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Abstract: Proper monitoring of quality-related but hard-to-measure effluent variables in wastewater
plants is imperative. Soft sensors, such as dynamic neural network, are widely used to predict and
monitor these variables and then to optimize plant operations. However, the traditional training
methods of dynamic neural network may lead to poor local optima and low learning rates, resulting
in inaccurate estimations of parameters and deviation of predictions. This study introduces a general
Kalman-Elman method to monitor the effluent qualities, such as biochemical oxygen demand (BOD),
chemical oxygen demand (COD), and total nitrogen (TN). The method couples an Elman neural
network with the square-root unscented Kalman filter (SR-UKF) to build a soft-sensor model. In the
proposed methodology, adaptive noise estimation and weight constraining are introduced to estimate
the unknown noise and constrain the parameter values. The main merits of the proposed approach
include the following: First, improving the mapping accuracy of the model and overcoming the
underprediction phenomena in data-driven process monitoring; second, implementing the parameter
constraint and avoid large weight values; and finally, providing a new way to update the parameters
online. The proposed method is verified from a dataset of the University of California database
(UCI database). The obtained results show that the proposed soft-sensor model achieved better
prediction performance with root mean square error (RMSE) being at least 50% better than the Elman
network based on back propagation through the time algorithm (Elman-BPTT), Elman network
based on momentum gradient descent algorithm (Elman-GDM), and Elman network based on
Levenberg-Marquardt algorithm (Elman-LM). This method can give satisfying prediction of quality-
related effluent variables with the largest correlation coefficient (R) for approximately 0.85 in output
suspended solids (SS-S) and 0.95 in BOD and COD.

Keywords: soft-sensor; Kalman filter; Elman network; adaptive noise

1. Introduction

During recent decades, increased awareness about the negative impact of eutrophica-
tion on the quality of water bodies and advances in environmental technology have given
rise to more stringent wastewater treatment requirements and regulations [1,2]. Currently,
proper monitoring of wastewater plants is one of the main challenges for water utilities
worldwide, with significant environmental and cost-saving implications. Measurement and
monitoring of effluent qualities are one of most important aspects. Because of the extreme
working conditions, the highly complex processes of microbial growth and large measure-
ment delays, the measurement of effluent quality parameters, such as BOD5 (biochemical
oxygen demand for 5 days), COD (chemical oxygen demand), and TN (total nitrogen)
is usually difficult [2,3]. To describe the physical, chemical, and biological reactions in
wastewater, many differential equations are required, which discourages process model
construction. Because prior knowledge is not required, data-driven soft-sensor technology
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has become the most commonly-used method to measure the quality-related variables
of biological treatment processes in the wastewater treatment. Essentially, data-driven
soft-sensor technology aims to construct a certain mathematical model to describe the
relationship between input and output variables, to predict hard-to-measure variables
without necessarily resorting to an accurate mechanism model [4].

Generally, the physical, chemical, and biological phenomena associated with treatment
units always lead to many difficult-to-measure quality-related variables, such as biochemi-
cal oxygen demand (BOD), COD, and TN, thus complicating the reliable management of
WWTPs [5]. Even though some hardware sensors have been developed, the unacceptable
costs and unreliability of the corresponding hardware sensors always make them inade-
quate for large amounts of WWTPs, particularly in rural areas or in developing countries.
With the recent development of machine learning, data-driven soft sensor technology has
been widely used in wastewater treatment processes [6] and has become an important
component of advanced process control technology [7]. Specifically, neural network-based
data-driven soft-sensors have become one of the most active research fields due to their
strong nonlinear mapping ability, network topology, and robustness [8], as well as their
independence from mathematical models [9]. However, traditional feedforward neural net-
works are difficult to apply for wastewater treatment processes due to failure to deal with
strong dynamical issues. Wastewater processes always exhibit strong nonlinear dynamics
(such as extreme weather conditions) and have coupling effects among the variables (such
as recycling of the sludge in the secondary clarifier). These factors add more necessity to
the wide applications of adaptive neural networks for soft-sensor modeling in WWTPs.
Internal feedback connections between processing units were augmented into a neural
network (NN) to formulate a recursive neural network (RNN) and to enhance the dynamic
prediction ability. As one of the most typical RNN, the dynamic characteristics of Elman
network has been proved by Guan et al. [10] and Liang [11].

Recently, many methods have been proposed to train RNNs [12], such as the real-time
recurrent learning (RTRL) [13] algorithm, back propagation through time (BPTT) [14], mo-
mentum gradient descent algorithm, and Levenberg-Marquardt (LM) algorithm [15]. All of
these methods have been widely used and exhibit superior capabilities. Unfortunately,
they may be plagued by converging into poor local optima and a low learning rate [16,17].
The Kalman filter (KF) [18] provides an inherently recursive solution to the optimal fil-
tering estimation problem and to reducing forecast uncertainty. Moreover, the KF can be
implemented in sequential mode and does not require an inversion of the approximate
Hessian matrix. Unfortunately, the KF is usually only tractable for linear systems. To apply
the Kalman framework to nonlinear systems, the extended Kalman filter (EKF) [18] and
unscented Kalman filter (UKF) [19] are two common usages of nonlinear Kalman filters.
The EKF, an effective second-order algorithm, can be applied to estimate the weights of
RNN. The use of the EKF for training neural networks has been developed by Singhal and
Wu [20] and Puskorious and Feldkamp [21]. Actually, the first-order truncated Taylor series
expansion employed by EKF can induce large estimation errors and lead to divergence
of the filter itself. These can be addressed using UKF. The UKF consistently outperforms
the EKF in terms of prediction and estimation error [22,23]. Rudolph van der Merwe et al.
proposed the algorithm of numerically effective square root form of UKF (SR-UKF) [24],
which can effectively preserve the symmetry and positive definiteness of the updated
covariance. To date, the use of the group of UKF algorithms has been further expanded
within the general field of probabilistic inference [25] and machine learning [26]. However,
few researches devoted to process monitoring of effluent qualities in wastewater treatment.
This paper adopts the SR-UKF to train the standard Elman network. Considering the un-
certainty of statistical characteristics of the system noises in the actual system will affect the
prediction performance [27], this paper introduces an adaptive Sage-Husa noise estimation
method to solve this problem. In addition, it is important that there is no restriction on
weight values in the traditional training methods for Elman network, which could lead



Water 2021, 13, 3659 3 of 21

to inefficient standard Elman network model building. Therefore, this paper applies a
parameter constraint algorithm to avoid large weight values.

In this study, an Elman network based on SR-UKF was proposed to monitor the efflu-
ent qualities, which can improve the prediction performance and ensure wide applicability
of the Elman network. The contributions of this paper were mainly from three aspects.
(i) First, this paper combined the Elman network with the Joseph form of UKF to build
a soft-sensor model, thus being further able to enhance the accuracy and reliability of a
soft-sensor. (ii) Second, this study proposed an adaptive method to estimate the system
noise in real-time. This can ensure that the soft-sensor model is capable of achieving
accurate prediction in case of suffering unknown disturbances. (iii) Finally, to ensure model
weights are not updated aggressively and to guarantee that a robust model can be derived,
a constraint algorithm was used to constrain the model parameter values to a reasonable
range. In the proposed algorithm, the purpose of limiting weights to a specified range is
mainly to ensure that the model can achieve smooth mapping, which is able to restrict the
model complexity and avoid overfitting. Moreover, a weight constraining algorithm can
guarantee the involvement of prior knowledge by setting up a proper weight range and
then can meet the parameter setting requirements according to the specific applications.
Instead of using weights randomly, limiting weight to a specified range ensures that the
algorithm is manageable and that the reliability of a soft sensor can be further achieved.

Additionally, it is important to note the contributions of the proposed soft-sensors
for process monitoring and management of WWTPs. The physical, chemical, and biolog-
ical reactions of wastewater treatment processes often add significant nonlinearity and
dynamics for modeling and result in the degradation of standard prediction models. Thus,
to properly monitor quality-related but hard-to-measure effluent variables, this study uses
of the proposed algorithm to update the weights of the Elman network and to improve the
prediction performance. This will, in turn, provide a new way to prevent the degradation
of predictive performance. Moreover, to decrease the monitoring costs, the proposed
soft-sensor is further extended to a multioutput model, which can simultaneously monitor
multiple effluent qualities simultaneously.

The rest of this article is organized as follows. In Section 2, basic materials and
preliminary methods are given. Section 3 addresses the proposed models and validated
case study materials. Section 4 provides detailed results and discussions for the case study.
Finally, conclusions are made.

2. Preliminary Materials and Methods

In this section, the concepts and preliminary knowledge of the Kalman filter, SR-UKF,
and Elman neural network are briefly reviewed.

2.1. Kalman Filter

Based on the state space equation and measurement equation, the Kalman filter
is able to estimate the state of the process by finding the minimum mean square error.
In particular, when the system suffers from serious uncertainties, it provides an effective
way to estimate the state of the process, which can work even in the case of serious
uncertainties. The discrete-time linear system is shown as follows:{

xk = Axk−1 + Buk−1 + wk
zk = Hxk + vk

(1)

where xk and zk are the system state and the measurement vector at time step k, respectively.
A is the state transition matrix and B represents the influence matrix of the exogenous input
u on the state x. H is the observation matrix. wk and vk are process noise and measure-
ment noise, respectively, and both of them are white Gaussian noise with wk ∼ N(0, R),
and vk ∼ N(0, Q). R and Q are the process noise covariance and measurement noise
covariance, respectively.
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The Kalman filter algorithm mainly consists of two steps: state space update equations
and measurement update equations. The state space update step uses the optimal state in
the current time to estimate the next prior. In the measurement update step, the priori is
updated with the innovation contained in the latest observation. For more detail, see [18].

The Kalman filter is usually only tractable for linear systems. To apply the Kalman
framework to nonlinear systems, it is necessary to apply nonlinear Kalman filters, such
as EKF and UKF. The EKF usually uses the first-order truncated Taylor series expansion
to locally linearize the nonlinear function. However, Taylor series expansion often results
in large errors in the estimated statistics of the state posterior distribution. Additionally,
it also fails to deal with highly nonlinear system because the higher-order terms of the
Taylor series expansion are always neglected. Different from the EKF, the UKF obtains high-
order mean and covariance by approximating the probability density function through a
set of important sample points, which can avoid the errors caused by the local linearity
assumption and have higher estimated accuracy than the EKF.

2.2. SR-UKF Algorithm

As a nonlinear filtering method, the UKF algorithm is able to capture the posterior
mean and covariance of state random variables by selecting a set of important samples
(also called a set of sigma sample points) rather than explicitly approximating the nonlinear
state space and observation model with all samples.

These sigma points can accurately capture the mean and covariance of any nonlinear
function with the second order when the state variables are propagated through a nonlinear
system. The model residual errors are summarized in the third and higher orders [25].
Thus, it can effectively solve the problem of local linear assumptions and improve the
estimation accuracy and robustness of the standard Kalman filter.

For an L-dimensional random variable x with the mean x and covariance Px, the sam-
ple points χ and the corresponding weight W were selected by the scaled unscented
transformation (SUT) [28] method:

χ0 = x i = 0 w = λ
L+λ i = 0

χi = x +
(√

(L + λ)Px

)
i

, i = 1, · · · , L w(c)
0 = λ

2(L+λ)
+
(
1− α2 + β

)
, i = 0

χi = x−
(√

(L + λ)Px

)
i

, i = L + 1, · · · , 2L w(m)
i = w(c)

i = λ
2(L+λ)

, i = 1, · · · , 2L

(2)

where λ = α2(L + κ) − L is the scale parameter,
(√

(L + λ)Px

)
i

represents the ith col-

umn of the square root of the matrix (L + λ)Px, κ, and α and β are optional parameters.
The parameter κ(κ ≥ 0) is used to ensure the semipositive definition of the covariance
matrix. The parameter α(0 ≤ α ≤ 1) controls the “size” of the sigma points, which limits
identification to a small number to avoid the influence of strong nonlinearity on nonlocal
sampling. The parameter β(β ≥ 0) is a nonnegative weighted term, which can be used to
retain the information of higher-order moments.

Even though UKF works well, two shortcomings of the UKF need to be addressed.
First, in iterative learning, the generation of sigma points needs to calculate the square root
of the matrix in Equation (2). Second, due to the random error and calculation accuracy,
the positive definite nature and symmetry of the state error covariance may be broken down,
resulting in divergence of the algorithm. To address these problems, this study makes full
use of the numerically effective square root form of UKF, namely SR-UKF [24]. SR-UKF
introduces three powerful linear algebra techniques: QR decomposition, Cholesky factor
updating, and effective least squares. QR decomposition algorithm and Cholesky factor
updating algorithm. These improvements can effectively avoid the ill square root operation
of the error covariance and the negative effect of least squares (right division operator “/”
in MATLAB), and then avoid the matrix inverse operation during the calculation.

Assuming that P is the prediction error covariance matrix, according to:

P = AAT = RTQTQR = RTR = SST (3)
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The QR decomposition of the square root factor AT of P can return the upper triangular
matrix R, while S = RT is the lower triangular matrix, which can be propagated and
updated by S to avoid the square root operation in each iteration. To update S, the Cholesky
factor updating was introduced. For a Cholesky factor S of P = AAT, its vector updates
P̌ = P +

√
vuuT can be written as:

Š = cholupdate{S, u,±v} (4)

If u is a matrix rather than a vector, continuous updates can be made using each
column of u. The Kalman gain can be formulated as:

Kk = Pxkzk Pz̃k z̃k
−1 =

(
Pxkzk /ST

z̃k

)
/Sz̃k

(5)

where the operator “/” in MATLAB can avoid the inversion of the error covariance matrix.
The abovementioned techniques can improve the numerical stability of the algorithm

and maintain the positive definite nature and symmetry of the covariance matrix. For more
information, please refer to [24].

2.3. Elman Neural Network

The Elman network, is a typical local regression network [29]. The Elman network
is a recurrent neural network with local memory units and local feedback connections
(Figure 1). The recurrent layer augments the states at the previous moment and the network
input at the current moment as the input of the hidden layer. This internal state feedback
can increase the dynamic characteristics of the network.
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The Elman network mainly consists of four layers: the input layer U, the hidden layer
(or recurrent layer) R, the context layer C and the output layer Y. WRU, WRC, and WYR

represent the connection weight matrix from the input layer to the hidden layer, the context
layer to the hidden layer and the hidden layer to the output layer, respectively. The output
of the hidden layer after unit delay is used as the input of the next context layer, ck = vk−1,
and it is applied to the hidden layer through the matrix WRC.
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Given the input uk ∈ <Ni at time step k, the output of the Elman network can be
calculated as follows:

ṽk = WRUuk + WRCvk−1 + bh (6)

vk = fh(ṽk), vk ∈ <Nh (7)

yk = fo

(
WYRvk + bo

)
, yk ∈ <No (8)

where bh and bo are the bias vectors of the hidden layer and output layer respectively,
and fh(·) and fo(·) are the activation functions of the hidden layer and output layer,
respectively. Ni, Nh, and No represent the number of nodes in the input layer, hidden layer
and output layer, respectively.

The RTRL, BPTT, momentum gradient descent algorithm, and LM algorithms are the
most commonly used methods to train Elman neural network. In the following section,
the abovementioned methods are compared with the SR-UKF algorithm in this study to
verify the effectiveness.

3. Proposed Prediction Model and Validation Materials

In this section, the proposed SR-UKF algorithm in parameter estimation for the Elman
neural network will be described. First, an overall view of the proposed SR-UKF algorithm
is given in Section 3.1; The other subsections provide more details about the adaptive noise
estimation, weight constraint and handling outliers, which are the important components
of the proposed SR-UKF algorithm (Figure 1).

This figure shows an overall view of the proposed SR-UKF algorithm. The module
“Outliers handling” controls the amplification of observation error covariance and will
combine the module “Estimate noise covariance” to achieve the adaptive estimation the
unknown noise. The module “Weight constraints” adds parameter constraints on weight
(state) values. Actually, the module “Adaptive noise estimation” and the module “Weight
constraints” are independent modules. Both of the “Adaptive noise estimation” and
“Weight constraints” modules could be removed, which represent the constant noise and
unconstrained weights, respectively. Module A is the simplified topology of the Elman
network in module B. Module B gives a more detailed expansion of module A to increase
the visibility of the proposed algorithm.

3.1. Elman Network Based on SR-UKF (Elman-SR-UKF)

The training process of traditional neural networks is to adjust the parameters (or
weights). Generally, the neural network method based on the Kalman filter regards the
learning process of the network as the dynamic parameter estimation of the nonlinear
system. That is, the weight vector in Elman is taken as the state of the system, and the
weights of the network are constantly updated with the time sequence by minimizing the
mean square error between the target output and the estimated output, which can improve
the training accuracy. The state space model of the neural network can be rewritten as:{

xk+1 = xk + rk
zk = h(xk, uk) + qk

(9)

where xk is the state vector composed of weight matrices and biases, uk represents a given
input, zk is the model output, and h(·) is the neural network function. Moreover, rk and
qk are the zero-mean Gaussian process noise vector and measurement noise vector with
covariance Rk and Qk, respectively. The nonlinear filtering algorithm can be used to
estimate the network parameters.

Referring to [30,31], the Elman network training algorithm based on SR-UKF for the
state space model of Equation (9) can be concluded as Algorithm 1. Different from the
reference [24], Equation (22) in Algorithm 1 adopts the Joseph stable form [32], which is
numerically more stable because it can guarantee the symmetry and positive definite of
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Pxk as long as P−xk
is a symmetric positive definite matrix. The algorithm proposed in this

study is concluded as Figure 2, and more details can be seen in Sections 3.2–3.4.
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3.2. Update the Model with Adaptive Noise Variance

In fact, the accurate knowledge of the noise covariance required by the Kalman filter
framework is often unknown and time-varying. Mismatching between the assumptive
noise distribution and the actual noise distribution may degrade the prediction perfor-
mance. To solve this problem, adaptive noise methods are often adopted to improve the
accuracy and robustness of the state estimation. In this study, adaptive Sage-Husa noise
estimation is proposed. In the proposed model, both measurement noise and process noise
need to be properly estimated.
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Algorithm 1 Elman-SR-UKF algorithm

1: Initialization:
2: x̂0 = E[x0], Px0 = E

[
(x− x̂0)(x− x̂0)

T
]
, Sx0 = chol(Px0 ) (10)

3: For k = 1, 2, · · · ,
4: Time update equations:
5: x̂−k = x̂k−1 (11)
6: x̂0 = E[x0], Px0 = E[(x− x̂0)(x− x̂0)

T ], Sx0 = chol(Px0 ) (12)
7: Calculate sigma points:
8: χk|k−1 =

[
x̂−k x̂−k + γS−xk

x̂−k − γS−xk

]
(13)

9: Measurement update equations:
10: Y k|k−1 = h

(
χk|k−1, uk

)
(14)

11: ẑ−k ≈
2L
∑

i=0
w(m)

i yi,k|k−1
(15)

12: Sz̃k
= qr

{[ √
w(c)

1

(
Y1:2L,k|k−1 − ẑ−k

)
SQk

]}
(16)

13: Sz̃k
= cholupdate

{
Sz̃k

,Y0,k|k−1 − ẑ−k , w(c)
0

}
(17)

14: Pxkzk =
2L
∑

i=0
w(c)

i

(
χi,k|k−1 − x̂−k

)(
Y i,k|k−1 − ẑ−k

)T (18)

15: Kk =
(

Pxkzk /ST
z̃k

)
/Sz̃k

(19)

16: x̂k = x̂−k + Kk
(
zk − ẑ−k

)
= x̂−k + Kkz̃k (20)

17: Hk = PT
xkzk

(
P−xk

)−1, P−xk
= S−xk

(
S−xk

)T (21)
18: Sxk = qr

([
S−xk
− KkHkS−xk

KkSQk

])
(22)

where Sxk and SQk
are the square-root form of Pxk and Qk, respectively, namely Pxk = Sxk ST

xk
,

Qk = SQk
ST

Qk
. Rk is the process noise covariance. γ =

√
L + λ is a composite scaling parameter.

zk and z̃k are the true value and innovation at time step k respectively. The diag{·} operator zeros
all the elements of a square matrix except the main diagonal. qr{·} and cholupdate{·} are
standard MATLAB functions, representing QR decomposition and Cholesky factor updating,
respectively. The operator “/” stands for the right division operation of MATLAB. The origin of
Equation (22) can be referred to the derivation of Equation (42).

3.2.1. Adaptive Noise Estimation

Currently, the adaptive filtering algorithm is a common adaptive noise method [33].
Assuming that the residual variable z̃k is stable, the residual covariance can be approxi-
mated by the residual variable within the moving window:

Pz̃k z̃k
= Sz̃k

ST
z̃k
≈ 1

N

N−1

∑
j=0

z̃k−jz̃
T
k−j (23)

where z̃k = zk− ẑ−k is the residual variable, zk is the measured value and ẑ−k is the predicted
value which is given in Equation (15). N is the width of the moving window. More details
on how to optimize window width can be found in [34].

Combining Equation (16) with Equation (23), the estimation of the measurement noise
covariance Qk can be obtained as follows:

Q∗k = Pz̃k z̃k
− Pzz

k|k−1, Pzz
k|k−1 =

2L

∑
i=0

w(m)
i
(
Y i − ẑ−k

)(
Y i − ẑ−k

)T (24)

Considering that Q∗k may not be a positive definite matrix, the following rule [35]
is recommended:

Qk = diag
{∣∣∣Q∗k (1)∣∣∣, ∣∣∣Q∗k (2)∣∣∣, · · · ,

∣∣∣Q∗k (m)
∣∣∣} (25)

where Q∗k (i) is the i-th diagonal element of the matrix Q∗k , and the abovementioned formula
can ensure the positive definiteness of Qk.
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Similarly, the estimation of the process noise covariance matrix Rk can be written as:

Rk = Kk

(
1
N

N−1

∑
j=0

z̃k−jz̃
T
k−j

)
KT

k (26)

3.2.2. Adaptive Sage-Husa Noise Estimation

Taking into account the uncertainty of process noise, to compensate for the error
caused by the variations of noise statistics and estimate the process noise covariance, this
study further adopts the Sage-Husa estimator [36] to estimate and adjust the measurement
noise covariance.

Q̂k = (1− dk−1)Q̂k−1 + dk−1Qk (27)

where Qk is defined as Equation (25), dk−1 = 1−b
1−bk , b is the forgetting factor and 0.95 ≤ b ≤ 0.995.

Similarly, the adaptive process noise covariance can be obtained:

R̂k = (1− dk−1)R̂k−1 + dk−1Rk (28)

The definition of Rk is shown in Equation (26).
The adaptive Sage-Husa noise combines the noise covariance at the previous moment

and the estimated noise covariance, which is then recursively able to estimate the unknown
time-varying covariance and to achieve better robustness and accuracy.

3.3. Handling Outliers

Sensor measurements may suffer from outliers due to abnormal conditions, which
easily cause the deviation of adaptive covariance from the true distribution and result
in a decrease in prediction performance. Therefore, addressing outliers is imperative for
accurate prediction. The abovementioned calculation shows that both the estimation of
noise and the update of the state vector are directly related to the residual error. Using
residual error for outlier identification is an intuitive idea.

3.3.1. Outliers Identification

This study adopted hypothesis testing to detect abnormal conditions using statistical
information of residual error [33]. The statistic αk are defined as:

αk = z̃T
k

(
HkP−xk

HT
k + Rk

)−1
z̃k (29)

The statistic αk is assumed to follow the distribution of χ2 with degree-of-freedom s,
where s is the dimension of the residual error vector z̃k. Choosing the significance level
αχ(0 ≤ αχ ≤ 1), χ2

α,s can be determined by

P
(

χ2 > χ2
α,s

)
= αχ (30)

If the alternative hypothesis H1 holds, the statistic αk is greater than the threshold,
which can be represented as:

H0 : αk ≤ χ2
α,s ∀k;

H1 : αk > χ2
α,s ∃k.

(31)

3.3.2. Parameter Adjustment

This article introduced a scalar factor ρk to adjust the measurement error covariance
and ensure the robustness of system [37]:

Pz̃k z̃k
= ρkPz̃k z̃k

(32)
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where ρk can be calculated as:

ρk =

{
1 , αk ≤ χ2

α,s
αk

χ2
α,s

, αk > χ2
α,s

(33)

At the same time, the calculation of Q∗k in Equation (25) should be modified as:

Q∗k = (ρk − 1)Pzz
k|k−1 − ρkQ̂k−1 ≈

ρk − 1
N

N−1

∑
j=0

z̃k−jz̃
T
k−j + ρkQ̂k−1 (34)

When the abnormal values are detected by Equation (31), i.e., the alternative hypoth-
esis H1 holds, the scale factor ρk amplifies the observation error covariance, which leads
to a decrease in the Kalman filter gain, and then to reduce the magnitude of the state
update and improve the robustness of the filter. A specific summary of the Elman-based
the SR-UKF algorithm proposed in this study is shown in Figure 2.

3.4. Weight Constraining

To limit the range of weight values and to ensure that the Elman achieves smooth
mapping, this study introduces a heuristic method [38] to constrain the weights.

In essence, this process has a similar function as the Bayesian regularization method,
which prevents model overfitting and keeps the model smoother. However, this constrained
algorithm may lead to a degradation of performance.

The main principle of the weight constraining algorithm is as follows: Consider the
mapping xi,j

k = φ
(

x̃i,j
k , µ

)
, which transforms x̃i,j

k ∈ [−∞,+∞] to the constraint weight space

xi,j
k ∈ [−µ,+µ], and the mapping x̃i,j

k = φ−1
(

xi,j
k , µ

)
∈ [−∞,+∞] has the opposite effect.

The function φ
(

x̃i,j
k , µ

)
transfers the weight from an unconstrained space to a constrained

space and must meet the following properties:

(1) φ is a continuously differentiable function on [−∞,+∞];
(2) φ−1 exists and is a continuous function [−µ,+µ];

(3) limµ→∞φ
(

x̃i,j
k , µ

)
= x̃i,j

k = xi,j
k .

The weight update is performed with Equations (19)–(22) in the unconstrained weight
space. Once the update is completed, the unconstrained weights are converted back to the
constrained space.

To perform SR-UKF recursion in the unconstrained space, some modifications are
needed. For Equation (21), Hk can be interpreted as the derivative of output zk with respect
to the weight vector xk of each node in Elman-SR-UKF. The derivative of the weights in the
constrained space must be converted to the derivative of the weights in the unconstrained
space, and then used to update the weights in the unconstrained space. This can be
achieved by the following transformation:

H̃k =


∂z1

k
∂x1

k

∂x1
k

∂x̃1
k
· · · ∂z1

k
∂xL

k

∂xL
k

∂x̃L
k

...
. . .

...
∂zs

k
∂x1

k

∂x1
k

∂x̃1
k
· · · ∂zs

k
∂xL

k

∂xL
k

∂x̃1
k


s×L

=


∂z1

k
∂x1

k
· · · ∂z1

k
∂xL

k
...

. . .
...

∂zs
k

∂x1
k
· · · ∂zs

k
∂xL

k




∂x1
k

∂x̃1
k

. . .
∂xL

k
∂x̃1

k

= HkΛW ≈ PT
xkzk

(
P−xk

)−1
ΛW (35)

where s and L represent the dimensions of the output and the state vector, respectively. zi
k

and xi
k are the i-th component of the output zk and the constraint weight vector xk, respec-

tively. The conversion formula between the unconstrained weight x̃i,j
k and the constraint

weight xi,j
k can be chosen as Equations (36) and (37).
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xi,j
k = φ

(
x̃i,j

k , µ
)
=

x̃i,j
k

1 +
∣∣∣x̃i,j

k

∣∣∣/µ
(36)

x̃i,j
k = φ−1

(
xi,j

k , µ
)
=

xi,j
k

1−
∣∣∣xi,j

k

∣∣∣/µ
(37)

According to the abovementioned formulas, when µ→ ∞ , x̃i,j
k → xi,j

k . Additionally,

when xi,j
k → µ , x̃i,j

k → ∞ .
The Elman-SR-UKF algorithm with constrained weights needs to rewrite Sz̃k

, Kk and
Sxk in Algorithm 1 as follows:

Sz̃k
= qr

{[
H̃kS−xk

SQk

]}
(38)

Kk = P−xk
H̃

T
k /S̃

T
z̃k

/S̃z̃k
, P−xk

= S−xk
S−xk

T (39)

Sxk = qr
{[

S−xk
− KkH̃kS−xk

KkSQk

]}
(40)

From Equation (39), Equation (40) can be calculated as follows:

KkPz̃k z̃k
= P−xk

H̃
T
k (41)

Combining Equations (19) and (41), Pxk can be rewritten as:

Pxk = P−xk
− P−xk

H̃
T
k KT

k + KkPz̃k z̃k
KT

k −KkH̃k(P
−
xk
)

T

= S−xk

(
S−xk

)T
− S−xk

(
S−xk

)T
H̃

T
k KT

k −KkH̃k

(
S−xk

(
S−xk

)T
)T

+ Kk

(
H̃kS−xk

(
S−xk

)T
H̃

T
k + SQk

ST
Qk

)
KT

k

=
[

S−xk
−KkH̃kS−xk

KkSQk

]
×
[

S−xk
−KkH̃kS−xk

KkSQk

]T

(42)

From the abovementioned formula, Equation (40) can be finally obtained.

4. Evaluation Methods and Validation Materials

The main purpose of this section was to provide the basic knowledge for method
evaluations. Section 4.1 offers the evaluation indicators to assess how good the prediction
performance of a model is. The following section shows the materials for the case study.

4.1. Evaluation Methods

A dataset collected from a real wastewater treatment plant is applied to evaluate the
performance of the proposed soft-sensor model. At the same time, the Elman-SR-UKF
model is compared with the traditional Elman network models to verify the prediction
performance of the important indicators of sewage. To evaluate the prediction accuracy of
the model, the root mean square error (RMSE), mean relative error (MRE), and correlation
coefficient (R) of Equations (43) and (45) are introduced accordingly. Their mathematical
expressions are given below:

RMSE =

√
∑n

i=0(ŷi − yi)
2

n
, i = 1, 2, · · · n (43)

MAE =
∑n

i=0(|ŷi − yi|)
ŷi

(44)

R
(
Y, Ŷ

)
=

cov
(
Y, Ŷ

)√
var(Y)var

(
Ŷ
) (45)
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where n is the number of samples, ŷi and yi are the predicted value and the real value
respectively, and Ŷ = (ŷ1, ŷ2, · · · , ŷn), Y = (y1, y2, · · · , yn). cov

(
Y, Ŷ

)
is the covariance of

Y and Ŷ, and var(Y) and var
(
Ŷ
)

are the variance of Y and Ŷ, respectively.
Since the multioutput model predicts multiple responses at one time, the root mean of

diagonal square sum (RMSSD) and multiple correlation coefficient (MR) are used as the
performance evaluation criteria of multioutput. The formulas for these evaluation criteria
are as follows:

RMSSD =

√
1
N

trace
{(

Y− Ŷ
)T(Y− Ŷ

)}
(46)

MR =
1
l

l

∑
i=1

∣∣∣Ri
∣∣∣ (47)

where trace represents the trace of the matrix, and Ri represents the correlation coefficient
of the i-th output. A smaller RMSSD and a larger MR mean better prediction performance
for a soft sensor.

From the standpoint of monitoring performance, the indicators of RMSE, R and MAE
are used to evaluate the prediction accuracy and deviation ratio of each output variable
while the RMSSD and MR are employed to evaluate the overall predictive performance of
the multioutput model.

4.2. Materials for the Case Study

The case study for validation is a real wastewater treatment plant. The collected
dataset was sampled at daily intervals in an urban wastewater treatment plant. The total
number of data covers approximately 2 years [39].

As shown in Figure 3, the wastewater plant process consists of four components:
pretreatment, primary settler, aeration tanker and secondary settler. Partial sludge in
the secondary settler is recycled back to the aeration tank to maintain the number of
microorganisms in the aeration tank, and the other part of the useless sludge is discharged
as wasted sludge. Due to the lack of the instrument, the dataset with 38 process variables
is collected once a day. Additional details are provided in [40,41].
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Figure 3. Process of wastewater treatment.

After preliminary screening, 18 process variables are selected as inputs of the model,
which are shown in Table 1. This study selects the output chemical demand of oxygen
(DQO-S), output biological demand of oxygen (DBO-S), and output suspended solids (SS-S)
in the effluent of the plant as output variables. During model training, the first 200 samples
are utilized for training, and the remaining 200 data points are used as a test set.
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Table 1. Selected input variables for soft-sensor modeling.

No Variables Comments

1 DBO-E Input biological demand of oxygen to plant
2 DQO-E Input chemical demand of oxygen to plant
3 DBO-P Input biological demand of oxygen to primary settler
4 PH-D Input pH to secondary settler
5 DBO-D Input biological demand of oxygen to secondary settler
6 DQO-D Input chemical demand of oxygen to secondary settler
7 SS-D Input suspended solids to secondary settler
8 SED-D Input sediments to secondary settler
9 RD-DBO-P Performance input biological demand of oxygen in primary settler
10 RD-SS-P Performance input suspended solids to primary settler
11 RD-DBO-S Performance input biological demand of oxygen to secondary settler
12 RD-DQO-S Performance input chemical demand of oxygen to secondary settler
13 RD-DBO-G Global performance input biological demand of oxygen
14 RD-DQO-G Global performance input chemical demand of oxygen
15 RD-SS-G Global performance input suspended solids
16 RD-SED-G Global performance input sediments
17 PH-S pH in the effluent
18 SED-S Sediments in the effluent

5. Results and Discussion

First, the predicted performance was assessed by comparing the Elman-SR-UKF (El-
man network based on square-root unscented Kalman filter algorithm) with the traditional
Elman networks (Elman-BPTT, Elman-GDM, Elman-LM, and Elman-RTRL-LM) based
on different classical training algorithms, i.e., BPTT (back propagation through time al-
gorithm), GDM (Momentum Gradient Descent algorithm), LM (Levenberg-Marquardt
algorithm) and RTRL-LM (https://github.com/yabata/pyrenn, accessed on 20 Novem-
ber 2021) (real-time recurrent learning based on Levenberg-Marquardt algorithm). Then,
an Elman network based on SR-UKF with different constrained weights was implemented
and compared for quality-related variable prediction in the wastewater plant. In this paper,
the extreme learning machine (ELM) [42] and multi-output Gaussian process regression
(MGPR) [43] are further introduced to act as the baselines for comparisons.

A wastewater treatment system is a physical, chemical, and biological system that
makes it multivariable, nonlinear, and dynamic. Generally, it is necessary to monitor
multiple variables of the wastewater treatment process simultaneously. Due to the strong
coupling and high interaction among the output variables, using a set of independent
single-output models to predict multiple quality-related output variables is inadequate.
From the perspective of practical application, this study proposed a multioutput neural
network model, Elman-SR-UKF, which can deal with multivariate problems. In this case,
the DQO-S, DBO-S, and SS-S in the UCI data are selected as the prediction variables.

To verify the proposed model in this study, an 18-8-3 Elman network architecture is
constructed, while the activation functions fh(·) of the hidden layer and output activation
functions fo(·) are designed as logsig functions and purelin functions, respectively. The ini-
tial value of weights is a random number between [−0.5, 0.5]. Equations (43)–(45) are used
as evaluation criteria for predictive performance. The parameter definitions of the model
are shown in Table 2. The software used in this study was MATLAB R2016a.

Table 2. Parameters definition of the model.

Models Parameters

Elman-SR-UKF

α = 1, β = 0, κ = 2, forgetting factor b = 0.955, initial process
covariance R0 = 1× 10−5I, initial measurement covariance Q0 = 0.5I,

initial error covariance Px0 = 0.01I, moving window N = 20,
statistic αχ = 0.05

Other Elman models learning rate lr = 0.0l, iteration = 1000

https://github.com/yabata/pyrenn
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In Section 3.1, this study mentioned that the parameter α should ideally be a small
number. However, if α is too small, the weights of the sigma points are all negative, which
may easily lead to a diversion problem in the iteration. In this study, α was set to 1 to
ensure the positive weights of sigma points. I represents the identity matrix. Taking into
account the randomness of the initial weights, the results in Tables 3 and 4 are the average
results obtained by running 500 models with random initial weights. In Table 3, µ = ∞
means that there is no weight constraining. Because the effect of the RTRL algorithm is
nonideal, in comparison, this study uses the RTRL-based LM algorithm in the Pyrenn
toolbox. Epochs represent the number of iterations required for convergence.

Table 3. RMSE, R, RMSSD, MR, and epochs values of the output variables.

Models Predicted
Variables SS-S DBO-S DQO-S RMSSD MR Epochs

Elman-BPTT
RMSE 4.957 3.591 16.125

17.271 0.688 1000R 0.622 0.709 0.732
MRE 0.246 0.172 0.190

Elman-GDM
RMSE 4.598 3.308 14.479

15.569 0.781 1000R 0.705 0.799 0.834
MRE 0.224 0.154 0.166

Elman-LM
RMSE 25.961 3.3581 13.531

31.356 0.7648 975R 0.471 0.906 0.917
MRE 1.273 0.145 0.135

Elman-RTRL-LM
RMSE 21.184 2.434 10.142

24.529 0.770 80R 0.457 0.922 0.931
MRE 0.870 0.092 0.091

Elman-SR-UKF
(µ = ∞)

RMSE 3.330 1.765 8.028
8.847 0.917 30R 0.857 0.946 0.949

MRE 0.151 0.076 0.081

ELM
RMSE 5.773 4.007 18.065

19.431 0.626 /R 0.523 0.664 0.690
MRE 0.278 0.193 0.205

MGPR
RMSE 4.412 3.057 13.012

14.121 0.807 /R 0.742 0.826 0.854
MRE 0.213 0.141 0.139

Bold: the best results.

Table 3 shows the results of different algorithms and the values in bold represent the
best results. By comparing all criterion evaluation results of the models, it can be seen that,
on average, Elman-SR-UKF achieved the best prediction performance with the smallest
RMSE, MRE, and R for all three outputs. The MRE represents the ratio of the absolute
difference of the measurement to the actual measurement. The smallest MRE of Elman-SR-
UKF for approximately 15% in SS-S and 8% in DBO-S and DQO-S can obviously represent
that Elman-SR-UKF the best monitoring method among the abovementioned methods. It is
clear that the RMSSD of Elman-SR-UKF is 95.3%, 76%, 254%, 177%, 119.6%, and 59.6% was
better than those of Elman-BPTT, Elman-GDM, Elman-LM, Elman-RTRL-LM, ELM, and
MGPR, respectively. MR of Elman-SR-UKF exhibited similar profiles.

MGPR achieved a relatively good result in terms of RMSSD and MR. However,
by comparing the RMSE, R, and MRE, MGPR had a worse performance in the outputs
of DBO-S and DQO-S than Elman-RTRL-LM and Elman-LM. That is because MGPR was
not able to learn non-stationary process properly and some variables in the dataset were
relatively stable but still did not completely follow a stationary process. The performance
of ELM in this paper was not good. This is mainly because the pre-fixed input weights in
ELM limited the representation capability of the model and usually could not be used for
complex tasks.

The results of RMSSD and MR reflect that Elman-SR-UKF can perform well from
the standpoint of the overall predictive performance of the multioutput model, which
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illustrates that the proposed method can exhibit excellent performance and overcome the
underprediction phenomena in traditional Elman network.

In terms of convergence, Elman-SR-UKF had the fastest convergence speed, and the
convergence of the Elman-RTRL-LM algorithm was faster than that of the Elman-BPTT and
Elman-GDM algorithms. The convergence rates of Elman-LM and Elman-SR-UKF were
faster than those of the gradient descent algorithms, such as Elman-BPTT and Elman-GDM.
The Elman-LM algorithm utilized the second-order quasi-Newton optimization method to
train the network, and the Elman-SR-UKF algorithm used the covariance of the second-
order statistical property of variables for iteration, which indicates that the second-order
method may have a faster convergence than the first-order method. Moreover, the Elman-
SR-UKF algorithm had better convergence performance, which proves the effectiveness of
the proposed method.

The prediction profiles of different models for output variables are further shown in
Figure 4. To clarify the prediction profiles, only the first 80 time series data in the testing
dataset were shown. By comparing the prediction results of various methods, it can be
seen that the Elman-SR-UKF algorithm can better track the dynamic variations of output
variable SS-S, while the fitting between the predicted and real values with respect to other
algorithms about SS-S was poor. This occurs mainly because the algorithm fell into a local
minimum, which, in turn, proved the effectiveness of the proposed method in this study.
For the variables, DBO-S and DQO-S, the Elman-LM, Elman-RTRL-LM, and Elman-SR-UKF
methods had good fitting performance. In terms of the prediction results of peaks and
valleys in the prediction profiles, Elman-SR-UKF had excellent prediction performance in
tracking the dynamic variations of the targets and its prediction ability was better than
the traditional Elman training algorithm listed above, which shows the superiority of the
Elman-SR-UKF in this study.

Elman-SR-UKF assumes the parameters of the Elman network to be state random
variables, and then recursively updates the posterior density of the state to optimize an
instantaneous cost function. In addition, the inherent statistical averaging of the Elman-
SR-UKF algorithm can be less likely to get stuck in local minima, which makes the Elman-
SR-UKF able to achieve the best performance. Additionally, it is important to note that
Elman-GDM achieved better performance, which is mainly because Elman-GDM added
the past gradient information to the parameter update equation and still optimized the
cost function toward the gradient direction. Therefore, the gradient may change a lot over
relatively small regions in the search space and jump out of the local minima.

Table 4 shows the prediction results of output variables with different weight con-
straints in terms of RMSE, MRE, R, RMSSD, and MR. From the perspective of the maximum
weight, constraints can be successfully restrained in the range of weight values, which
can prevent the overfitting of the model. Nevertheless, from the results of RMSE, MRE, R,
RMSSD, and MR, it can be found that weight constraints have some effects on prediction
performance. This problem can result from two aspects: First, setting up constraints based
on weight values makes the model less sensitive to the error. Conversely, if there is no
weight constraint, it means that the model can adapt to measurement error and exhibit
oversensitive behaviors, which may, in turn, bring better performance and faster conver-
gence. However, a sensitive model with unconstrained weights may produce unstable
results, thus reducing the reliability of the soft sensor model. It is envisioned that the model
without weight constraints can achieve better results for a stationary dataset. In this actual
activated sludge water plant, once the outliers have been preprocessed, the stationary
requirement for a dataset can be guaranteed. Second, once the constrained weight values
reach the saturation region, the derivative of the constrained weight with respect to the un-
constrained weight becomes zero, making it difficult to perform further training with these
particular weight values. In summary, weight constraints may lead to a slight degradation
in performance, but its performance is still better than that of the Elman-BPTT, Elman-GMD,
Elman-LM and Elman-RTRL-LM methods. Moreover, the weight constraining algorithm
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can better meet the parameter requirements in applications, such as fixed-point arithmetic,
and improve the reliability of a soft sensor.
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Table 4. RMSE, R, RMSSD, and MR values of the output variables with different weight constraints
(Px0 = 0.05I).

Elman-SR-UKF with
Constrained Weights

Predicted
Variables SS-S DBO-S DQO-S RMSSD MR Maximum

Weight

µ = 1
RMSE 3.967 2.053 8.701

17.271 0.688 0.80R 0.792 0.927 0.939
MRE 0.181 0.091 0.089

µ = 2
RMSE 3.646 1.894 8.805

9.625 0.903 1.303R 0.834 0.938 0.938
MRE 0.168 0.082 0.089

µ = 5
RMSE 3.596 1.851 8.666

9.507 0.908 2.15R 0.841 0.942 0.941
MRE 0.165 0.079 0.086

µ = ∞
RMSE 3.563 1.802 8.26

9.177 0.912 4.12R 0.847 0.945 0.946
MRE 0.160 0.076 0.080

Figure 5 shows the convergence profiles of different weight constraints with Px0 = 0.05I.
As shown in Figure 5, the convergence speed with unconstrained weights is faster than
that with constrained weights, which can be attributed to the lower sensitivity to error.
Although weight constraints slightly affect the convergence speed, the algorithm still
converges at a relatively fast iterative speed.

The above results show that the Elman-SR-UKF can create more accurate and robust
results, thus overcoming the underprediction phenomena in data-driven process moni-
toring [44]. Although the main principle of this paper is different from the reference [44],
it is very easy to extend this study to the quantify the uncertainty of effluent variables
forecasting. Compared with the application of Li et al. [45,46], this paper provides a better
prediction performance and a simple sequential way to update the parameters online.
Thus, this study can be successfully envisioned to be applied to process monitoring of
effluent variables in wastewater plants.

In summary, according to all prediction results of the models, the Elman-SR-UKF
method can perform more accurate prediction results and has a faster convergence. Of note,
for the output variable SS-S, the Elman-SR-UKF can better fit the target variations, which
further demonstrates the effectiveness of the proposed algorithm. From the perspective
of weight constraints, the weight constraining method can effectively restrict the range of
the weight values and reduce the sensitivity to the error, which can, in turn, improve the
reliability of a soft sensor but may slightly affect the convergence speed and prediction
performance of the model. Moreover, the prediction performance of the method with a
constrained algorithm is still better than that of the Elman-BPTT, Elman-GMD, Elman-LM
and Elman-RTRL-LM methods.

Remark 1. In this case study, an activated sludge-based treatment process is used for validation,
which is the most commonly used treatment process around the world and covers more than 80%
of WWTPs in China. However, the physical, chemical, and biological phenomena associated with
treatment units (primary classifier, anaerobic, anoxic, aerobic tanks and secondary classifier) always
add significant complexity to process monitoring and plant management. Moreover, the inter- and
intercorrelation for the reactors and processes make the collected data exhibit strong nonlinearity
and high dynamics among the variables. This renders it necessary to use adaptive and nonlinear
data driven models for prediction, such as recursive neural networks. However, general RNNs
cannot take into account uncertainties inside and outside WWTPs. (a) Biomass growth, death,
and nutrient consumption are all sensitive to many factors, such as pH and temperature. (b) The
large variety of biological species present in WWTPs makes it impossible to accurately determine all
kinetic parameters with a general model. (c) The organic loads in the influent significantly fluctuate
depending on the level of human activity and external environment. For instance, in urban WWTPs,
the organic loads vary during the day according to the level of human activity. Additionally, they
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themselves are strongly affected by weather conditions and seasonal change. Kalman filters are
inherently dynamic algorithms with the ability to describe uncertainties. To take into account all
aforementioned uncertainties, Elman works together with Kalman filters to make predictions for
quality-related but hard-to-measure effluent variables. An Elman network together with Kalman
filters is also able to capture the aforementioned nonlinear relationship.

Remark 2. In this case study, the proposed soft sensor is only used for effluent quality prediction
in an activated sludge process. However, there are still many hard-to-measure variables in the
entire WWTPs, for example, sludge volume index (SVI) in the secondary classifier, toxic loads in
the influent and N2O during the reaction. In addition to activated sludge processes, the proposed
methods can be extended and used for other processes such as oxidation ditches (ODs) and sequencing
bath reactors (SBRs).
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6. Conclusions

To address the highly nonlinear and dynamic prediction issues in wastewater treat-
ment plants and to address the problems of slow convergence speed and local minima in
standard Elman neural networks, this study proposed a novel soft-sensor model with an
Elman neural network trained by the proposed SR-UKF algorithm, aiming to sense the
quality-related variables in wastewater treatment. In the proposed method, residual-based
Sage-Husa adaptive noise was adopted to solve the problem of unknown noise statistics
and noise mismatch issues. The proposed method was applied to predict the biological
demand of oxygen, chemical demand of oxygen, suspended solids in the effluent of a
real wastewater treatment plant, and obtain good monitoring performance. The obtained
results demonstrate that the Elman-SR-UKF algorithm can produce more accurate predic-
tion results and has a faster convergence than standard Elman neural networks, what is
more, alleviating the problem of underprediction phenomena in the Elman network-based
soft sensor. This may be due to a key strategy: The inherent statistical averaging of the
Elman-SR-UKF algorithm can be less likely to get stuck in local minima.

To further restrict weight values within a certain and reasonable range and then to
avoid large weight values, as well as improving the reliability of a soft sensor, weight
constraint algorithm is further introduced to this study. The related results show that
the weight constraint method successfully limits the parameter values and improves the
reliability of a soft sensor. Nevertheless, the weight-limiting mechanism has an effect on
the convergence speed and prediction performance of the model, which may be due to two
aspects: The constrained weight values reach the saturation region or the weight constraint
makes the model less sensitive to the error. Therefore, this method should be applied based
on actual needs.

In the future, the Elman-SR-UKF can be further optimized with the node-decoupled
SR-UKF to reduce the complexity and storage requirements for the Elman-SR-UKF to
ensure that the quality-related variables can be used for online control. Additionally, this
study extends the proposed works to other more challenging processes such as oxidation
ditches (ODs) and sequencing bath reactors (SBRs).
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BOD5 biochemical oxygen demand for 5 days
COD chemical oxygen demand
TN total nitrogen
SVI sludge volume index
ODs oxidation ditches
SBRs sequencing bath reactors
KF Kalman filter
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EKF extended Kalman filter
UKF unscented Kalman filter
SR-UKF square-root unscented Kalman filter
NN neural network
RNN recursive neural network
RTRL real-time recurrent learning
BPTT back propagation through time
LM Levenberg-Marquardt
SUT scaled unscented transformation
RMSE root mean square error
R correlation coefficient
RMSSD root mean of diagonal square sum
MR multiple correlation coefficient
DQO-S output chemical demand of oxygen
DBO-S output biological demand of oxygen
SS-S output suspended solids
Elman-BPTT Elman network based on back propagation through time algorithm
Elman-GDM Elman network based on momentum gradient descent algorithm
Elman-LM Elman network based on Levenberg-Marquardt algorithm
RTRL-LM real-time recurrent learning based on Levenberg-Marquardt algorithm
Elman-RTRL-LM Elman network based on RTRL-LM
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