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Abstract: Polycyclic aromatic hydrocarbons (PAHs), an organic pollutant with persistence and car-
cinogenicity, are universally present in the environment and food processing. Biological approaches
toward remediating PAHs-contaminated sites are a viable, economical, and environmentally friendly
alternative compared to conventional physical and/or chemical remediation methods. Recently,
various strategies relating to low molecular weight organic acids (LMWOAs) have been developed to
enhance the microbial degradation of PAHs. However, the remaining challenge is to reveal the role of
LMWOAs in the PAHs biodegradation process, and the latter limits researchers from expanding the
application scope of biodegradation. In this mini-review, we summarized the current understanding
of the impact of LMWOAs on (1) the physicochemical behavior of PAHs in the extracellular envi-
ronment; (2) the interactions between PAHs and the microbial cell surface; and (3) the intracellular
metabolization of PAHs. Future perspectives for this field are discussed in this review as well.

Keywords: low molecular weight organic acids; polycyclic aromatic hydrocarbons; bioremediation;
extracellular environment; cell surface; intracellular metabolization

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants, are widely
distributed in the environment and food processing [1]. Over the past decades, increasing
amounts of PAHs have been generated from the incomplete combustion of organic sub-
stances, such as coal, oil, wood, and tobacco [2,3]. The strong genotoxic, mutagenic, and
carcinogenic properties of PAHs pose a severe threat to human health and, therefore, raise
global concerns [4-6]. In total, 16 widespread PAHs compounds were listed as priority
pollutants by the US EPA (United States Environmental Protection Agency) [7,8]. The
majority of PAHs are chemically stable with low solubility in water and worse adsorption
towards solid particles [9]. Hence, universal and transferable approaches to degrading the
PAHs are still demanded.

Conventional methods, including physical or chemical remediation approaches, have
already been developed to overcome the PAHs pollution challenge. However, physical or
chemical remediation approaches are often costly and may cause secondary environmental
pollution [10-12]. Bioremediation provides a cost-effective and environmentally sustainable
alternative [13,14]. Generally, soil organic matters, such as humins, low molecular weight
organic acids, amino acids, are favorable for the biodegradation of pollutants [15-17]. For
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instance, electrochemically-reduced humins were able to enhance microbial denitrification.
Solid-phase humins improve all reducing reactions from nitrate to nitrogen gas [18,19]. In
addition, the degrading rate of petroleum hydrocarbons was significantly affected by soil
organic content [20].

Among various dissolved soil organic matters, low molecular weight organic acids
(LMWOASs, MW < 500 Da) also facilitate the degradation of pollutants by plants or microbes.
LMWOAS can be discovered in the root exudates and the microbial decomposition of plant
litter [21-24]. LMWOAs include mono-, di-, and tricarboxylic acids containing hydroxyl
groups as well as unsaturated carbon and often exist as the dissociated anions (carboxy-
lates) [25,26]. The release of LMWOAs from root exudates could be influenced through
different factors, such as the acidity of the soil, the absence/presence of insoluble miner-
als, type of soil microorganisms, and plant developmental stage [17,27]. These produced
soluble elements which are easily available for microbial growth [26,28,29]. The synthesis
and/or secretion of LMWOAs by microbes play essential roles in the process of biotic or
abiotic stress responses [30]. Furthermore, the root exudate organic acids are crucial for the
rhizoremediation of heavy metals and PAHs. To date, although some excellent reviews
thoroughly elucidate the importance of the root exudate in heavy metals and PAHs biore-
mediation [26,31-33], few focused on investigating the role that individual compounds
(such as carboxylates, amino acids) of root exudate in PAHs bioremediation [26].

Recently, the addition of LMWOAs has been an attractive and promising strategy to
enhance the capacity of microbes to degrade organic pollutants, especially PAHs (Table 1).
LMWOASs showed a powerful ability to chelate multivalent cations (e.g., Fe**, Al**) and
thus significantly influenced the mobility, solubility, and fate of pollutants in nature [34].
In addition, glutaric acid and citric acid improve the growth rates and the vital enzymatic
activities of microorganisms in the degradation process, resulting in increased organic
pollutants biodegradation [25,35]. PAHs degradation research undoubtedly benefits from
the occurrence of various LMWOASs towards microorganisms. Meanwhile, an in-depth
understanding of how LMWOAs affect microbial bioremediation at the molecular level is in
demand to view the comprehensive biodegradation landscape and inspire us to develop ad-
ditional bio stimulation techniques for engineering the efficiency of bioremediation systems.

In this review, we explored different LMWOAs, introduced factors for degrading
PAHEs, classified them according to the process of biodegradation (Figure 1). The latter
include (1) the behavior of PAHs and other chemicals in the extracellular environment,
(2) interactions between PAHs and the microbial cell surface, and (3) the intracellular
metabolization of PAHs. We discuss each approach in a dedicated section and highlight
examples in which LMWOAs have found their way into improving efficiency as stepping-
stones for future developments. We critically discuss the current status of LMWOAs in the
bioremediation of PAHs. Finally, we propose promising directions from the understanding
of the regulated mechanism in microorganisms by LMWOAs to microbe modification
based on genetically edited for further development of the field.
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Table 1. The predominant low molecular weight organic acids (LMWOAs) applied to enhance microbial degradation of pollutants.
LMWOAs Microorganism Pollutants Main Function Reference
Citric, succinic, and aconitic acid - PAHs contaminated soil Enhance PAHs degradation [36]
Citric and malic acid - Phenanthrene Enhance desorption [37]
Oxalic acid Microbial community Agricultural field contaminated with PAHs P.romote PAHSs qls.SIP ation, enhanced the microbial [38]
biomass and activity
Citric, lactic, malic, oxalic, and succinic acids Stenotrophomonas sp., Microbacterium sp., . .
mixture and Arthrobacter sp. Benzo(a)pyrene and pyrene Enhance biodegradation [39]
E1ght organic ac1gls mlxe'd: oxahc., fgrml'c, tartaric, Microbial populations Phenanthrene and pyrene Inﬂ'u?nce the bioavailability of PAHs and microbial [40]
lactic, acetic, malic, maleic, and citric acid activity
ROOF exu@ates werep repared l?y mixing glucose, Soil microbial community Pyrene Enhance biodegradation [41]
oxalic acid, malic acid, and serine
Increase strain growth rates, hexadecane
Glutaric acid Pseudomonas aeruginosa NY3 Hexadecanol monooxygenase activities, and enhance [35]
biodegradation
Citric and malonate acid Microbial community Petroleum hydrocarbons Stimulate heterotrophic microbial activity [25]
Citric acid, oxalic acid, malic acid - Phenanthrene and pyrene Enhance bioavailability [42]
Oxalic and malic acids - Phenanthrene Favor photodegradation on Fe(III)-clay [43]
N .. . . Naphthalene, acenaphthene, fluorene, Promote bound PAH residues release, and enhance
Citric acid, oxalic acid, and malic acid - phenanthrene, fluoranthrene, pyrene, benzo(a) ot s . [44]
the PAH availability in soils
anthrancene, and benzo fluoranthrene
Citric and malic acids - Phenanthrene and pyrene Promote ! he rglease and enhanced the availability [45]
of PAHs in soil
Malic acid - Phenanthrene Enhance desorption [46]
Acetic acid, oxalic acid, tartaric acid, and citric acid - Phenanthrene Enhance desorption [47]
Citric and oxalic acid - Phenanthrene and pyrene Enhance desorption [48]
Citric, oxalic, and malic acid - Phenanthrene Enhance desorption [49]
Citric and oxalic acid - Phenanthrene and pyrene Increase phenanthrene and pyrene availability [50]
Succinic, tartaric, malic, malonic, oxalic, citric, or p,p/-DDE Enhance desorption [34]

ethylenediaminetetraacetic acid
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Figure 1. The influence of low molecular weight organic acids (LMWOAs) on the microbial degrada-
tion process of polycyclic aromatic hydrocarbons (PAHs).

2. Effects of LMWOAs in the PAHs Biodegradation Process

2.1. Physicochemical Behavior Changes in PAHs and Other Chemicals in the
Extracellular Environment

2.1.1. Effects on the Desorption of PAHs

Desorption is a key property applied to evaluate the bioavailability of PAHs [51], and
LMWOAs have been reported to enhance the bioavailability of PAHs by improving their
desorption from the soil [46-49,52]. Ling et al. found that citric, oxalic, and malic acid
might promote the desorption of PAHs from the soil, which is most likely mediated by
the organic acid anions derived from LMWOAs [53]. Gao et al. found that LMWOAs
(such as citric and oxalic acid) in the artificial root exudates significantly increased the
desorption of phenanthrene and pyrene in soils [48,49]. These phenomena may explain
why the LMWOASs might disrupt the linkages among the soil organic matter, metal cations,
and minerals, causing the release of additional soil organic matters [53]. These resulting
dissolved organic matter (DOM) in the soil would further strengthen the desorption of
PAHSs [50]. Interestingly, the enhancement magnitude of PAHs desorption also depends
on several determinants, such as pH, the type of soil, the time of exposure to the con-
taminant, and the concentrations of the LMWOAs [49,52]. Generally, high LMWOAs
concentrations (up to 500 mM) and pH approaching neutral can promote better desorption
of PAHs [49,52]. Furthermore, different LMWOAS presented different influences on PAHs
desorption regarding their chemical structures [52].

2.1.2. Effects on the Solubility of PAHs

The rate of microbial uptake and biodegradation of PAHs is also highly dependent on
the solubility of the compounds in water [54]. Thus, enhancement of the PAHs solubility
is essential for achieving higher microbial degradation [55]. The presence of LMWOAs
can change the solubility of PAHs in the solution. Zhou et al. found with the increase in
LMWOAs concentration, the solubility of naphthalene from water to mixtures (water and
LMWOAs) was increased [21,56]. However, the increasing tendency did not show a linear
relationship with the organic acid concentration, while the sudden change exhibited when
the concentration of organic acid was over a specific value. Meanwhile, the naphthalene
solubility was increased with the carbon chain length of LMWOAs. The increased solubility
of naphthalene by LMWOASs was ascribe to a clathrate structure of LMWOAs in the water-
rich region.
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2.1.3. Effects on the Bioavailability of Phosphorus

Applying LMWOAs into the soil affects not only the bioavailability of PAHs but also
phosphorus availability in soil [26,57]. Microbes usually play a pivotal role in mobiliz-
ing various forms of phosphorus, which is mediated by the microbes” exudates, such as
LMWOAs [58,59]. The carboxylate moiety of LMWOAs has the capacity to compete with
phosphorus for anion exchange sites and chelate metal cations and then be released into
the soil solution [60]. The ability of LMWOAs in mobilizing phosphate is associated with
the number of carboxyl groups and structural arrangement with the following trend: tricar-
boxylic acid > dicarboxylic acid > monocarboxylic acid [31]. The increased phosphorus
release can facilitate microbial growth and activity that may provide an avenue to accelerate
PAHs biodegradation. Besides phosphorus, LMWOAs can also chelate nutrient elements
(such as Fe and Mn) in soil, thus better accelerating plant growth in low-nutrient soils [61]
that may also benefit for PAHs removal by plants.

2.2. Effects on PAHs-Microbial Cell Surface Interactions

Basically, there are two ways for microbes to internalize PAHs: (1) passive diffusion [62,63]
and (2) an inducible active transport system when microbes are grown on PAHs as the
sole carbon source [64]. Some insights have been gained on how DOM, e.g., humic acids
(HAs), is involved in the interaction between PAHs and microbes REE. Most DOM shows
micellar properties and acts as carriers and/or biosurfactants in the aqueous solution.
PAHs dissolved with micellar surfactants and directly interacted with the bacterial surface
accompanying better bioavailability [65]. While DOM hardly changes cell wall perme-
ability, it might facilitate the active transport ability during the PAHs internalization [66].
In addition, DOM may alter the unstirred boundary layer near the bacterial surface [67].
Therefore, bacteria can internalize dissolved PAHs through diffusion and then degrade
hydrophobic substances [68]. HA is bound to the cell surface mainly via hydrophilic
moiety, and thus the hydrophobic part is directed outward into the environment. In this
context, the microbial surface yielded heterogeneous hydrophobic binding sites obtaining a
larger interfacial area for attracting PAHs, which introduces the highly enhanced sorption
capacity [69]. Although there is no direct demonstration of how LMWOAs facilitate the
cellular uptake of PAHs on the cell surface, it is plausible to assume that LMWOAs act
similarly to DOM since LMWOAs are essential components of DOM and show similar
properties with biosurfactants as well [26].

2.3. Effects of LMWOASs on the Intracellular Metabolization of PAHs
2.3.1. Serving as an Additional Carbon Source for Microbes

LMWOASs can serve as an easily degradable and direct energy source for microbes.
Mostly, LMWOAs increase the total number of PAHs degrading bacteria and these microbe
activities, which in turn improves the PAHs degradation efficiency [25,38,40]. For example,
Li et al. reported that oxalic acid facilitates the desorption of PAHs from soil (Figure 2a)
and acts as a carbon resource for microbes in the soil. The latter stimulated the microbial
biomass and activity, accompanied by the increased abundances of PAH degradation
related genera and genes (Figure 2b—d) [38]. However, the high inputs of energy and
nutrients into polluted soils would decrease the PAHs degradation rate due to catabolite
repression [70]. Catabolite repression refers to the inhibition of the transport and/or
metabolism of certain carbon sources in the presence of preferred metabolized carbon
sources [71]. Nonetheless, the decreased PAHs degradation could be compensated by the
overall increased bacteria number and the metabolic activity [72].
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Figure 2. (a) Dissipation percentages of PAHs; (b) The regulation of urease, dehydrogenase, and
polyphenol oxidase enzyme activity; (c) The genus-level community structure, after 21 days of
incubation; and (d) Mean proportions of three functional genes associated with PAH degradation,
BC: maize straw biochar, OA: oxalic acid. (Reproduced from ref. [38] with permission from Elsevier,
copyright 2019).

2.3.2. Effects of LMWOAs on Intracellular Redox Homeostasis

Readers can find more information regarding the metabolic processes by which mi-
crobes degrade PAHs in wonderful reviews [73,74]. Generally, PAHs are first transformed
into smaller ring molecules and finally turned into Krebs cycle intermediates. In these
metabolization pathways, several oxidative steps are involved in reducing NAD* to NADH
that influences intracellular redox homeostasis [75] and finally may affect the biodegrada-
tion of PAHs. Interestingly, intracellular redox homeostasis and oxygenase status can be
perturbed by the supplementation of LMWOAs. For instance, previous studies utilized
Pseudomonas aeruginosa NY3 to degrade n-hexadecane with the addition of glutaric acid.
The latter demonstrated that the ratio of NAD" to NADH increased significantly by insert-
ing glutaric acid. Moreover, both the gene expression level and enzyme activity of alkane
monooxygenase can be induced by supplementing glutaric acid [35]. The reason might be
that the synchronous metabolism of glutaric acid leads to the accumulation of oxidized
NAD*, which might increase the intercellular oxidation potential. And the respiration rates
were accelerated by reducing one NADH dehydrogenase at the start of the respiratory
chain, which ultimately transfers the electrons to oxygen under aerobic conditions [76].

2.3.3. Activation of Co-Metabolism Pathways

PAHs are degraded to catechols under the action of dioxygenases in bacteria after
undergoing ring-opening by symmetrical or asymmetrical pathways. The produced organic
acids are further transformed into LMWOAs (e.g., pyruvic, succinic, and oxaloacetic
acid) and subsequently enter the tricarboxylic acid cycle with finally converting into
CO; and H,O [77]. The toxicity and sparingly solubility of PAHs indeed limited PAHs’
biodegradation efficiency and resulted in slow microorganism growth and worse PAHs
uptake [78,79]. However, PAHs may partly or even completely be degraded via microbial
metabolic processes when certain ancillary carbon sources are supplemented. Such a
phenomenon is usually termed microbial co-metabolic biodegradation [80]. For example,
Ambrosoil et al. showed that the degradation of PAHs in the presence of glucose or acetate
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is more efficient than without an ancillary carbon source [81]. In our previous study, we
pointed out that glutaric acid can effectively promote the degradation of hexadecane by
Pseudomonas aeruginosa NY3 via a co-metabolic process [35]. The co-metabolism approaches
were applied to the bioremediation of PAHs contamination [82,83]. Generally, the ancillary
carbon sources affect the co-metabolic process mostly in two ways: (1) by promoting cell
growth and enhancing the biodegradation of the non-growth substrate, and (2) by acting
as a co-substrate in co-metabolism with inducing specific enzymatic reactions [84]. The
probability of co-metabolism would be higher under the similar chemical structures of the
(non-)growth-substrates [79]. This observation implies that LMWOAs with a PAHs-similar
structure might effectively increase biodegradation efficiency.

2.3.4. The role of LMWOA in Aerobic Degradation and Anaerobic Degradation

The degradation of PAHSs also can be divided into aerobic degradation and anaerobic
degradation. Preliminary work in this field focused primarily on investigating the influence
of LMWOAs on PAHSs’ intracellular metabolization in terms of aerobic processes, but
few are studied in anaerobic processes. Sivaram et al. found that LMWOAs promoted
benzo(a)pyrene and pyrene degradation in soil by rhizosphere bacteria under aerobic
conditions, and some essential dioxygenase genes (such as nidA, phnAc) were detected
in bacteria during the degradation process [39]. Nie et al. pointed out that in aerobic
processes, the addition with LMWOASs can perturb intracellular redox homeostasis and
oxygenase status in microbe [35].

3. The Application of LMWOASs in PAHs-Contamination Remediation
3.1. In Situ Remediation

In situ remediation is an approach to break down and purify contaminants by activat-
ing microorganisms present in the soil. Few studies have been reported about applying
the LMWOAs toward in situ remediation of PAH. Through investigating the influence of
LMWOAs on the in situ distribution of PAHs adsorption, Li et al. found that LMWOAs
lead to the homogeneity of the PAHs in the mangrove sediment but also contribute to the
enhancement of the particulate organic matter content [85]. Zhao et al. discovered that
combining the nonionic surfactant (e.g., Tween80) with LMWOAs (e.g., citric acid) has
improved performance compared to single surfactant in terms of in situ cleaning the PAHs
contaminated soils [86]. Moreover, many LMWOAs, including citric acid, oxalic acid, and
malic acid, are favorable for directly releasing the PAH-bound residues from soils [44].

3.2. Soil Flushing/Washing

Soil flushing /washing, as an in situ chemical method of soil remediation, involves
the extraction of PAHs via a fluid that was injected into the contaminated soil. LMWOAs
as additives have been employed to remediate PAHs polluted soils through integrating
into the soil flushing/washing technology [42,47,87]. For instance, Jia et al. observed that
LMWOAs markedly promoted the release of phenanthrene and pyrene from sediment
columns and, therefore, led to bioavailability enhancement (Figure 3). In detail, citric
acid showed the best elution strength. With the increase in the concentration of citric
acid from 0 to 160 mmol/L, the phenanthrene and pyrene in leachates enhanced from
0.045 and 0.039 mg to 0.125 and 0.087 mg, respectively [42]. Moreover, LMWOAs (e.g.,
acetic acid, oxalic acid, tartaric acid, and citric acid) promoted phenanthrene desorption
in the soil-water system. Falciglia et al. applied citric acid as enhancers to break up
calcium carbonate on the surface and thus accelerate the washing step to remove PAHs
from seabed sediments [87]. These studies stressed the importance of LMWOAs involved
in soil washing technologies to deal with the PAH-contaminated sites [47].



Water 2021, 13, 446

8 of 12

= Malic acid R>=0.977 ® Citric acid R*=0.995

=n

2 2
a ®  Malic acid R“=0.994 @ Citric acid R“=0.987 0.10 -

A Oxalic acid R?=0.966 © Control R=0.950

- 2 2
A Oxalic acid R"=0.998 Control R"=0.996

t

0.09 4

0.08 4

S 0,07
0.06 -
0,054

0.04 4

Elution amounts (mg) of
pyrene every 6 h

Elution amounts (mg) of
phenathrene every 6 h

0.03 4

0.02 1- 0.02 4

0.01 4 T T T T T

Leaching time (h) Leaching time (h)

Figure 3. The concentration of (a) phenanthrene and (b) pyrene in leachate solutions from con-
taminated sediment (160 mmol/L root exudates). Error bars represent the standard error (SD).
(Reproduced from reference [42] with permission from Springer, 2019).

3.3. Others

In addition, LMWOAs have markedly influenced PAHs photolysis. Jia et al. pointed
out that oxalic and malic acids favor the phenanthrene photodegradation on the photo-
catalytic material Fe(IlI)-smectite [43]. Applying LMWOAs oxalic acid with maize straw
biochar also amended the dissipation of PAHs in soil, accompanying enhanced PAH degra-
dation related to genera and functional genes [38,88]. The latter suggested that combining
biochar with LMWOAs might be a feasible strategy for promoting PAHs biodegradation.

4. Conclusions and Future Perspectives

In the previous section, we critically discussed the knowledge and challenges of
the effects of LMWOAs on the PAHs degradation capability in general and revealed the
underlying mechanisms in detail (Figure 1). In brief, the strategy to apply LMWOAs in
PAHs bioremediation is a cost-effective and environmentally sustainable approach, which
is supported by considerable evidence. To improve LMWOAs’ performance and make
them more competitive for industrial applications, we believe that more exciting results
will be obtained if more efforts are made in the following directions:

(1) More detailed and direct evidence about how humic acids influence the apparent
solubility and PAHs-microorganisms interactions are still required to investigate whether
all LMWOAs have a similar function with humic acids.

(2) At present, since few research pieces have examined the mechanism of LMWOAs
playing in PAHs’ intracellular metabolism within the anaerobic process, it is necessary to
explore such direction to improve the application of LMWOAs in the actual PAHs pollution
treatment process with a better understanding.

(3) Proteomics and metabolomics technologies are potential tools for elucidating
PAHs degradation process mechanisms with microbes at the molecular level [89]. High
throughput “omics” technologies would help researchers reveal the complicated effect of
LMWOAs in detail, from gene expression to whole-cell metabolic pathways.

(4) Advanced genetic tools, especially CRISPR/Cas9, can be employed to modify and
optimize the target microbes’ PAH degradation capacity. Better microbial remediation
strategies are required to be developed by integrating genetically edited microbial cells
with optimal LMWOAs.
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