
water

Article

Probabilistic Characterization of the Vegetated Hydrodynamic
System Using Non-Parametric Bayesian Networks †

Muhammad Hassan Khan Niazi 1,* , Oswaldo Morales Nápoles 1 and Bregje K. van Wesenbeeck 1,2

����������
�������

Citation: Niazi, M.H.K.; Morales

Nápoles, O.; van Wesenbeeck, B.K.

Probabilistic Characterization of the

Vegetated Hydrodynamic System

using Non-Parametric Bayesian

Networks. Water 2021, 13, 398.

https://doi.org/10.3390/w13040398

Academic Editors: Marcel J. F. Stive

and Fangxin Fang

Received: 4 November 2020

Accepted: 26 January 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft,
The Netherlands; O.MoralesNapoles@tudelft.nl (O.M.N.); bregje.vanwesenbeeck@deltares.nl (B.K.v.W.)

2 Marine and Coastal Systems, Deltares, 2629 HV Delft, The Netherlands
* Correspondence: M.H.K.Niazi@tudelft.nl
† This paper is an extended version of our paper published in 37th International Conference on Coastal

Engineering (2020).

Abstract: The increasing risk of flooding requires obtaining generalized knowledge for the implemen-
tation of distinct and innovative intervention strategies, such as nature-based solutions. Inclusion of
ecosystems in flood risk management has proven to be an adaptive strategy that achieves multiple
benefits. However, obtaining generalizable quantitative information to increase the reliability of
such interventions through experiments or numerical models can be expensive, laborious, or com-
putationally demanding. This paper presents a probabilistic model that represents interconnected
elements of vegetated hydrodynamic systems using a nonparametric Bayesian network (NPBN) for
seagrasses, salt marshes, and mangroves. NPBNs allow for a system-level probabilistic description
of vegetated hydrodynamic systems, generate physically realistic varied boundary conditions for
physical or numerical modeling, provide missing information in data-scarce environments, and
reduce the amount of numerical simulations required to obtain generalized results—all of which are
critically useful to pave the way for successful implementation of nature-based solutions.

Keywords: nature-based solutions; seagrasses; salt marshes; mangroves; dependence modeling;
nonparametric Bayesian networks

1. Introduction

Coastal flood risk is an alarming threat due to increasing hazard and vulnerability
as a consequence of climatic and anthropogenic changes [1]. To counter that, protection
measures combining conventional and nature-based solutions can constitute robust hybrid
defense systems for risk mitigation [2–4]. Moreover, vegetation as a nature-based solution
for flood defense, under the umbrella of hybrid solutions (see Figure 1), has shown con-
vincing potential for flood hazard (wave load) reduction [5–16]. Several studies look at
vegetation and reduction of currents and waves through numerical modeling [12,15,17–19]
or experiments [9,11,14,20], see Table 1. However, combined designs with vegetation and
conventional defenses that are implemented in the field are scarce.

Despite many studies focused on hydraulic load reduction by vegetation, there is
no general consensus or coherent set of guidelines yet that enable uniform integration of
vegetated coastal ecosystems in design for vegetation-levee combinations. This maybe due
to the varying estimates of wave attenuation resulting from the case studies. For instance,
in Table 1, a few flume and field experimental studies have been synthesized showing a
variety of hydrodynamic and vegetation characteristics that were tested to determine drag
coefficient expressions. It can be observed that the resulting drag coefficient expressions
are considerably different and yield distinct values for the same Reynolds number, see [13].
Since the drag coefficient is a critical variable for the calibration of numerical models,
estimates of wave attenuation potential of vegetation also differ considerably, which
undermines the reliability of vegetation as an integrated element of a flood defense systems.
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Figure 1. Hybrid and nature-based solutions in the hierarchy of flood defenses. Both conventional
and nature-based solutions complement each other in the design of robust hybrid flood defenses.

Instead of case-specific varying point estimates, a wide range of results in multiple
biohydrophysical conditions are required which could be generalized to develop the
implementation guidelines for nature-based solutions. However, not only the generalized
results are missing but the boundary conditions required to measure or model those results
are also missing. A potential reason could be the lack of holistic system-level description of
vegetated hydrodynamic systems which means that the vegetated foreshores have not been
quantified as a system with interacting and correlated constituting elements. Therefore, this
study provides a first attempt to develop a probabilistic model of vegetated hydrodynamic
system which would help in obtaining the necessary boundary conditions to describe and
numerically model the system for a variety of situations more efficiently. We synthesize
prior studies parameterizing individual variables in the system [21–29] and build on that
to study complete system dynamics and its response to variations.

Table 1. Review of experimental work presenting variety of hydrodynamic and vegetation properties. See nomenclature for
variables’ explanation. Inspired from [13,30–33].

Study Hydrodynamic Properties Vegetation Characteristics Drag Coefficient

Flume [34]
Regular waves
h = 0.50 m
Hm0 = 0.036–0.19 m

Polypropylene strips as artificial kelp
hv = 0.25 m, 52 × 0.03 mm,
Nv = 1110–1490 m−2

–

Flume [6] Used [34] Used [34] Cd = 0.08 +
(

2200
Re

)2.4

2200 < Re < 18000

Flume [35] Used [34] Used [34] and distinguished for rigid and
flexible vegetation

Rigid Cd = 0.08 +
(

2200
Re

)2.2

200 < Re < 15500

Flex. Cd = 0.40 +
(

4600
Re

)2.9

2300 < Re < 22000

Flume [36]
Regular waves
h = 0.4–1.0 m
Hm0 = 0.045–0.17 m

L. hyperborea
hv = 0.20 m, bv = 25 mm, Nv = 1200 m−2

Cd = 0.47 exp(−0.052KC)
3 < KC < 59

Field (seagrass) [37]
Irregular waves
h = 1–1.5 m
Hm0 ≈ 0.09 m

Thalassia testundinum
hv = 0.25–0.30 m, bv = 0.33 mm,
Nv = 1100 m−2 (Used relative velocity for
drag calculation)

Cd = 0.10 +
(

925
Re

)−3.16

200 < Re < 800
Cd = 126.45KC−2.7

0 < KC < 6

Flume [8]

Both Regular & Irregular
h = 0.3–0.8 m
Hm0 = 0.05–0.13 m (Reg.)
Hm0 = 0.03–0.13 m (Irreg.)

Posidonia oceanica
hv = 0.1 m, bv = 3 mm, Nv = 40000 m−2

Cd = 22.9KC−1.09

15 < KC < 425

Field (seagrass) [7]
Irregular waves
h ≈ 0.75–3.5 m
Hm0 ≈0.05–0.18 m

Zostera noltii
hv = 0.13± 0.030 m,
Nv,avg = 625± 225 m−2

Cd = 0.06 +
(

153
Re

)1.45

100 < Re < 1000
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Table 1. Cont.

Study Hydrodynamic Properties Vegetation Characteristics Drag Coefficient

Field (Salt
marsh) [38]

Irregular waves
h ≈ 0.55 m
Hm0 =< 0.4 m

Spartina alterniflora
hv ≈ 0.63 m, bv ≈ 8 mm, Nv ≈ 422 m−2

Cd = 0.36 +
(

2600
Re

)1.0

600 < Re < 3200

Field (Seagrass) [39]
Irregular waves (Storms)
h = 6.5–16.5 m
Hm0 = 0.10–1.31 m

Posidonia oceanica
hv = 0.8± 0.1 m, bv ≈ 4 mm,
Nv = 615± 34 m−2

Used [8]

Field (Salt
marsh) [40]

Irregular waves
h = 0.4–0.82 m
Hm0 = 0.15–0.4 m

Spartina alterniflora
hv ≈ 0.22 m, bv ≈ 8 mm, Nv ≈ 422 m−2

Cd = 70KC−0.86

25 < KC < 135

Statistical [41] Statistical evaluation of
35 studies

Statistical evaluation of kelp, seagrass,
saltmarsh and mangroves

log10

(
Cd,ijk

)
=

β0 + β1 log(c · Re) + δ
17000 < Re < 350000

Flume [42]
Rigid

Flexible

Regular waves
h = 1.8–2.4 m
Hm0 = 0.4–0.5 m
h = 0.4–1.0 m
Hm0 = 0.045–0.17 m

Posidonia oceanica (Polypropylene)
hv = 0.35, 0.55 m, bv = 1 mm,
Nv = 360, 180 m−2

Artificial seagrass (PVC strips)
hv = 0.27, 0.45 m, bv = 1 mm,
Nv = 360, 180 m−2

Cd = 0.87 +
(

2200
Re

)0.88

Cd = 1.61 +
(

4600
Re

)1.9

1000 < Re < 3500

Flume [43] Rigid

Flexible

Regular waves
h = 0.4–0.7 m
Hm0 = 0.03–0.15 m
Irregular waves
h = 0.5–0.7 m
Hm0 = 0.03–0.10 m

Wooden cylinders (Rigid)
hv = 0.48, 0.63 m, bv = 9.4 mm,
Nv = 156, 350, 623 m−2

Spartina alterniflora (Flexible)
hv = 0.59± 0.21 m, bv = 6.5± 0.9 mm,
Nv = 405 m−2

Juncus roemerianus (Flexible)
hv = 1.03± 0.27 m, bv = 2.4± 0.6 mm,
Nv = 2857 m−2

Rigid

Cd = 2.1 +
(

793
Re

)2.39

200 < Re < 4500

Cd = 1.5 +
(

6.785
KC

)2.22

5 < KC < 100
Flexible
Cd = 0.683 +

(
12.07
KC

)2.25

5 < KC < 350

Flume [44]
Irregular waves
h = 0.31–0.53 m
Hm0 = 0.05–0.19 m

Spartina alterniflora (Polyolefin tubes)
hv = 0.41 m, bv = 6.4 mm,
Nv = 200, 400 m−2

Cd = 0.76 +
(

744.2
Re

)1.27

553 < Re < 2296

Cd = 1.1
(

27.4
KC

)3.08

26 < KC < 112

Flume [45]
Regular waves & currents
h = 0.25, 0.50 m
Hm0 = 0.04–0.20 m

Vegetation mimics (Wooden rods)
hv = 0.36 m, bv = 10 mm,
Nv = 62, 139, 556 m−2

Cd = 1.04 +
(

730
Re

)1.37

300 < Re < 4700

Flume [11]
Irregular waves
h = 2 m
Hm0 = 0.2–0.7 m

Puccinellia maritima
hv = 0.22± 0.03 m, bv = 1.1± 0.3 mm
Elymus athericus
hv = 0.7± 0.01 m, bv = 1.3± 0.3 mm

Cd = 0.16 +
(

227.3
Re

)1.615

100 < Re < 1100

Flume [46]

Both Regular & Irregular
waves & currents
h = 0.4, 0.6 m
Hm0 = 0.15, 0.2 m (Regular)
Hm0 = 0.12 m (Irregular)
Current vel.= 0.30 ms−1

Spartina anglica
hv = 0.284 m, bv = 6 mm,
Nv = 420, 729 m−2

Puccinellia maritima
hv = 0.473 m, bv = 3 mm,
Nv = 877, 1389, 2436 m−2

Irregular waves

Cd = 0.08 +
(

22000
Re

)2.2

Irregular waves + current

Cd = 0.25 +
(

35000
Re

)9

Irregular waves − current

Cd = 0.50 +
(

27000
Re

)9

25000 < Re < 60000

Flume
(Mangroves) [17]

Both Regular & Irregular
h = 0.65 m
Hm0 = 0.01–0.1 m Regular
Hm0 = 0.03–0.15 m Irreg.

Wooden cylinders (Rigid mangroves)
hv > 0.75 m, bv = 12 mm,
Nv = 200, 400 m−2

Used Cd = 1.5 from [45]
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Modeling complex systems requires the (probabilistic) dependence among constituting
system components to be taken into account. As a possibility, Bayesian networks (BNs)
are being used in different coastal engineering studies [47–54]. A Bayesian network is a
directed acyclic graph (DAG) whose nodes represent random variables and whose arcs
represent probabilistic dependence. Nonparametric Bayesian networks (NPBN) are hybrid
BNs that model the dependence structure using Gaussian copulas and can have both
discrete (as long as variables are defined in at least an ordinal scale) or continuous marginal
distributions in the same graph [55–59]. A bi-variate copula is a two dimensional distribution
of the “ranks” of the data whose marginals are uniformly distributed on [0,1] [60–63].
Spearman’s (conditional) rank correlations, which parameterize the Gaussian copula, are
used to define probabilistic influence between parent and child nodes [57,59]. In the case
of conditional dependence among variables, recursive formula is used to calculate partial
rank correlations [56,64].

Similar studies to this work have mostly applied discrete BNs with conditional proba-
bility tables [31,51,65] which are typically quantified with synthetic data sets requiring an
enormous number of numerical simulations. This makes the quantification of such models
dubious or indefensible. For example, consider a model with 10 discrete variables with
4 states each where 9 variables are connected through an arc to the remaining variable. The
number of simulations required to quantify the probability table for the node influenced by
the 9 variables would be on the order of one million. Therefore, the number of boundary
conditions generated by discrete BNs are so extensive that it would make both physical
and numerical modeling costly, labor-intensive, and computationally demanding.

This study introduces dependence modeling using nonparametric Bayesian networks
for vegetated coastal systems. The system has been parameterized using continuous
distributions and likely (conditional) correlations among variables. The model represents a
consistent joint probability distribution and hence can be used to generate conditions that
are physically realistic. It adds value to numerical modeling by reducing the number of
simulations required to get meaningful generalized results. The paper has been structured
as follows: method for parameterization and stochastic modeling in Section 2, resulting
NPBNs with dependence information in Section 3, value of dependence modeling in
Section 4, and conclusions in Section 5.

2. Methodology

Vegetated hydrodynamic systems were schematized, parameterized, and probabilisti-
cally modeled in the user-defined random variable mode of UNINET [57,59], see overall
methodology in Figure 2. The parameterization was conducted for benthic, submerged,
and emergent vegetation, and the system was categorized into three variable families:
(i) hydrodynamic, (ii) vegetation, and (iii) hybrid (dike) variables. Each variable was
described with a continuous marginal distribution along with (conditional) rank correla-
tions among variables determined from literature, data, or “in-house” expert judgment.
Gaussian-copula based nonparametric Bayesian networks were created for submerged (salt
marshes) and emergent (mangroves) vegetation, both combined with a seagrass meadow in
the lower intertidal. Monte Carlo sampling was carried out from the NPBNs which resulted
in realistic physical conditions sampled from a stochastic model that takes multivariate
dependence into account.

2.1. System Schematization and Parameterization

To simplify the system hydrophysically, a 1-dimensional cross-shore profile and a
dike without a berm were schematized. Vegetation was schematized as rigid cylinders
and seagrasses, saltmarshes, and mangroves were modeled as benthic, submerged, and
emergent vegetation respectively.
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Figure 2. Overall methodology and steps for stochastic modeling in UNINET.

2.1.1. Schematization

The schematization in Figure 3 was idealized and divided into 6 segments based on
the dominant physical and hydrodynamic processes. Hydrodynamic boundary conditions
were defined at the offshore boundary. After nearshore transformation on the ramp, waves
reached till the point where they started to “feel” the bottom. At this point on the foreshore,
bottom friction started playing a role, mimicking both bed roughness and the benthic
vegetation. Waves then encountered a hybrid flood defense system, consisting of mature
vegetation (a saltmarsh or mangrove forest) and a dike at the landward extent of vegetation,
see Figure 3. The toe of the dike was fixed at ztoe = 0 m and the rest of the depths were
calculated as positive upwards from this reference.

Offshore
boundary

Vegetation
incidence

Vegetation ends 
(Dike toe)

Benthic vegetation
incidence

Dike 
crest

Mid-forest

Offshore 
ramp

Foreshore Vegetation 
Forest

Dike HinterlandOffshore

Offshore
boundary

Vegetation
incidence

Vegetation ends 
(Dike toe)

Benthic vegetation
incidence

Dike 
crest

Mid-forest

Offshore 
ramp

Foreshore Vegetation 
Forest

Dike HinterlandOffshore

Offshore
boundary

Vegetation
incidence

Vegetation ends 
(Dike toe)

Benthic vegetation
incidence

Dike 
crest

Offshore 
ramp

Foreshore Vegetation 
Forest

Dike Hinter-
land

Offshore

1

2

3

4

5

6

Figure 3. Idealized profile used for stochastic modeling including six segments with distinct hydro-
dynamic and vegetation characteristics.

Vegetation was schematized based on the relative depth between water and vegetation
height. Seagrasses were idealized as benthic vegetation, salt marshes as fully submerged
with the water depth approaching vegetation height, and mangroves as emergent vegeta-
tion with multiple vertical layers, see Figure 4. Seagrasses were modeled as bed friction, salt
marshes and mangroves as rigid cylinders parameterized by stem height, drag coefficient,
frontal width, and vegetation density.
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Figure 4. Vegetation schematization: benthic vegetation (seagrasses) as bottom friction, submerged
vegetation (saltmarshes) as rigid cylinders and emergent (mangroves) as rigid cylinder with 3 vertical
layer schematizations. See nomenclature in appendices for variables’ explanation.

2.1.2. Variable Families

The minimum required number of primary variables which could sufficiently describe
the hydrodynamic forcing, a vegetation field, and a dike were used (Figure 5). Variations of
these variables could reproduce a variety of biohydrophysical conditions observed across
the globe. All variables used are listed hereunder:

• Hydrodynamic: Offshore wave height (Hm0), peak wave period (Tp), water depth
(h), and offshore slope (S0) were grouped as hydrodynamic variables.

• Vegetation: Vegetation forest length (Lv) and vegetation slope (Sv) were general
vegetation variables which represented forest characteristics for both saltmarshes and
mangroves.

– Benthic vegetation was represented through dimensionless bed friction coeffi-
cient (c f ).

– Submerged vegetation was parameterized by vegetation height (hv), frontal
width (bv), vegetation density (Nv), and drag coefficient (Cd).

– Emergent vegetation had three sub categories for each of the vertical layers.

* Stem height (hv,s), stem frontal width (bv,s), stem density (Nv,s), and stem
drag coefficient (Cd,s) were put in place for the top layer of mangroves.

* Trunk height (hv,t), trunk frontal width (bv,t), trunk density (Nv,t), and trunk
drag coefficient (Cd,t) were introduced to schematize the trunk.

* Mangrove roots had height (hv,r), frontal width (bv,r), density (Nv,r), and
drag coefficient (Cd,r).

• Hybrid: Lastly, dike slope (Sd) and crest level (hc) were labeled as hybrid variables.

Hydrodynamic Variables

Generally, wave heights are Rayleigh distributed for a random sea-state but they are
Weibull distributed for long time scales [21,66]. Hence, global trends and distribution of
wave height and corresponding peak wave periods [67,68] were adopted for Hm0 and Tp.
Water depth accounts for the mean sea level, storm surges, tidal fluctuations, and sea level
rise due to climate change. Water depth was kept uniformly distributed within a range
that was obtained using a breaker index-based (γb = Hrms/h = 0.8) back calculation so
that the waves break near the toe of the dike.

Vegetation Variables

The values for the vegetation variables were synthesized from more than 25 studies to
parameterize the vegetation, see Table 1. In addition, similar synthesis results from [31] for
salt marshes and from [69] for mangroves were augmented into a literature meta-analysis
and were used as a basis to parameterize most of the vegetation variables. However,
individual studies that specifically covered global distribution of a certain parameter were
preferred over the meta-analysis of this study, e.g., see [27] for mangrove canopy heights.
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Moreover, some data was modified during the synthesizing process to optimally fit the
study scope. For example, large forest lengths (up to 30 km) [40,65], were curtailed to
1.5 km assuming that the vulnerability of communities protected by such large vegetation

forest is negligible. Or dimensionless friction coefficient was calculated using c f = gn2

h1/3

from the range of Manning’s coefficients (n) produced by [70,71] for various vegetation.

Stems: 𝑏𝑣,𝑠 , 𝑁𝑣,𝑠 , 𝐶𝑑,𝑠

Trunk: 𝑏𝑣,𝑡 , 𝑁𝑣,𝑡 , 𝐶𝑑,𝑡

Roots: 𝑏𝑣,𝑟 , 𝑁𝑣,𝑟 , 𝐶𝑑,𝑟ℎ𝑣,𝑟
ℎ𝑣,𝑡

ℎ𝑣,𝑠

(c) Mangrove vertical schematization (b) Top view

𝑠
𝑏𝑣

1𝑚2 box

𝑁𝑣 = 4

(a) Vegetated hydrodynamic system idealization 

𝑏𝑣, 𝑁𝑣, 𝐶𝑑

𝑆𝑑
𝑆𝑣

𝑆0

𝐿𝑣

ℎ𝑣
𝑇𝑝

𝐻𝑚0

ℎ𝑐
ℎ

Flooding

𝑐𝑓

Figure 5. Idealized vegetated hydrodynamic system for stochastic modeling. See nomenclature in appendices for variables’
explanation.

Hybrid Variables

Dike crest levels were defined as the maximum vertical distances relative to the dike
toe and were critical for determining the run-up extent. The maximum crest level was
estimated by adding maximum water depth, maximum wave height, and minimum free-
board. The dike slope was used to determine the horizontal distance between the toe of the
dike and the crest. Typical ranges of dike slopes and minimum free-board were determined
by asking design experts who practice dike design in accordance with criteria mentioned
by [72].

2.2. Stochastic Model Setup

The stochastic model was made in the user-defined mode of UNINET in order to sam-
ple varied vegetated-hydrodynamic conditions. UNINET models nonparametric Bayesian
networks which are from the family of hybrid BNs characterized by Gaussian copulas.
Setting-up the directed acylcic graph of a NPBN requires marginal distributions of random
variables as nodes and (conditional) rank correlations as influences on arcs. Continuous
marginal distributions of the random variables (nodes) were defined from a range of
parametric distributions available in UNINET, see Table 2. For influences (arcs), bivariate
rank correlations were determined through data or expert judgment. Once the DAG was
setup, analytical conditioning of the NPBN was performed by UNINET and Monte Carlo
samples of variables were generated which established the varied vegetated hydrodynamic
conditions.
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2.2.1. Marginal Distributions

While determining the marginal distributions, as presented in Table 2, preference
was given to published studies that explicitly provide parameterized distributions for
variables, e.g., offshore wave height [21], peak wave period [22], and mangrove trunk
height [27]. Secondly, when explicit estimates of distributions were not available, data over
multiple spatial domains and long temporal scales was used. Only hydrodynamic data
of such sort was available which was used to cross-check the marginal distribution and
was instrumental in determining rank correlations. However, when multispatiotemporal
data was not available, local datasets at specific locations were used to derive the first best
assessment of the distributions, e.g., salt marsh height, frontal width, and density. If no
data was available, literature was consulted to carry out a meta-analysis aimed to identify
general trends about variability of a variable which could be used to infer distributions, e.g.,
drag coefficient, vegetation, and offshore slope. Except for the variables from published
studies, beta distribution was preferred for most of other variables due to its ability to give
control of both the bounds (range) and the variability within the bounds (density function).

Table 2. Ranges and marginal distributions for variables in the vegetated hydrodynamic system. Refer to Table A1 for
complete description of variable distributions.

Variable Symbol Unit Range Distribution Source

Offshore Wave Height Hm0 m 0.1 to ≈ 8 Weibull [21]
Peak wave period Tp s 1 to ≈ 30 Gamma [22]
Water depth h m 0.01 to 5 Uniform [23]
Offshore slope S0 – 1

10 to 1
500 Beta Experts

Vegetation forest length Lv m 1 to 1500 Beta [65]
Vegetation slope Sv – 1

500 to 1
1000 Beta Expert

Benthic Seagrasses

Friction coefficient c f – 0.01 to 0.1 Beta [70]

Submerged Saltmarshes

Vegetation height hv m 0.02 to 1.75 Beta [31]
Frontal width bv m 0.0001 to 0.025 Beta [31]
Vegetation density Nv stems/m2 10 to 2000 Beta [31]
Drag coefficient Cd – 0.1 to 3 Beta [26]

Emergent Mangroves

Stems height hv,s m 0.1 to 5 Beta [27]
Stems frontal width bv,s m 0.01 to 0.25 Beta [69]
Stems density Nv,s stems/m2 0.1 to 100 Beta [69]
Stem drag coefficient Cd,s – 0.1 to 2.5 Beta [26]
Trunk height hv,t m 0.1 to 4 Beta [27]
Trunk frontal width bv,t m 0.1 to 0.8 Beta [73]
Trunk density Nv,t trunk/m2 0.5 to 5 Beta [69]
Trunk drag coefficient Cd,t – 0.1 to 3 Beta [26]
Roots height hv,r m 0.2 to 6 Beta [27]
Roots frontal width bv,r m 0.004 to 0.1 Beta [69]
Roots density Nv,r roots/m2 1 to 250 Beta [69]
Roots drag coefficient Cd,r – 0.1 to 4 Beta [26]

Hybrid

Dike slope Sd – 1
2 to 1

10 Beta Experts
Crest level hc m 1 to 20 Gaussian Expert
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2.2.2. Correlations and Copulas

Bivariate rank correlations were calculated from various sources of data and in-house
expert judgment as presented in Table 2 and elaborated in following sections. Moreover, in
case of conditional dependence, where a child node is dependent on more than one parent
node, recursive formula [56,64] in Equation (1) was used to calculate conditional rank
correlations. For instance, conditional rank correlation for frontal width and vegetation
density given vegetation height (bv, Nv|hv) was calculated using bivariate rank correlations
of (hv, bv), (hv, Nv), and (Nv, hv).

ρ12|3 =
ρ12 − ρ13 · ρ23√(

1− ρ2
13
)
·
(
1− ρ2

23
) (1)

where ρ12|3 is the conditional rank correlation coefficient of random variables X1 and X2 given X3.

Data Processing

Raw field data was processed to acquire correlation coefficients and synthetic data
sampled from an estimated Gaussian copula. An example of data processing is presented
for two vegetation variables: vegetation height (hv) and frontal width (bv), see Figure 6.
The field vegetation data for Chesapeake Bay in the north-eastern part of the US was used
from four different stations along a transect containing Spartina alterniflora and Spartina
patens species. The raw data in Figure 6a was transformed to the unit square based on
its cumulative distribution function (Figure 6b) and the Gaussian copula was estimated
(Figure 6c). This copula together with the marginal distributions may be used to sample
synthetic data. In Figure 6d, random sampling for both variables was transformed back
to original units through the inverse of the cumulative distributions function. Similar
analysis of both hv and bv was done in relation to vegetation density and, overall, the rank
correlations obtained from this data source were of (hv, bv), (hv, Nv), and (Nv, hv).

For the hydrodynamic variables, time-series data was obtained for 10 distinct locations
over 25 years with 3-hour resolution from waveclimate.com and treated in a similar manner
as explained for the vegetation variables. The 10 major deltas with vegetation on foreshores
were selected from [74] and representative average values for wave conditions are presented
in Table 3. The rank correlation obtained from this data source, as presented in Figure 7,
were ρ(Hm0, Tp), ρ(Hm0, h), and ρ(Tp, h).

Table 3. World wave climate based on ten cities in biggest deltas having vegetated foreshores.

City, Country Location Vegetation Wave Height (Hm0) [m] Wave Period (Tp) [s]

Mean Variance Mean Variance

Los Angeles, USA 33° N 120° W Saltmarsh 2.17 0.73 11.99 9.73
Mérida, Mexico 21° N 090° W Seagrass 0.44 0.07 4.13 2.55
São Luís, Brazil 01° S 043° W Mangroves 1.63 0.15 8.71 6.77
Texel, Netherlands 53° N 005° E Saltmarsh 0.82 0.46 5.91 5.03
Lagos, Nigeria 05° N 003° E Seagrass 1.34 0.13 12.69 4.30
Dubai, UAE 25° N 054° E Seagrass 0.60 0.18 4.99 1.14
Karachi, Pakistan 24° N 067° E Mangroves 1.35 1.38 10.39 11.50
Shanghai, China 32° N 122° E Saltmarsh 0.95 0.32 5.45 3.40
Surabaya, Indonesia 06° S 113° E Mangroves 0.63 0.17 4.32 1.44
Sydney, Australia 34° S 152° E Saltmarsh 2.15 0.87 9.29 8.99

http://waveclimate.com/
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Figure 6. Copula and correlations from field data for vegetation height (hv) and frontal width (bv).

Expert Judgment

In case of unavailability of data or literature, the classical model of expert judgment is
an option [55,75–79] to determine rank correlations between two or more variables. In this
case, the classical model could not be fully implemented due to limited resource. However,
in-house expert judgment was incorporated through verbal communication with experts
and elicitation from a combination of general trends from literature. For example, a higher
water level would require a higher dike crest level hence the rank correlation for (h, hc)
was defined positive. Overall, individual estimates of experts about the nature (positive or
negative) and strength (value) of correlations were collated together to derive estimates
of dependence among variables. The correlations defined based on expert judgment, as
mentioned in Table 4, were mainly for vegetation and hybrid variables.
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Figure 7. Copulas and correlations determined from data for hydrodynamic variables (Hm0, Tp, h).

The resulting ranges, distributions, and correlations from literature meta-analysis,
data processing, and expert judgment are presented in Tables 2 and 4 along with their
main source. These quantification results formed the basis for setting up the nonparametric
Bayesian networks for salt marshes and mangroves as presented in Figure 8 and Figure 9
respectively.
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Table 4. Rank correlations among variables in salt marsh system. See Figure 9 for correlations of
mangrove system variables.

Correlations Nature Coefficient Source

Hm0 ↔ Tp + 0.54 Data
Hm0 ↔ h + 0.37 Data

Sv ↔ Hm0 + 0.41 Expert Judgment
Sv ↔ Lv − 0.33 Expert Judgment
Sv ↔ Nv − 0.57 Expert Judgment
hv ↔ bv + 0.62 Data
Nv ↔ hv − 0.38 Data
Nv ↔ bv − 0.48 Data
Nv ↔ Lv − 0.12 Expert Judgment
bv ↔ Cd + 0.55 Expert Judgment
h↔ hc + 0.31 Expert Judgment

Sd ↔ hc + 0.43 Expert Judgment

Figure 8. Nonparametric Bayesian network for salt marsh environment [1,30]. The boxes represent
nodes (variables with their marginal distributions) and lines represent influences (rank correlations).
Color indicates different components in the system: blue for hydrodynamics, gray for dike, light
green for seagrass-saltmarsh variables.
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Figure 9. Nonparametric Bayesian network for mangroves environment. The boxes represent nodes
(variables with their marginal distributions) and lines represent influences (correlations). Color
indicates different components in the system: blue for hydrodynamics, gray for dike, light green
for general vegetation variables, dark green for stems, brown for trunk, and yellow for roots of
mangroves.

3. Results

This work aimed to obtain a better understanding of mangroves and salt marshes
and parameters influencing wave attenuation by these ecosystems. This was approached
through constructing a stochastic model for salt marshes and mangroves in the form of
nonparametric Bayesian networks which capture the dependence among variables of
interest. The NPBNs could be used to sample varied vegetated hydrodynamic conditions
that tend to coexist in physically realistic windows.

3.1. Vegetated Hydrodynamic System

The nonparametric Bayesian network representing salt marsh environment is pre-
sented in Figure 8. Overall, the NPBN quantifies the influences between the vegetation
and the hydrodynamic variables which eventually captures the underlying dependence
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of the system. Interactions among groups of variables (vegetation and hybrid) are linked
through hydrodynamic variables as the incoming energy determines both dike crest levels
and foreshore slopes. Stem width shows conditional dependence on other variables as it
has two parent nodes, i.e., stem height and vegetation density. Variables near the offshore
boundary, such as offshore slope and seagrass bed roughness, do not interact actively with
the rest of the system and therefore operate as independent variables.

Similarly, for mangrove environments the NPBN is presented in Figure 9. The man-
grove variables were divided into three layers (roots, trunk, and stem) due to the differences
in their phytomorphological characteristics. Root density plays an important role in this
NPBN as it links vegetation slope and forest length to the root layer and further links all
mangrove layers to each other. This allows for the maintenance of the harmony between
individual plant characteristics and the overall forest characteristics in sampled conditions.
Similarly, using the relative emergent property of mangroves, the root height is linked to
water depth that conceptually connects hydrodynamic variables to vegetation variables.

Accounting for the multivariate-dependence enables the generation of Monte Carlo
samples of variables, which constitute varied boundary conditions. This, for instance,
in the case of relatively more energetic hydrodynamic conditions generates samples of
reflective beaches, higher and steeper dikes, and higher mangrove roots. Similarly, root
variables influence trunk and stem variables as root structure categorizes mangroves into
juvenile or mature mangrove types.

3.2. Dependence

The NPBNs are based on a consistent joint probability distribution of all the variables
in the network correlated to one another. Due to conditional dependence, more correlations
were revealed apart from the ones that were already defined to setup the model, e.g., stem
height and drag coefficient. This resulted in a symmetric correlation matrix which indicates
the dependence among all variables, see Table 5 for the correlation matrix of the salt marsh
system. A value close to 1.0 represents the strongest correlation, e.g., self-correlation on the
diagonal, and a value close to 0.0 represents the weakest correlation, e.g., c f and Sd.

Table 5. Correlation matrix of stochastic model for salt marshes, also see Figure 10. Highest correlation is 1.00, lowest is 0.00.
Positive and negative values show positive and negative correlations. The correlations other than the ones in Figure 8 have
been calculated using Equation (1). Similar correlation matrix for mangroves nonparametric Bayesian network (NPBN) is
presented in Supplementary Materials.

Hm0 h Tp c f Sd hc Lv Nv Cd hv bv Sv S0

Hm0 1.00 0.37 0.54 0.00 0.05 0.12 −0.14 −0.24 0.07 0.09 0.12 0.41 0.00
h 0.37 1.00 0.20 0.00 0.14 0.31 −0.05 −0.09 0.03 0.04 0.05 0.16 0.00

Tp 0.54 0.20 1.00 0.00 0.03 0.07 −0.08 −0.13 0.04 0.05 0.07 0.23 0.00
c f 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sd 0.05 0.14 0.03 0.00 1.00 0.43 −0.01 −0.01 0.00 0.01 0.01 0.02 0.00
hc 0.12 0.31 0.07 0.00 0.43 1.00 −0.02 −0.03 0.01 0.01 0.01 0.05 0.00
Lv −0.14 −0.05 −0.08 0.00 −0.01 −0.02 1.00 −0.12 0.03 0.05 0.06 −0.32 0.00
Nv −0.24 −0.09 −0.13 0.00 −0.01 −0.03 −0.12 1.00 −0.27 −0.38 −0.48 −0.57 0.00
Cd 0.07 0.03 0.04 0.00 0.00 0.01 0.03 −0.27 1.00 0.35 0.55 0.16 0.00
hv 0.09 0.04 0.05 0.00 0.01 0.01 0.05 −0.38 0.35 1.00 0.62 0.22 0.00
bv 0.12 0.05 0.07 0.00 0.01 0.01 0.06 −0.48 0.55 0.62 1.00 0.28 0.00
Sv 0.41 0.16 0.23 0.00 0.02 0.05 −0.32 −0.57 0.16 0.22 0.28 1.00 0.00
S0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

The correlation matrices generated by UNINET were transformed to adjacency matri-
ces (which use absolute values of correlations) and have been plotted in Figure 10 for both
the salt marsh and mangroves NPBNs. Figure 10a,c show all possible correlations among
variables. The extensive amount of influences show the inherent complexity of the vege-
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tated hydrodynamic system which is undermined when it is studied using deterministic
methods. Dominant correlations were filtered out by fixing the correlation threshold to 0.1,
see Figure 10b for salt marshes and Figure 10d for mangroves.
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Figure 10. Correlations in global vegetated hydrodynamic conditions in saltmarshes (a,b) and
mangroves (c,d). The circles represent nodes (variables), lines represent the correlations in the
network, and thickness of the lines represents strength of the correlation. Plots (b) and (d) have
minimum correlation threshold of 0.1 to distinguish dominant correlations.

The strength of copulas and dependence modeling allows us to demonstrate the
influences which are not initially perceived. For salt marshes an example could be the
correlations of wave height with drag coefficient, vegetation height, frontal width, dike
slope, and crest level. The strongest conditional dependence is between drag coefficient and
vegetation height, followed by wave height and vegetation density, drag coefficient and
vegetation density, and vegetation slope and frontal width in salt marshes. For mangroves,
the strongest of such “non parent-child” correlations is between trunk height and trunk
drag coefficient while other examples include wave height and root height, stem density
and vegetation slope, and trunk frontal width and trunk density. This means that the
effects on the system of all such correlated variables shown in Figure 10b,d should not
be studied in isolation from the other variables, otherwise the true system response (e.g.,
wave damping) would not be revealed.
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3.3. Realistic Boundary Conditions

Analytical conditioning of the stochastic model and Monte Carlo sampling (a process
of picking up random values from a probabilistically interpreted system) resulted in logical
combinations of variables. Due to the correlations and the joint distribution, two variables
are “tied-up” together such that the range of a variable only coexists within a certain range
of another variable, e.g., high waves with long periods.

Table 6 shows part of 300 physically realistic combinations of variables in saltmarsh
environments representing boundary conditions which could potentially be used for hy-
drovegetation modeling. The sampled conditions represent combinations of hydrodynamic
forcing, physical conditions, sea states, vegetation types, vegetation characteristics, and
flood defense extents to cover the entire space of variations that would yield generalized re-
sults when analyzed further. An example of the sampling result could be seen in Figure 11
which shows combinations of foreshore slope, forest length, crest level, and dike slope.

Table 6. Monte Carlo samples from NPBN for salt marsh environments.

Run Hm0 Tp h S0 hv bv Nv Sv Lv Cd c f Sd hc

1 2.32 11.5 0.39 0.024 0.259 0.006 417 0.00156 309.1 1.63 0.03 0.27 11.18
2 6.63 20.0 3.58 0.011 0.404 0.007 759 0.00165 342.7 1.52 0.072 0.29 13.05
3 3.37 14.2 4.86 0.006 0.911 0.012 1217 0.00131 1075.2 0.91 0.057 0.36 12.04
4 4.69 8.2 2.99 0.007 0.109 0.002 651 0.00175 478.2 0.72 0.061 0.3 14.8
5 0.15 5.1 0.53 0.007 0.667 0.013 1464 0.00118 168.3 1.73 0.079 0.12 12.69
6 1.29 8.5 0.81 0.021 0.653 0.021 372 0.00179 1310.3 1.98 0.052 0.15 11.63
7 1.95 8.9 0.84 0.021 0.147 0.010 125 0.00174 1224.4 1.37 0.093 0.16 13.17
8 7.14 13.0 2.23 0.005 1.625 0.024 504 0.00199 4.4 1.56 0.074 0.29 11.42
9 1.37 5.6 0.78 0.014 0.219 0.001 1311 0.00164 676.5 0.35 0.062 0.16 10.31

10 1.72 8.3 0.56 0.011 0.462 0.017 1086 0.00174 123.91 1.52 0.065 0.25 9.79
...

...
...

...
...

...
...

...
...

...
...

...
...

...
300 1.30 8.2 0.84 0.012 0.731 0.008 140 0.00164 1200.97 0.71 0.08 0.26 9.92
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Figure 11. Sampled profiles (10/300).

A comparison of the conditions sampled from the salt marsh NPBN as the ‘dependent
case’ with the conditions sampled from an independent DAG with uniformly distributed
variables as the "independent case" is presented in Figure 12. For the independent case,
sampled combinations cover almost the complete sampling space whereas for the depen-
dent case a variable-specific pattern exists. For example, wave heights and wave periods
are not sampled in any recognizable trend for the independent case but the conditions
sampled from the stochastic model show positive dependence such that there are almost
no conditions sampled for high wave heights with low wave periods or vice versa. When
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compared to the data analyzed in this study and the published literature [23,80–84], the
independent case deems to be unrealistic and the dependent case is in harmony for the
variables whose dependence information is published. Hence, Figure 12 not only shows the
pair-wise dependence of variables that emerged beyond the correlations initially defined,
but also shows the realistic “windows” of variables where they coexist.

Moreover, the correlation for ρ(Hm0, Tp) was explicitly introduced while setting up
the model but the results go beyond the specified correlations and reveal unspecified
dependence. For instance, ρ(Hm0, Nv) was not specified initially but the corresponding
plot in Figure 12 shows that for higher wave heights the vegetation density seems to have
negative correlation and shows signs of tail dependence. This means that less vegetation
is expected in high energetic environments. One possible explanation for this could be
breakage or uprooting during storms as shown by [85].
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Figure 12. Comparison of varied vegetated hydrodynamic conditions sampled from an independent DAG with uniformly
distributed variables (gray dots) and the stochastic model of this study (black dots) that was quantified with distributions
(Table 2) and correlations (Table 4). Yellow panels shows the distinct sampling of the variable pair with positive Hm0 − Tp

and negative dependence Nv − Sv.

4. Discussion

Vegetated hydrodynamic conditions sampled from the salt marsh and mangroves
NPBNs could be further used for hydrovegetation numerical modeling, probabilistic mod-
eling, or system-based sensitivity analysis. These conditions help to reduce the number of
numerical simulations required to produce generalized results, aid probabilistic analysis in
data-scarce environments, and provide a basis for a holistic system-based sensitivity analysis.
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4.1. Value of Dependence Modeling Using Nonparametric Bayesian Networks

The value of dependence modeling of vegetated coastal systems for generating varied
boundary conditions lies in obtaining physically realistic boundary conditions, which,
when simulated, reduces bulk simulation time and increases the authenticity of overall
system response. Using this approach will advance current modeling practice as conditions
and values for sensitivity analysis are too often randomly or quickly selected instead of
being informed by realistic situation. This asks for a good understanding of the biogeomor-
phological system and goes beyond standard modeling efforts by engineers solely. Hence,
even in modeling studies inclusion of biophysical disciplines is essential to achieve realistic
results that can be translated to situations encountered in real life.

4.1.1. Methodological Value

Many Bayesian network based studies for coastal applications have been published
but nearly all of them use discrete Bayesian networks [47–54] except the very few recent
ones which use NPBNs [86–89]. In discrete BNs, variables have to be discretized into bins
where the number and sizes of the bins need to be correctly fine-tuned to ensure that each
bin represents homogeneous information and has nearly similar impact on the child node.
This introduces subjectivity as the decisions about bins could vary from person to person
which adds another source of uncertainty in modeling discrete BNs. Belonging to the
hybrid BNs family, NPBNs provide flexibility to incorporate both discrete and continuous
marginal distributions in the same graph, thereby reducing the subjectivity and uncertainty.

4.1.2. Reduced Numerical Simulations

Using the sampled boundary conditions from the NPBNs can greatly reduce the
number of simulations required to produce generalized results by orders of magnitude. The
number of simulations (Ns) required to quantify conditional probabilities of all variables
in the system were in the order of (O)4 to (O)5 for [31,51,65]. The reason for such large
Ns is that it is a (sum-product) function of the number of variables and the number of
permutations per variable, see Equation (2). If any of the two factors increase, the required
number of simulations increases geometrically. With 13 variables of seagrass-saltmarshes
system even if only 13 permutations per variable are numerically modeled, the number of
simulations would go to a gigantic amount of 3.2 · 1014 which is computationally near to
impossible. However, the number of simulations for the method presented in this study
are only a function of the number of permutations due to the use of copulas. NPBNs can
extract the dependence information even if all variables are varied at once; hence variables
can be modeled as many times as the computational capacity permits.

Ns =
n

∏
i=1

vi (2)

where, Ns is total number of simulations, n is number of variables, i is a given variable, and v is the
number of variations of a given variable [90].

4.1.3. Filling Information in Data-Scarce Environments

Measured data, especially for vegetation, still remains scarce, however this should
not stop the attempts to understand biophysical systems and quantification of the value
of nature-based solutions. While modeling such systems, these NPBNs could be used to
extract missing information in data-scarce scenarios if all the boundary conditions are not
available. The dependence modeling makes sure that the rest of the boundary conditions
fall into physically realistic ranges. As an application, this has been illustrated in Figure 13b
using the conditions measured for Posidonia oceanica species in the Mediterranean Sea
by [39]. First, in Figure 13a only one variable h was conditionalized to observe other depen-
dent variables in a highly data-scarce case. While some variables like Nv = 610 stems/m2

and hv = 0.826 m were within less than 3% error range when compared to the measured
ones (Nv = 615 and hv = 0.8), other variables provided fairly acceptable (but not very
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accurate) first-order estimates. Subsequently, more known variables were conditionalized
to make the NPBN case specific. The NPBN was updated after conditionalizing Hm0, h, Cd,
hv, and Lv, and the mean values of Nv = 736 stems/m2 and bv = 0.0096 m were observed.
When compared to measured values of Nv = 615 and bv = 0.0086 m by [39], the error
was found to be within acceptable range (19% and 11% respectively). It is noteworthy
that NPBNs provide an advantage to assimilate new information from newer sources
in the existing model [91]. On the other hand, as argued by [92], for the optimal use of
probabilistic models subject knowledge and physical understanding about the context of
the modeler plays an important role.

(a) h conditionalized to observe Nv and hv (b) Hm0, h, Cd, hv, Lv conditionalized to observe Nv & bv

Figure 13. Case application using the conditions measured by [39].

4.1.4. Better System-Based Response

Thinking in terms of traditional sensitivity analysis, where one variable is varied
while keeping all others fixed, the proposed method of conducting sensitivity analysis
using correlated boundary conditions that vary all at once has an added advantage. As we
believe natural systems are highly dynamic and often show nonlinear responses, the system
response to boundary conditions that are varied individually would be comparatively
different to the response generated by changing all boundary conditions simultaneously.
Therefore, contrarily to the proposed method, traditional sensitivity analysis does not
suffice in determining the real system response to varied conditions. Using dependence
modeling to generate boundary conditions that vary all together but in a correlated way
not only provides physically-realistic conditions but also adds value to any further analysis
done using those conditions.

4.2. Limitations and Way forward

The limitations of this study are based on simplification choices and the restrictions of
the tools used for modeling.

• Rigid Cylindrical Vegetation: Vegetation was modeled as rigid cylinders which do
not bend, undergo uprooting, or break in storm conditions which are critical for the
system response [85].



Water 2021, 13, 398 20 of 25

• Data Availability: Ideally the statistical description should be derived from the data
but due to limited data and responses, stochastic modeling was performed using
in-house expert judgment for some of the variables.

• Gaussian Copula: Dependence analysis throughout the study was based on Gaus-
sian copula. However, there is evidence of other dependence structures [80] for the
variables in this study.

Recommendations for improvement and future research direction are listed below.

• New field data or data from global models could be obtained to expand the domain
and scale of hydrodynamic and vegetation variables both spatially and temporally.

• Better dependence structure, e.g., vines, could be explored since the Gaussian copula
is not the most accurate dependence description for some of the variables.

As a way forward, the results from this study in the form of physically realistic vege-
tated hydrodynamic conditions could be utilized to carry out hydrovegetation numerical
modeling. The aim here would be to observe generalized system response in terms of flood
hazard reduction potential of vegetation under a variety of conditions. Variables such as
the wave attenuation coefficient or run-up could be added to the existing NPBNs from
this study to relate physical boundary conditions to the resulting effect of vegetation on
hydrodynamics.

5. Conclusions

The vegetated hydrodynamic system was probabilistically parameterized using a
range, distribution, and correlations among variables. The system was stochastically mod-
eled using nonparametric Bayesian networks for sea grasses, salt marshes, and mangroves.
The resulting NPBNs revealed dominant correlations among variables which derive the
dynamics of the vegetated hydrodynamic system. NPBNs also revealed dependence infor-
mation among variables beyond the pair-wise correlations which were initially quantified
to set up the model. Modeling salt marsh and mangrove systems stochastically has enabled
assessment of holistic system-based response to variations in individual variables. The
NPBNs are capable of generating physically-realistic varied boundary conditions that
are useful for further analysis such as reducing hydrovegetation numerical simulations
required to acquire generalized information, improving traditional randomly-selected
sensitivity analysis with a more cross-disciplinary system-based sensitivity analysis, and
filling information in data-scarce environments. The main findings, which were derived
by using a NPBN, help to pave the way for generating both generalized and predictive
knowledge required for implementation of nature-based solutions in a range of realistic
conditions that can be found across global coastal foreshores.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/4/398/s1, A .txt with 10,000 sampled conditions from both NPBNs for future use. A .txt with
correlation matrices for both NPBNs.
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Nomenclature

The following nomenclature has been used in this article:

Symbol Meaning Unit
ρ Rank correlation -
Hm0 Offshore wave height m
Tp Peak wave period s
h Water depth from diketoe m
Re Reynolds number –
KC Keulegan–Carpenter number –
S0 Offshore slope -
c f Bed friction coefficient -
Lv Vegetation forest length m
Sv Vegetation forest slope -
hv Vegetation height m
bv Stem frontal width m
Nv Vegetation density stems/m2

Cd Bulk drag coefficient -
hc Dike crest level m
Sd Dike slope -
∗∗,r Mangrove roots layer -
∗∗,t Mangrove trunk layer -
∗∗,s Mangrove stems layer -
Ns No. of simulations -

Appendix A. Variable Table for Distributions

Table A1. All random variables with their distribution details used in stochastic modeling.

Variable Distribution Bounds Mean SD Percentiles

Min Max 5% 50% 95%

Hydrodynamic

Wave Height Hm0 [m] Weibull: α = 2.93; β = 2.21 0.1 ≈ 8 2.69 1.24 0.86 2.58 4.91
Peak wave period Tp [s] Gamma: α = 1.25; β = 7.02 1 ≈ 30 9.77 3.31 5.12 9.36 15.83
Water depth h [m] Uniform: a = 0.01; b = 5 0.01 5 2.5 1.44 0.25 2.5 4.75
Offshore slope S0 [–] Beta: α = 1.86; β = 20.9 1

10
1

1000
1

180
1

350
1

90
1

200
1

500

Seagrasses & Overall Forest

Friction coefficient c f [–] Beta: α = 1.75; β = 2.18 0.01 0.1 0.05 0.02 0.018 0.049 0.084
Vegetation slope Sv [–] Beta: α = 2.85; β = 2.33 1

500
1

1000
1

660
1

5000
1

530
1

660
1

830
Vegetation length Lv [m] Beta: α = 1.35; β = 2.10 1 1500 587 346 86 553 1205

Satlmarshes

Vegetation height hv [m] Beta: α = 1.30; β = 1.64 0.02 1.75 0.79 0.43 0.13 0.76 1.52
Frontal width bv [m] Beta: α = 1.36; β = 1.60 0.0001 0.025 0.011 0.006 0.002 0.011 0.022
Veg. density Nv [ stems

m2 ] Beta: α = 1.45; β = 2.75 10 2000 697 415 115 645 1458
Drag coefficient Cd [–] Beta: α = 1.47; β = 3.26 0.1 3 1 0.56 0.24 0.91 2.04
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Table A1. Cont.

Variable Distribution Bounds Mean SD Percentiles

Min Max 5% 50% 95%

Mangroves

Roots height hvr [m] Beta: α = 2.14; β = 2.19 0.2 6 3.06 1.25 1.02 3.05 5.12
Roots width bvr [m] Beta: α = 1.36; β = 1.60 0.004 0.1 0.048 0.024 0.011 0.047 0.088
Roots density Nvr [

roots
m2 ] Beta: α = 1.80; β = 2.73 1 250 100 51.75 22.5 96 191.3

Roots drag coeff. Cdr [–] Beta: α = 1.47; β = 3.27 0.1 4 1.31 0.75 0.28 1.20 2.72

Trunk height hvt [m] Beta: α = 1.8; β = 3.8 0.1 4 1.35 0.70 0.35 1.27 2.65
Trunk width bvt [m] Beta: α = 1.44; β = 4.32 0.1 0.8 0.275 0.117 0.12 0.25 0.50
Trunk density Nvt [

trunks
m2 ] Beta: α = 1.45; β = 2.90 0.5 5 2 0.92 0.73 1.88 3.70

Trunk drag coeff. Cdt [–] Beta: α = 1.47; β = 3.27 0.1 3 1 0.56 0.23 0.92 2.04

Stems height hvs [m] Beta: α = 1.8; β = 3.8 0.1 5 1.675 0.90 0.42 1.57 3.31
Stems width bvs [m] Beta: α = 1.43; β = 2.38 0.01 0.25 0.1 0.053 0.024 0.094 0.195
Stems density Nvs [

stems
m2 ] Beta: α = 1.75; β = 2.18 1 100 45 22.15 10.68 44 82.8

Stems drag coeff. Cds [–] Beta: α = 1.47; β = 3.27 0.1 2.5 0.84 0.46 0.212 0.777 1.710

Dike Variables

Dike slope Sd [–] Beta: α = 1.38; β = 2.30 1
2

1
10

1
4

1
112

1
2.5

1
4

1
8

Crest level hc [m] Gaussian: µ = 12; σ = 2.5 1 20 12 2.5 7.88 12 16.11
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