extremely high levels of BOD5 up to 27.2 mg/L. The
mean BOD5 levels were in acceptable limit in all four rivers, namely XDG (1.4–3.5 mg/L),
WFG (1.3–4.9 mg/L), DDT (1.2–4.1 mg/L), and ZXT (1.1–3.7 mg/L). Only a few samples
had exceeded BOD5 levels. Similar to BOD, the COD levels were also extremely high in
LPD lake (10–49 mg/L) in August and September as compared to the MEP guidelines
(≤20 mg/L). In all of the sampled rivers, exceeded COD levels were observed in at least
two out of the three months. In terms of KMnO4, significant variations between months
sampled were observed in LPD (p < 0.01), XDG (p < 0.001), and DDT (p < 0.001). The
average levels in LPD (5.5–8 mg/L) were higher than the MEP guideline value (≤20 mg/L)
in August and September. The mean KMnO4 levels were in the acceptable limit in all the
rivers including XDG (2.2–4.6 mg/L), WFG (3.2–6.8 mg/L), DDT (3.3–5.7 mg/L), and ZXT
(3.6–5.6 mg/L). In the aquatic systems, the oxygen demands results from the oxidation of
organic matter or the chemical reactions. BOD5 measures the oxygen consumed by the
microorganisms while breaking down the organic matter in a five day period, whereas
COD measures the amount of oxygen required for oxidation of total organic matter in
a given sample [30], and KMNO4 is used as an oxidizing agent in the COD measurement.
These measures indicate the organic matter input in the water body, for which the primary
sources include industrial wastewater and domestic sewage.
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In general, varied TN levels were associated with both study areas and the months of
sampling (p < 0.01 for both, Table S9). No significant interactions were observed between
areas and months in terms of their relationships with TN (p > 0.05). For an individual
lake or river, the TN values varied between the sampling locations and the values were
higher than the MEP acceptable limit (≤1 mg/L) in all the rivers/lake and nearly in
all the months sampled (Figure 3, Tables S3–S7). The values were in the range for LPD
(1.58–3.56 mg/L), XDG (0.92–2.78 mg/L), WFG (0.77–7.28 mg/L), DDT (0.73–2.07 mg/L),
and ZXT (0.55–1.97 mg/L) during the sampling period, and the values significantly varied
between months in three rivers (XDG, DDT, and ZXT). In general, the sources for high
levels of TN in water bodies include runoff from agriculture, animal manure, discharge
from wastewater treatment plants, and sewer leakage [31]. The NO3-N values varied
significantly with study areas and months (p < 0.001), with no interactions in between
the two factors (p > 0.05, Table S9). NO2-N varied with study areas (p < 0.001) but not
with months sampled (p > 0.05); however, the interaction between NO2-N and the study
areas was dependent on the months (Table S9). The NO3-N and NO2-N levels were within
the MEP acceptable limits (≤10 mg/L and ≤0.15 mg/L, respectively) in all the locations,
and significant monthly variations in both parameters were observed in LPD, WFG, and
ZXT (Figure 3, Tables S3–S7). NO3-N varied significantly with months in XDG (p < 0.01)
and DDT (p < 0.001), while NO2-N varied with sampling locations in DDT (p < 0.01).
Furthermore, NH4-N changed significantly with different areas (p < 0.001) and months
(p < 0.05), but the interactions were not interdependent (p > 0.05, Table S9). The NH4-N
levels were within acceptable limit (≤1 mg/L) in LPD and DDT; whereas, in the other
three rivers, the values were outside the acceptable limit at least in two months during
the sampling period (Figure 4, Tables S3–S7). Particularly in WFG, the NH4-N levels were
extremely high (0.54–6.82 mg/L) in October, which indicates the high pollution, particularly
fresh wastewater entry into the river. All the above parameters were either in the range of
the acceptable limit, or well below the acceptable limit or not detectable (ND) in the control
locations (Figure 3 and Table S8).

TP varied significantly between months (p < 0.05) but not study areas (p > 0.05, Table S9).
The interaction between TP and months was dependent on areas (p < 0.05, Table S9). PO4-P,
on the other hand, varied with both areas and months (p < 0.05 for both), and the interactions
were significantly dependent on each other (p < 0.01, Tables S3–S7). Within each study area,
no significant variation was observed in either TP or PO4-P between sampling locations.
Nonetheless, significant changes in TP between months were observed in LPD, DDT, and
ZXT (p < 0.001 for all), and significant changes in PO4-P between months were observed
in LPD (p < 0.001) and DDT (p < 0.01). The TP (Figure 3) and PO4-P (Figure 4) levels were
higher than acceptable limits (≤0.2 mg/L and ≤0.02 mg/L, respectively) at least in two
months in LPD (TP ranged 0.02–0.23 mg/L, PO4-P ranged ND-0.18 mg/L). Among all the
study areas, PO4-P levels were above the acceptable limit in XDG (0.06–0.15 mg/), WFG
(0.06–0.53 mg/L), and DDT (0.06–0.15 mg/L) (Tables S4–S6). Previous studies showed
that run-off from fertilized cropland, animal manure, and domestic sewage entry are likely
causes for the increased level of TP in aquatic systems [6,24].

The TOC and the Chl a levels (Figure 4) varied significantly with both study areas
and months (p < 0.001, Table S9). There were also significant interactions between the two
relationships (p < 0.001). Within study areas, TOC varied significantly between sampling
months (Tables S3–S7) in LPD (ranged 6.4–10.5 mg/L, p < 0.001), XDG (3.9–6.6 mg/L,
p < 0.001), WFG (3.6–6.1 mg/L, p < 0.001), and ZXT (4.1–5.2 mg/L, p < 0.05). TOC also
changed significantly with sampling locations in DDT (4.3–5.2 mg/L, p < 0.05) and ZXT
(p < 0.05). Similar to other parameters including COD, BOD, and KMnO4, TOC levels
were higher in LPD compared to all four rivers. The Chl a level was extremely high
in LPD lake (103.9–502.2 ug/L, Table S3) as compared to the four rivers (ranged from
3.46 to 63.2 ug/L, Tables S4–S7). In LPD and XDG, significant monthly variation in Chl a
was observed (Figure 4, Tables S3 and S4) and the values correlate well with the temperature
and nutrients (Figure 8). The high Chl a, indicate the high algal or phytoplankton growth
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in the lake/rivers. Warmer temperature and high amount of TP and other nutrients can
contribute to the high algal growth [22,25].

Figure 3. The variation in total nitrogen (TN), total phosphorus (TP), nitrate-N (NO3-N), and nitrite-N (NO2-N) values
observed in different sampling locations and months. The individual value for each parameter (A) and boxplots (B) with
minimum and maximum values (whiskers), median value (line within each box), and quartile interval (box) are shown.

3.2. Microbiological Results and Variation

TC varied significantly between months (Tables S3–S7) at LPD (p < 0.01), ranging from
1.48 to 3.36 log cfu/mL, and at WFG (p < 0.05), ranging from 1.78 to 3.74 CFU/mL (Figure 5).
No significant monthly variation was observed (p > 0.05) for DDT (1.18–3.60 log CFU/mL),
ZXT (0.0–3.30 log CFU/mL), and XDG (0.00–2.71). TC varied significantly between sam-
pling locations at XDG (p < 0.05) but not at LPD, WFG, DDT, and ZXT. Significant TC
differences (p < 0.001) were observed among the sampling areas; however, the monthly
variations and the interactions between both months and sampling areas were insignificant
(Table S9). TC are common environmental microorganisms found in soils, water, plant
materials, effluents, and also in the feces of warm blooded animals. Therefore, detection
of only TC does not indicate the fecal contaminations; hence, FC or E.coli are used as
indicators of fecal contaminations [32,33].
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Figure 4. The variation in phosphate (PO4-P), ammonia-N (NH4-N), total organic carbon (TOC), and Chlorophyll a (Chl a)
values observed in different sampling locations and months. The individual value for each parameter (A) and boxplots (B)
with minimum and maximum values (whiskers), median value (line within each box), and quartile interval (box) are shown.

The FC values varied significantly with the study areas (p < 0.001), and also sam-
pling time (p < 0.001). No significant interactions were observed between months
and areas (Table S9). The FC counts were in the range of 2.40–3.24 (LPD), 2.40–3.87
(XDG), 3.57–5.10 (WFG), 1.88–4.40 (DDT), and 2.40–4.27 (ZXT) log cfu/100 mL (Figure 5,
Tables S3–S7). Significant changes between months were observed in XDG (p < 0.01)
and DDT (p < 0.05). Notably high levels of FC counts were observed in WFG and DDT
as compared to other sampling locations and control (Table S8). FC counts are used as
guidelines for microbial water quality to assess fecal contamination. Although FC does
not always correlate with the presence of pathogenic bacteria, a high concentration of
FC indicates the impaired water quality and increased health risk associated with the
presence of pathogenic microorganisms [34].

3.3. Molecular Microbiological Results and Variation

Fecal contamination in water systems is one of the major sources of pollution and
exceeded nutrients. High concentrations of fecal pollution increase the probability of the
existence of pathogenic bacteria. In all the four rivers (XDG, WFG, DDT, and ZXT) and the
lake (LPD) investigated in this study, the FC was found exceeding the MEP of China class
III standard in the water samples collected in at least one out of three months sampled.
Class III standard refers to surface water in natural reserve areas centralized for source
of drinking water, but mainly applicable for industrial and agricultural water. Therefore,
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it is particularly important to trace the host-specific source of the fecal pollution and take
actions to prevent further damage to the water quality. Conventionally, FC and fecal
indicator bacteria (FIB) are used as indicators; however, they were reported to grow and
reproduce in non-fecal environments [35]. As a result, it was suggested that instead of
using FC or FIB as the standards for fecal contamination, host-specific microbial source
tracking (MST) genetic markers could be used. MST markers have considerably better
specificity and sensitivity compared to traditional microbiological methods. Furthermore,
MST markers can be host-specific, which means they indicate the abundance of fecal
contamination from particular sources [36]. Quantification of these genetic markers now
plays an important role in water pollution studies and environmental management. Studies
have been conducted worldwide in different types of water bodies (rivers, lakes, and marine
environments) using various host-specific markers to quantify the fecal contaminations.
The Bacteroides 16S rDNA proved to be effective markers to quantify the host-specific
fecal contaminations [6,21,22,24,37–41]. In our previous studies, we have successfully
applied host-specific gene markers and high throughput sequencing methods to assess
fecal contaminations in Taihu watershed [16,39].
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In the current study, we have successfully performed assays for four MST markers,
targeting universal (BacUni) [21], human-associated (HF183 Taq) [18], avian associated
(AV4143) [20], and swine-associated (Pig-2-Bac) Bacteroidales [19] markers. Both BacUni
and HF183 Taq fecal markers were detected in high numbers at all sampling locations
in rivers and lake, indicating that fecal contamination was high at all sampling locations
investigated (Figure 6). BacUni and HF183 markers varied significantly (p < 0.001) between
the sampling areas and the months sampled. The abundance of BacUni and HF183 showed
the same trend, while AV4143 and Pig-2-Bac were negative in most of the samples and
the levels were below the detectable limit (data not shown). The results indicated that
human feces may be the main component of total fecal pollution in the investigated
watersheds. There is a large number of possible causes of high fecal marker levels, for
example, non-standardized or self-constructed domestic water drainage pipes, direct
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discharge of domestic wastewater, effluents from sewage treatment plants, industrial
discharges, and non-point source pollution from farmlands [42]. As Wujiang has many
rivers, canals, and lakes, the fecal pollution may flow from other rivers or lakes when
precipitation is high or water levels are high [43].

Figure 6. Variations of host-specific fecal MST markers in different locations. (a) BacUni. (b) HF183. Sampling locations 1–5,
LPD lake; 6–10, XDG river; 11–15, WFG river; 16–20, DDT river; 21–25, ZXT river; C1-C3, Control locations.

Compared with our previous study at Tiaoxi River, the universal Bacteroidales, BacUni
marker in current 25 sampling locations was slightly higher than the previous results, while
the human-specific HF183 marker quantified was similar to the previous test results [16].
In October, both markers were detected in significantly high levels in WFG (sampling
locations 11–15) as compared to other two months studied. During the sampling, significant
bad odors was also observed at WFG (especially at sampling location 14), and we found
out that some of the nearby factories were reopened for operation recently and the waste
was directly discharged into the river. Combining the observations and land use patterns,
the industries might be the major source for changes in the water quality and also fecal
contaminations. On the other hand, it was not clear why one of the sampling locations in
LPD (location 3) had high abundance of fecal markers in August. However, the surrounding
land use (a large number of farmlands, a higher proportion of low-density residential areas
than other nearby sampling sites) suggest that increase in the proportion of human-specific
fecal pollution in the samples in that particular month in addition to industrial production,
high temperature, and possible non-standardized domestic water drainage in the nearby
villages in the same month may be one of the influencing factors. In addition, in October,
there was also an increase in universal and human-associated fecal markers in all sampling
sites of ZXT. Direct discharge of wastewater from a factory was observed near the sampling
site 21, which did not occur in the first two months. Since it is not clear whether the
effluent meets the standards, the pollution source of the site cannot be directly identified
as factory discharge. However, the results were correlated with the physicochemical and
microbiological properties. A large amount of black and oily matter also appeared on water
surface at sampling location 21, resulting in the continuous occurrence of oily substances in
the water surface between the sampling locations 21 and 22. This phenomenon happened
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at the same time with elevated levels of physicochemical parameters and might be related
to the sudden rise of fecal pollution in ZXT.

3.4. Relationship between Water Quality and Land Use

The land use pattern of each sampling location in 1000 m radius is shown in Figure 7
and the details of each land use classification are shown in Table S10. The surrounding
environment of each sampling areas is shown in Figures S1–S5. In LPD lake, the river and
lake were the major land use (>50%), and the lake is surrounded by a significant proportion
of agricultural land (11–13%) and low-density residential land (5.7% to 8%) (Figure 7).
Many aquaculture farms and small-scale private animal farms were located around this
lake. The canals/small rivers connected to this lake also appeared to be highly polluted.
It is possible that pollution from aquaculture farms, small rivers, and private animal farms
enter the lake, which causes the pollution to this lake.

The dominant land uses around XDG River are river/lake (43.32–58.77%), agricultural
land (19.58–26.67%), followed by low density residential land (5.01–16.68%) (Figure 7).
A few percentages of Class A/B/C industrial land and municipal utilities were also found
to be present around this river. The main causes for pollution in this river could be run-
off from the agricultural land and discharges from the residential areas, industries, and
municipal utilities.

The land use patterns around WFG River are mainly Class A industrial land (38.7–59.3%),
followed by public green land (12.66–32.32%) and road (11.06–12.75%) (Figure 7). A large part
of the medium-density residential land (2.17–5.58%) and municipal utilities (0.02–2.69%) are
also distributed around this river. Compared with other rivers and lakes, the surroundings
of WFG are more urbanized. In October, the discharge of wastewater observed from factory
during sampling, combined with the dramatic increase of the pollution indices in this month,
indicate that the exceeding pollutant sources may came from improper discharge of raw
sewage/wastewater, industrial emissions, and a small amount of domestic sewage, since
there were limited places available for residence or livestock.

The main land types around the DDT River are agricultural land (8.04~22.92%), public
green land (36.71~50.55%), low-density residential land (7.27~11.25%), class B industrial
land (0.49~16.81%) and rivers and lakes (6.25~12.07%). As shown in Figure 7, land use
composition of DDT is complex compared to other rivers and lakes. DDT had lower DO;
it may be due to the increase of residential land and industrial land. In this case, industrial
and residential discharge may reduce the oxygen dissolved in the water. In addition,
agricultural land contributes a lot to DDT land use. Therefore, agriculture runoff may
lead to the increased phosphorus content and FC in water sample observed in this river.
Therefore, agricultural runoff and industrial and residential discharge were probably the
main causes of pollution in this river.

The main land use near ZXT river is public green land (6.47~26.1%), agricultural land
(8.04~22.92%), and low-density residential land (7.27~11.25%). Therefore, the main sources
for increased nutrients such as TP and NH4-N may be from the fertilization of lawns, farm
runoff, animal feces, and domestic sewage near the river that can led to eutrophication of
the water bodies.

3.5. Correlation Between Parameters

Spearman’s correlation analysis show significant correlations among the physicochem-
ical and microbiological parameters and certain land use patterns (Figure 8; Figures S6–S8).
EC was positively correlated with nitrogen-related pollution (TN, NO3-N), percentages
of class B industrial land, municipal utilities, and low-density residential land. It was
negatively correlated with percentages of class A industrial land and road. DO was found
negatively correlated with a number of the pollution factors including nitrogen-related
parameters (TN, NH4-N, NO3-N) and fecal markers (FC, BacUni, HF183). High percentages
of low-density residential land, river, and lake were found positively related with high DO.
The parameters KMnO4, TOC, COD, and BOD were positively correlated with each other.
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This group of parameters represented reductive pollutions and organic matter in water.
There was a trend that these parameters increased with AT, WT, pH, and also percentages
of river and lake around the sampling locations.

Figure 7. Land use pattern of 1 Km buffer zone around 25 sampling locations. Different colors indicate corresponding land
use classifications. Location number 1–5, LPD lake; 6–10, XDG river; 11–15, WFG river; 16–20, DDT river; 21–25, ZXT river.
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Figure 8. Spearman’s correlation map of the physicochemical, microbiological, and land use pattern
percentages. Each correlation was presented by one colored circle in the figure. The blue color
indicated positive correlations, while the red color indicated negative correlations. Depth of the colors
and sizes of the circles indicated strengths of the correlations. Non-significant (p > 0.05) correlations
were presented by a cross on the circle. The control samples were not included. TC was excluded
due to unavailability of the September data. (Ind Land A, B, C—Class A, B, C Industrial Land,
respectively; Mun Uti—Municipal Utilities; Resi Land—Residential Land; Agri Land—Agricultural
Land; Pub Green—Public Green Land; Undev Land—Undeveloped Land).

TN and NH4-N were found negatively correlated with temperatures. TN was posi-
tively correlated with NH4-N and NO3-N, which might be the two main sources of TN in
the water samples. TN and NH4-N were both negatively correlated with class B industrial
land and low-density residential land, while both of them were positively correlated with
percentages of road. NH4-N positively correlated with class A industrial land. NO2-N,
on the other hand, was positively correlated with municipal utilities, low-density res-
idential land, agricultural land, and river and lake. TP and PO4-P was strongly and
significantly correlated, indicating phosphate could be a main source of TP. In the current
study, TP and PO4-P were negatively correlated with pH, Chl a, TN, NH4-N, NO2-N, and
percentages of river and lake. TP and PO4-P were found positively correlated with Class A
industrial land. Chl a is the indicator for algal growth in the watersheds. Chl a levels were
positively correlated with reductive pollutions (KMnO4, COD, BOD), nitrogen-related
pollution (TN, NO3-N), and organic matters (TOC) in water. High Chl a was also found
related to high river and lake percentage around the sampling locations. Class B industrial
land and undeveloped land were negatively correlated with Chl a.

Fecal contaminations were indicated by parameters including FC, BacUni, and HF183.
According to the correlation analysis, firstly there was a strong correlation among these
three measurements. In addition, these parameters were negatively correlated with pH,
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DO, and NO2-N. They were also positively correlated with TN and NH4-N. Class A
industrial land and road were the land use pattern that might be related to this type of
pollution. Low-density residential land, agricultural land, and river and lake were found
to be negatively correlated with fecal markers. It is important to note that the correlations
described above are an interpretation of the results from the correlation analysis. The
positive or negative correlation does not lead directly to cause and effect relationships. The
positively correlated land use and water quality does not mean that the land use caused
those pollution parameters; therefore, the correlation results should be used with caution.

In general, we observed high percentages of river and lakes correlated with high
organic matter (TOC, COD, BOD, Chl a, KMnO4), high NO2-N, but also high DO, and
they correlated negatively with fecal contamination. Road percentages positively corre-
lated with TN, NH4-N, and also fecal contamination factors. The municipal, low-density
residential and agricultural lands positively correlated with NO2-N but negatively with
fecal contamination. As study areas are located in rural and semi-rural areas of Wujiang
District, the majority of low-density residential land is villages. It is different from low-
density residential areas in urban-settings that are well-designed, fully paved, high-quality
single-detached housing neighborhoods. Villages are mostly un-paved and scattered in
the surrounding agricultural land, and these lands have very few human uses. Addition-
ally, with their permeable surface, the pollutants are possibly absorbed by the soil and
underground water. In contrast, the roads are all paved and impermeable, and the run-offs
along the roads are generally considered primary sources of pollution to the surface water;
therefore, positive correlation between roads and fecal contamination factors was observed
in this study.

Class A industrial land correlated positively with PO4-P, NH4-N, and fecal contamina-
tion. Although this class was described as non-pollution industry, improper treatments of
industrial water and direct discharge of domestic water might also reduce water quality.
Class B industry correlated positively with EC and negatively with some physicochem-
ical parameters (TN, NH4-N, TOC, Chl a). Weak correlation was observed with Class C
industries, and these types of industries occupied small percentages around the sampling
locations. The industrial lands (Class A, B, C) in China are classified in accordance to the
level of disturbance to the surrounding living conditions (residential and public facilities)
rather than to the level of pollution of surface water. Class A industrial land generally
includes industries such as retail, financial businesses, publishing, and high-tech industries
with relative higher number of working populations. In this regard, although Class A
industrial land by definition is supposed to be “non-pollution” industries, it is among
the most heavily used land areas, which also require careful treatment of industrial and
domestic water discharge.

3.6. Multi-factor Analysis—Principal Component Analysis (PCA)

The KMO test shows the distribution of a data set, and it should show values higher
than 0.5, otherwise the data set is not considered as suitable for PCA analysis [44]. Bartlett’s
test shows whether the parameters in a data set are inter-dependent. A data set should
be inter-independent (p < 0.05) if the data set is to be used in a PCA [44]. In the current
study, the KMO analysis showed a result of 0.6386, while the Bartlett’s test resulted in
p < 2.2 × 10−16 < 0.05. These tests are indicating that the PCA test would be a suitable
testing method for the current data set, reducing redundant affects by correlated parameters
and for analyzing the main influencing parameters.

As shown in Table 1, the PCA resulted in four principal components, which account
for 83.27% of the total variations. According to Liu et al. [45], the loadings of each variable
could be classified as strong (>0.75), moderate (0.75–0.5), and weak (0.5–0.3). In the analysis
of the present study, no strong loading was observed. The moderate and weak loadings
observed are shown in bold in Table 1. The first component (PC1) was responsible for
45.69% of the total variations observed, and it was composed of moderate loadings of data
for fecal coliform (FC) and the MST markers, BacUni, and HF183 on the positive side, and
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also a weak positive loading for the MST marker, HF183. These results indicate that fecal
contamination is the major source of variations observed in this study. The factors such
as improper discharge of domestic drainage and untreated sewage might be responsible
for high levels of fecal contaminations observed in the locations. The second component
(PC2) was also explained by the same variables as PC1. However, two more variables,
Chl a and PO4-P, had negative and positive weak loadings, respectively. These results
showed that except for the influences of fecal-contamination related factors, Chl a and
PO4-P were also the main reasons for the changes. These factors are usually related to
nutrient pollution, which were probably from domestic waste and agricultural non-point
source pollution [46]. Chl a is the main indicator of algal/phytoplankton growth and also
eutrophication [47]. PO4-P pollution are mainly from soil erosion, agriculture run-off, and
municipal and industrial discharges [48]. As for the component PC3, Chl a had a weak
positive loading, while NH4-N had a moderate negative loading. Similarly, this component
could be explained by nutrient pollution. The PC4 is a combination of fecal contaminations
and the pollution by multiple nutrients. Both NH4-N and Chl a had moderate negative
loadings, while FC had a weak positive loading. In summary, the most influential factors
are FC and universal and human-associated fecal contaminations. In addition to that, PO4-P
and NH4-N were the most impacting nutrient parameters observed in this study. High Chl
a was a result of various environmental factors including high nutrients, temperature, and
sunlight. The overall correlation analysis showed significant correlations between Chl a
and multiple nutrients including TN, NO3-N, and TOC (Figure 8). However, in the special
case of extremely high Chl a level observed in LPD, no correlation was observed between
the chlorophyll level and any specific nutrients based on the overall data.

Table 1. Loadings of physicochemical and microbiological variables resulting from PCA analysis.
The four principal components (PC1 to PC4) are shown, and the values in bold indicate moderate or
weak loadings.

Parameters PC1 PC2 PC3 PC4

WT −0.011 0.007 −0.020 0.010
pH −0.011 0.013 0.008 −0.019
EC 0.017 −0.024 0.043 −0.008

BOD 0.023 −0.043 0.180 −0.088
COD −0.005 −0.055 0.218 −0.079

KMnO4 index 0.012 −0.052 0.100 −0.062
TN 0.086 −0.086 0.071 −0.206
TP 0.129 −0.191 −0.068 0.049

NO3-N 0.034 −0.199 0.214 −0.150
NO2-N −0.110 0.209 −0.172 −0.112
PO4-P −0.117 0.312 0.231 0.173

NH4-N 0.268 −0.057 −0.698 −0.509
TOC −0.014 −0.041 0.081 −0.069
Chl a 0.025 −0.396 0.445 −0.577

FC 0.546 −0.544 −0.034 0.491
BacUni 0.591 0.461 0.265 −0.182
HF183 0.477 0.313 0.079 0.034

Eigenvalue 1.631 0.640 0.394 0.308

% of variance 45.69 17.93 11.02 8.63

Cumulative % of variance 45.69 63.61 74.64 83.27

Figure 9 shows the distribution of all samples on the two-dimensional coordinate
system composed of PC1 and PC2, which accounts for 63.61% of total variations. As shown
in the figure, most of the factors including pH, EC, WT, TOC, COD, BOD, and KMnO4 index
were not the main cause of variations observed. However, TN, TP, NO3-N, and NO2-N had
weak loadings in the variations. The parameters Chl a and PO4-P were more influential
on PC2-axis, with different orientations. The parameters, BacUni, HF183, FC, and NH4-N
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significantly contributed to PC1. In terms of lakes and rivers, the control locations were not
similar to any of the study sites. Similar distributions of nutrient contents were observed
in the lake and three rivers (XDG, DDT, ZXT). Compared to the control, these water bodies
were higher in most of the nutrients such as TN, TP, NH4-N, NO3-N, and Chl a, and also
fecal contamination parameters like FC and host-specific MST markers. Compared with
other rivers and the lake, although WFG had relatively low PO4-P and NO2-N, it was
largely affected by high fecal contamination levels, especially in the samples collected in
October 2020.

Figure 9. The principal component analysis (PCA) of physicochemical and microbiological variables observed in this
study. The labels indicate both sampling locations and sampling time. The locations are indicated by the numbers (1–25 for
rivers/lake, C1–C3 for control locations), while the sampling time are indicated by the first letter (A = August, S = September,
O = October). Each lake or river is grouped by the circle and marked with different colors. Length of the respective arrow
shows the proportion a factor explains for the total variation.

4. Conclusions

In this study, the water quality of four rivers (XDG, WFG, DDT, ZXT) and a lake (LPD)
in Wujiang District was analyzed and compared with control locations and Chinese MEP
guideline values. The correlations among the physicochemical, microbiological, and fecal
markers and the principal components that affect the variations and the influence of all
these parameters by land use pattern were also studied. The overall results indicated that
several parameters, including multiple nutrients and fecal indicators, in each watershed
exceeded the acceptable limit. As compared to control locations, all five study areas in
Wujiang were affected by various pollution sources. The lake, LPD, and the river, WFG,
were significantly affected by pollutants. The high levels of nutrients led to the overgrowth
of algae in LPD, which was evident from the extremely high concentrations of Chl a
in this lake as compared to other watersheds. In WFG, high levels of NH4-N, FC, and
both universal and human-feces specific markers were observed. The FC and BacUni
and HF183 were detected in all the sampling locations; however, their abundance varied
between watersheds, and high levels were evident in WFG river. The Class A industrial
land and the road percentages showed positive correlation with PO4-P, NH4-N, and fecal
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contaminations. Although Class A industrial land is described as non-pollution industry,
improper treatments of industrial water and direct discharge of domestic water might
also reduce water quality. Moreover, identifying the type of industries located along the
rivers might be helpful for the future studies. In this study, the sampling was done for
three months (August to October 2020) to assess the current levels of pollution in these
watersheds. However, longer-term studies including sampling at different seasons are
necessary to make stronger conclusions and for better management and control of pollution
in these watersheds.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/4/457/s1: Supplementary Tables S1 to S10, Supplementary Figures S1 to S8. Table S1. Sam-
pling locations in the rivers and the lake, including the geographic coordinates (GPS coordinates),
Table S2. The methods used for measuring or testing the physicochemical parameters, Table S3.
Physicochemical and microbiological characteristics of LiPuDang (LPD) with statistical analyses,
Table S4. Physicochemical and microbiological characteristics of XiDaGang (XDG) with statistical
analyses, Table S5. Physicochemical and microbiological characteristics of WuFangGang (WFG)
with statistical analyses, Table S6. Physicochemical and microbiological characteristics of DeDeTang
(DDT) with statistical analyses, Table S7. Physicochemical and microbiological characteristics of
ZiXingTang (ZXT) river with statistical analyses, Table S8. Physicochemical and microbiological
characteristics of samples collected from Taihu lake source water protection area (Control locations)
with statistical analyses, Table S9. Two-way ANOVA results for physicochemical and microbiolog-
ical parameters based on the interactions between study area and sampling time, Table S10. The
specific explanations of each land use classification, Figure S1. Surrounding environment near
LiPuDang (LPD) sampling locations, Figure S2. Surrounding environment near XiDaGang (XDG)
sampling locations, Figure S3. Surrounding environment near WFG sampling locations, Figure S4.
Surrounding environment near DaDeTang (DDT) sampling locations, Figure S5. Surrounding envi-
ronment near ZiXingTang (ZXT) sampling locations, Figure S6. Spearman’s correlation map of the
physicochemical, microbiological and land use pattern percentages (if applicable) for (a) LPD and
(b) XDG, Figure S7. Spearman’s correlation map of the physicochemical, microbiological and land
use pattern percentages (if applicable) for (a) WFG and (b) DDT, Figure S8. Spearman’s correlation
map of the physicochemical, microbiological and land use pattern percentages (if applicable) for (a)
ZXT and (b) Control area.

Author Contributions: Conceptualization: R.S. and X.J.; methodology: R.S., S.L., J.L., and X.J.; field
sampling: R.S., S.L., X.F., W.L., Z.G., and S.G.; formal analysis: S.L., Z.G., X.F., S.G., W.L., and J.L.,
investigation: R.S., S.L., and Z.G., resources: J.S. and Y.Z., data curation: R.S. and S.L., writing—
original draft preparation: R.S., S.L., Z.G., X.F., and S.G., writing—review and editing: R.S. and S.L.;
supervision: R.S., project administration: R.S.; funding acquisition: R.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Research Fund (RDH-101-2020-0044) of Xi’an
Jiaotong-Liverpool University (XJTLU) Urban and Environmental Studies (UES) University Re-
search Center (URC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Yunqing Xu, Xue Chen, and Qiaoli Feng for
their support and the Department of Biological Sciences, XJTLU, for providing facilities. The authors
would also like to thank three anonymous reviewers for their constructive comments and suggestions
to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Noori, R.; Sabahi, M.; Karbassi, A.; Baghvand, A.; Zadeh, H.T. Multivariate statistical analysis of surface water quality based on

correlations and variations in the data set. Desalination 2010, 260, 129–136. [CrossRef]
2. Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635.

[CrossRef]

https://www.mdpi.com/2073-4441/13/4/457/s1
https://www.mdpi.com/2073-4441/13/4/457/s1
http://doi.org/10.1016/j.desal.2010.04.053
http://doi.org/10.1016/j.watres.2005.04.024


Water 2021, 13, 457 19 of 20

3. Goonetilleke, A.; P Carroll, S.; Dawes, L.; Hargreaves, M. Water quality profile of an urbanizing catchment. In Proceedings of
Eleventh Individual and Small Community Sewage Systems Conference Proceedings, Warwick, Rhode Island, MI, USA, 20–24 October 2007;
American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007; p. 44.

4. Nnane, D.E.; Ebdon, J.E.; Taylor, H.D. Integrated analysis of water quality parameters for cost-effective faecal pollution manage-
ment in river catchments. Water Res. 2011, 45, 2235–2246. [CrossRef]

5. Wu, Y.; Chen, J. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River
(Dongjiang) in South China. Ecol. Indic. 2013, 32, 294–304. [CrossRef]

6. Vadde, K.K.; Wang, J.; Cao, L.; Yuan, T.; McCarthy, A.J.; Sekar, R. Assessment of water quality and identification of pollution risk
locations in Tiaoxi River (Taihu Watershed), China. Water 2018, 10, 183. [CrossRef]

7. Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China.
Sci. Total. Environ. 2018, 612, 914–922. [CrossRef]

8. Kafy, A.A. Importance of Surface Water Bodies for Sustainable Cities: A Case Study of Rajshahi City Corporation; Bangladesh Institute of
Planners: Dhaka, Bangladesh, 2018.

9. Deng, X. Correlations between water quality and the structure and connectivity of the river network in the Southern Jiangsu
Plain, Eastern China. Sci. Total. Environ. 2019, 664, 583–594. [CrossRef]

10. Zhang, Y.; Zhao, W.; Chen, X.; Jun, C.; Hao, J.; Tang, X.; Zhai, J. Assessment on the effectiveness of urban storm-water management.
Water 2021, 13, 4. [CrossRef]

11. Kogure, K.; Shi, S.; Yang, C.; Li, J. Analysis on situation of water environment in Wujiang District of the Taihu Lake. In Proceedings
of EGU General Assembly 2020, 4–8 May 2020; Copernicus GmbH: Göttingen, Germany, 2020; p. 12958. Available online:
https://www.egu.eu/meetings/general-assembly/meetings/ (accessed on 31 December 2020).

12. Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiology 2007, 581, 3–14. [CrossRef]
13. Chen, Y.; Zhao, K.; Wu, Y.; Gao, S.; Wei, C.; Bo, Y.; Shang, Z.; Wu, J.; Zhou, F. Spatio-temporal patterns and source identification of

water pollution in Lake Taihu (China). Water 2016, 8, 86. [CrossRef]
14. Carle, M.V.; Halpin, P.N.; Stow, C.A. Patterns of watershed urbanization and impacts on water quality. JAWRA J. Am. Water

Resour. Assoc. 2005, 41, 693–708. [CrossRef]
15. Kora, A.J.; Rastogi, L.; Kumar, S.J.; Jagatap, B. Physico-chemical and bacteriological screening of Hussain Sagar lake: An urban

wetland. Water Sci. 2017, 31, 24–33. [CrossRef]
16. Vadde, K.K.; McCarthy, A.J.; Rong, R.; Sekar, R. Quantification of microbial source tracking and pathogenic bacterial markers in

water and sediments of Tiaoxi river (Taihu watershed). Front. Microbiol. 2019, 10, 699. [CrossRef]
17. Zheng, Y.; Wang, H. Study of the creative destruction model and tourism in historic towns: Based on the case of Wuzhen.

Tour. Trib. 2019, 34, 124–136.
18. APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC,

USA, 2005.
19. Yuan, T.; Vadde, K.K.; Tonkin, J.D.; Wang, J.; Lu, J.; Zhang, Z.; Zhang, Y.; McCarthy, A.J.; Sekar, R. Urbanization impacts the

physicochemical characteristics and abundance of fecal markers and bacterial pathogens in surface water. Int. J. Environ. Res.
Public Heal. 2019, 16, 1739. [CrossRef]

20. Lange, B.; Strathmann, M.; Oßmer, R. Performance validation of chromogenic coliform agar for the enumeration of Escherichia coli
and coliform bacteria. Lett. Appl. Microbiol. 2013, 57, 547–553. [CrossRef]

21. Kildare, B.J.; Leutenegger, C.M.; McSwain, B.S.; Bambic, D.G.; Rajal, V.B.; Wuertz, S. 16S rRNA-based assays for quantitative
detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: A Bayesian approach. Water Res. 2007, 41, 3701–3715.
[CrossRef]

22. Green, H.C.; Haugland, R.A.; Varma, M.; Millen, H.T.; Borchardt, M.A.; Field, K.G.; Walters, W.A.; Knight, R.; Sivaganesan, M.;
Kelty, C.A. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface
water samples. Appl. Environ. Microbiol. 2014, 80, 3086–3094. [CrossRef]

23. Ohad, S.; Ben-Dor, S.; Prilusky, J.; Kravitz, V.; Dassa, B.; Chalifa-Caspi, V.; Kashi, Y.; Rorman, E. The development of a novel qPCR
assay-set for identifying fecal contamination originating from domestic fowls and water-fowl in Israel. Front. Microbiol. 2016,
7, 145. [CrossRef]

24. Mieszkin, S.; Furet, J.-P.; Corthier, G.; Gourmelon, M. Estimation of pig fecal contamination in a river catchment by real-time PCR
using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl. Environ. Microbiol. 2009, 75, 3045–3054. [CrossRef]

25. R Core Team. R Foundation for Statistical Computing, 4.0.3; R Foundation for Statistical Computing: Vienna, Austria, 2020.
26. Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an

alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [CrossRef]
27. Pearce, G.; Ramzan Chaudhry, M.; Ghulam, S. A Simple Methodology for Water Quality Monitoring; HR Wallingford: Wallingford,

UK, 1998.
28. Chapman, D.V. (Ed.) Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC

Press: Boca Raton, FL, USA, 1996.
29. US EPA. What is Conductivity and Why Is It Important? Available online: https://archive.epa.gov/water/archive/web/html/

vms59.html (accessed on 25 January 2021).

http://doi.org/10.1016/j.watres.2011.01.018
http://doi.org/10.1016/j.ecolind.2013.04.002
http://doi.org/10.3390/w10020183
http://doi.org/10.1016/j.scitotenv.2017.08.293
http://doi.org/10.1016/j.scitotenv.2019.02.048
http://doi.org/10.3390/w13010004
https://www.egu.eu/meetings/general-assembly/meetings/
http://doi.org/10.1007/s10750-006-0521-5
http://doi.org/10.3390/w8030086
http://doi.org/10.1111/j.1752-1688.2005.tb03764.x
http://doi.org/10.1016/j.wsj.2017.03.003
http://doi.org/10.3389/fmicb.2019.00699
http://doi.org/10.3390/ijerph16101739
http://doi.org/10.1111/lam.12147
http://doi.org/10.1016/j.watres.2007.06.037
http://doi.org/10.1128/AEM.04137-13
http://doi.org/10.3389/fmicb.2016.00145
http://doi.org/10.1128/AEM.02343-08
http://doi.org/10.1016/S0043-1354(99)00225-0
https://archive.epa.gov/water/archive/web/html/vms59.html
https://archive.epa.gov/water/archive/web/html/vms59.html


Water 2021, 13, 457 20 of 20

30. Liao, Z.; Hu, T.; Roker, S.A. An obstacle to China’s WWTPs: The COD and BOD standards for discharge into municipal sewers.
Environ. Sci. Pollut. Res. 2015, 22, 16434–16440. [CrossRef]

31. US EPA. United States Environmental Protection Agency. Quality Assurance Guidance Document-Model Quality Assurance Project Plan
for the PM Ambient Air; United States Environmental Protection Agency: Washington, DC, USA, 2001; Volume 2.

32. Fecal Coliform Bacteria in Water. Available online: https://www.water-research.net/index.php/fecal-coliform-bacteria-in-water
(accessed on 25 January 2021).

33. Cotruvo, J. Drinking Water Quality and Contaminants Guidebook; CRC Press: Boca Raton, FL, USA, 2018.
34. Farhadinejad, T.; Khakzad, A.; Jafari, M.; Shoaee, Z.; Khosrotehrani, K.; Nobari, R.; Shahrokhi, V. The study of environmental

effects of chemical fertilizers and domestic sewage on water quality of Taft region, Central Iran. Arab. J. Geosci. 2014, 7, 221–229.
[CrossRef]

35. Byappanahalli, M.N.; Shively, D.A.; Nevers, M.B.; Sadowsky, M.J.; Whitman, R.L. Growth and survival of Escherichia coli and
enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiol. Ecol. 2003, 46, 203–211. [CrossRef]

36. Ahmed, W.; Sritharan, T.; Palmer, A.; Sidhu, J.P.S.; Toze, S. Evaluation of bovine feces-associated microbial source tracking
markers and their correlations with fecal indicators and zoonotic pathogens in a Brisbane, Australia, reservoir. Appl. Environ.
Microbiol. 2013, 79, 2682–2691. [CrossRef]

37. Ahmed, W.; Hamilton, K.A.; Gyawali, P.; Toze, S.; Haas, C.N. Evidence of avian and possum fecal contamination in rainwater
tanks as determined by microbial source tracking approaches. Appl. Environ. Microbiol. 2016, 82, 4379–4386. [CrossRef] [PubMed]

38. Ahmed, W.; Harwood, V.; Nguyen, K.H.; Young, S.; Hamilton, K.A.; Toze, S. Utility of Helicobacter spp. associated GFD markers
for detecting avian fecal pollution in natural waters of two continents. Water Res. 2016, 88, 613–622. [CrossRef]

39. Vadde, K.K.; Feng, Q.; Wang, J.; McCarthy, A.J.; Sekar, R. Next-generation sequencing reveals fecal contamination and potentially
pathogenic bacteria in a major inflow river of Taihu Lake. Environ. Pollut. 2019, 254, 113108. [CrossRef]

40. Shanks, O.C.; Atikovic, E.; Blackwood, A.D.; Lu, J.; Noble, R.T.; Domingo, J.S.; Seifring, S.; Sivaganesan, M.; Haugland, R.A.
Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl. Environ. Microbiol. 2007, 74,
745–752. [CrossRef] [PubMed]

41. Raith, M.R.; Kelty, C.A.; Griffith, J.F.; Schriewer, A.; Wuertz, S.; Mieszkin, S.; Gourmelon, M.; Reischer, G.H.; Farnleitner, A.H.;
Ervin, J.S. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal
pollution sources. Water Res. 2013, 47, 6921–6928. [CrossRef]

42. Zheng, J.; Gao, R.; Wei, Y.; Chen, T.; Fan, J.; Zhou, Z.; Makimilua, T.B.; Jiao, Y.; Chen, H. High-throughput profiling and analysis
of antibiotic resistance genes in East Tiaoxi River, China. Environ. Pollut. 2017, 230, 648–654. [CrossRef]

43. Eohad, S.; Vaizel-Ohayon, D.; Rom, M.; Guttman, J.; Berger, D.; Kravitz, V.; Pilo, S.; Huberman, Z.; Kashi, Y.; Rorman, E. Microbial
source tracking in adjacent Karst Springs. Appl. Environ. Microbiol. 2015, 81, 5037–5047. [CrossRef]

44. Ogwueleka, T.C. Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality
of the Kaduna River, Nigeria. Environ. Monit. Assess. 2015, 187, 1–17. [CrossRef]

45. Liu, C.-W.; Lin, K.-H.; Kuo, Y.-M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease
area in Taiwan. Sci. Total. Environ. 2003, 313, 77–89. [CrossRef]

46. Ruždjak, A.M.; Ruždjak, D. Evaluation of river water quality variations using multivariate statistical techniques. Environ. Monit.
Assess. 2015, 187, 1–14. [CrossRef]

47. Li, X.; Sha, J.; Wang, Z. Chlorophyll-A prediction of lakes with different water quality patterns in China based on hybrid neural
networks. Water 2017, 9, 524. [CrossRef]

48. Farmer, A.M. Phosphate Pollution: A Global Overview of the Problem; IWA Publishing: London, UK, 2018; Volume 35–55.

http://doi.org/10.1007/s11356-015-5307-8
https://www.water-research.net/index.php/fecal-coliform-bacteria-in-water
http://doi.org/10.1007/s12517-012-0717-0
http://doi.org/10.1016/S0168-6496(03)00214-9
http://doi.org/10.1128/AEM.03234-12
http://doi.org/10.1128/AEM.00892-16
http://www.ncbi.nlm.nih.gov/pubmed/27208100
http://doi.org/10.1016/j.watres.2015.10.050
http://doi.org/10.1016/j.envpol.2019.113108
http://doi.org/10.1128/AEM.01843-07
http://www.ncbi.nlm.nih.gov/pubmed/18065617
http://doi.org/10.1016/j.watres.2013.03.061
http://doi.org/10.1016/j.envpol.2017.07.025
http://doi.org/10.1128/AEM.00855-15
http://doi.org/10.1007/s10661-015-4354-4
http://doi.org/10.1016/S0048-9697(02)00683-6
http://doi.org/10.1007/s10661-015-4393-x
http://doi.org/10.3390/w9070524

	Introduction 
	Materials and Methods 
	Study Area and Sampling Locations 
	Land Use Analysis 
	Field Sampling and Sample Processing 
	Physicochemical Analyses 
	Microbiological Analyses 
	Quantification of Host-Specific Fecal Markers 
	Statistical Analyses 

	Results and Discussions 
	Physicochemical Results and Variation 
	Microbiological Results and Variation 
	Molecular Microbiological Results and Variation 
	Relationship between Water Quality and Land Use 
	Correlation Between Parameters 
	Multi-factor Analysis—Principal Component Analysis (PCA) 

	Conclusions 
	References

