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Abstract: Water quality degradation is one of the most pressing environmental challenges in reser-
voirs around the world and makes the trophic status assessment of reservoirs essential for their
restoration and sustainable use. The main aims of this study were to determine the spatial variations
in water quality and trophic state of 204 South Korean reservoirs at different altitude levels. The
results demonstrated mean total phosphorus (TP), chlorophyll-a (CHL-a), total suspended solids
(TSS), organic matter indicators (chemical oxygen demand: COD; total organic carbon: TOC), water
temperature (WT), and electrical conductivity (EC) remain consistently higher in the very lowland
reservoirs (VLLR) than those in other altitudes, due to sedimentary or alluvial watersheds. The aver-
age TP and CHL-a levels in VLLR crossed the limit of the eutrophic water, symptomizing a moderate
risk of cyanobacterial blooms. Empirical models were developed to identify critical variables control-
ling algal biomass and water clarity in reservoirs. The empirical analyses of all reservoir categories
illustrated TP as a better predictor of CHL-a (R2 = 0.44, p < 0.01) than TN (R2 = 0.02, p < 0.05) as well
as showed strong P-limitation based on TN:TP ratios. The algal productivity of VLLR (R2 = 0.61,
p < 0.01) was limited by phosphorus, while highland reservoirs (HLR) were phosphorus (R2 = 0.23,
p < 0.03) and light-limited (R2 = 0.31, p < 0.01). However, TSS showed a highly significant influence
on water clarity compared to TP and algal CHL-a in all reservoirs. TP and TSS explained 47% and
34% of the variance in non-algal turbidity (NAT) in HLR. In contrast, the TP and TSS variances were
18% and 29% in midland reservoirs (MLR) and 32% and 20% in LLR. The trophic state index (TSI) of
selected reservoirs varied between mesotrophic to eutrophic states as per TSI (TP), TSI (CHL-a), and
TSI (SD). Mean TSI (CHL-a) indicated all reservoirs as eutrophic. Trophic state index deviation (TSID)
assessment also complemented the phosphorus limitation characterized by the blue-green algae
(BGA) domination in all reservoirs. Overall, reservoirs at varying altitudes reflect the multiplying
impacts of anthropogenic factors on water quality, which can provide valuable insights into reservoir
water quality management.
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1. Introduction

Over the last century, many reservoirs have been built worldwide, mainly for hy-
dropower generation. They are further exploited for various reasons, including drinking
water supply, fisheries, irrigation, flood mitigation, and tourism [1–3]. However, reser-
voir water quality is a significant concern across the world as it faces multiple problems
linked to anthropogenic activities such as excessive input of nutrients and pollutants from
household wastewater, agricultural and industrial runoff [1,4]. In addition, reservoir water
quality degrades more quickly than that of natural lakes [5]. Moreover, reservoir character-
istics and water quality patterns are regulated by local and regional climatic conditions,
geological landscape, land use, and hydrology [6–9]. This calls for essential, detailed, and
recurrent limnological as well as trophic status research on the typology of reservoirs.
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Besides, reservoir physicochemical and biotic features differ depending on geological,
morphological, climatic, biogeographical, and anthropogenic factors [6,10]. Therefore, the
regional limnology of reservoirs is particularly complicated and susceptible to degradation
due to climate change, deforestation, infrastructure development, and intensive farming
activities [9–11].

Regional limnology has been studied in “lake districts” characterized by uniform
catchment morphology, geology, climate, and vegetation conditions [6,11,12]. Altitudinal
influences on lotic systems along with continuous gradients have received more attention
than lentic ecosystems [13–15]. On the other hand, comparable investigations into lentic
systems have been discontinuous. Some previous research claimed that altitude has
a greater impact on water temperature, ionic strength, water residence time, nutrient
concentrations, and phytoplankton biomass [6,7]. However, researchers studying high
altitude reservoirs found low ions and nutrient concentrations with modest algal biomass
compared to low altitude waterbodies [6,8].

The case of South Korea is interesting as most of the reservoirs are located in midland
(100–200 m) to very lowland (<50 m) altitudes. Consequently, there are fewer reservoirs in
highland (>200 m) areas. Intensive agricultural farming, urbanization, and industrialization
have been developed mostly in lowland (50–<100 m) to very lowland regions owing fewer
slopes and profusely available water resources [10,16]. Most of the reservoir studies were
based on land use patterns in Korea [9,10]. There are few comprehensive investigations
on detailed limnology, water quality, and altitudinal gradient in the highland to lowland
zones. Several researchers have repeatedly recommended that more comparative studies
on reservoir limnology and water quality are essential, based on altitudinal gradient [10,17].

The most frequently used strategy for addressing water quality issues, particularly eu-
trophication in reservoirs, is to reduce external and internal nutrient loads (TP, TN) [4,18,19].
This technique presupposes that algal development in aquatic habitats is P-limited, N-
limited, or co-limited by P and N. In freshwater systems, TP strongly regulates algal
chlorophyll [17,20]. In contrast, TN has a strong influence on CHL-a in marine systems [21].
However, certain aquatic systems, particularly in high alpine locations, are co-limited.
CHL-a: TP and TN:TP ratios have been recommended as valuable markers for eutrophica-
tion control in aquatic systems. If the TN:TP ratio is less than 6, aquatic habitats are termed
N-limited; if the ratio is larger than 16, aquatic ecosystems are deemed P-limited [5,22].
However, when the ratio is between 6 and 16, co-limitation occurs. Additionally, Carlson
(1977) created a quantitative score based on TP, CHL-a, and SD to evaluate the degree of
eutrophication in lentic habitats [23]. Carlson and other limnologists have agreed that TP
may be the best predictor of algal CHL-a [4,10,18,19,24]. Simultaneously, CHL-a is the
most trustworthy indication of algal biomass, whereas SD is the most accurate indicator
of water clarity in lentic systems [25,26]. This index is a very useful tool for water quality
management in reservoirs.

Previous research has suggested that empirical analyses are important for identifying
key variables controlling algal biomass and water clarity in lakes and reservoirs and for
setting nutrient reduction targets [10,18]. The observed relationships between CHL-a and
nutrients are among the most extensively investigated patterns in limnology [4,17,27]. TP
regulates more freshwater algal growth than TN [10,28,29]. Moreover, algal biomass is
influenced by seasonal climatic variations, morphometry, zooplankton grazing and fish
composition in reservoirs [10,18,30]. These easily observed empirical analyses are very use-
ful for eutrophication management and for ensuring high water quality in aquatic systems.

This study explores how trophic status and water quality of reservoirs vary with
altitude. Further, we investigated the relationship between water clarity, nutrients, sus-
pended solids, and algal CHL-a to determine potential limiting factors in different altitude
reservoirs, including highland, midland, lowland, and very lowland reservoirs. This study
may aid in determining the optimum management techniques for enhancing reservoir
water quality on the altitudinal gradient.
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2. Materials and Methods
2.1. The Study Region

This study was conducted in 204 artificial reservoirs in South Korea. The majority
of Korean reservoirs (about 90%) are shallow (<5 m), have a small water storage capacity
(1,000,000 m3), have high watershed reservoir area ratios, and exhibit variable hydro-
dynamics [12]. The principal source of nutrients is allochthonous, and the ecosystem
is eutrophic [5]. The elevation ranges of the selected reservoirs extended from 0 m to
648 m in the Republic of Korea. The sampled reservoirs were categorized into four distinct
groups based on their elevations, namely high land reservoirs (HLR: >200 m), midland
reservoirs (MLR: 100–200 m), lowland reservoirs (LLR: 50–<100 m), and very lowland
reservoirs (VLLR: <50 m; Figure 1). The investigated study sites are impacted by a variety
of altitudinal regions that differed significantly in terms of general land use (Figure 1). The
HLR and MLR are primarily located in protected areas rather than forest-dominated areas.
In contrast, LLR may receive water from agricultural drainage. However, VLLR in the wa-
tersheds are affected by intensive agriculture farming, industrialization, and urbanization.
Such varying land-use patterns could reflect the heterogeneity among nutrient loading
and algal biomass, thereby supporting the hypothesis that “decreased nutrient loading is
evident with increasing elevation” [6].
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2.2. Data Source and Analysis of Water Quality

Monthly water quality data were obtained from the Korean Ministry of Environment
(MOE) Water Information Network (available online: http://water.nier.go.kr (accessed on
15 April 2021)). We studied ten water quality parameters in 204 selected Korean reservoirs in

http://water.nier.go.kr
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2019. The water samples were taken from the reservoirs’ surface layer (<0.5 m) at the chosen
sampling location (Figure 1). One-liter high-density polyethylene (HDPE) bottles were
used to collect the water from the surface layer (<0.5 m) of the selected reservoir sites. The
sampling bottles containing water samples were immediately placed in an icebox to avoid
sunlight exposure. The selected water quality parameters included WT, EC, dissolved oxygen
(DO), TSS, COD, TOC, TN, TP, CHL-a, and SD. A portable multiparameter analyzer (YSI
Sonde Model 6600, YSI Incorporated, Yellow Springs, OH, USA) was used onsite to measure
WT, electrical conductivity (EC), and DO. A 30-cm metal disk was used to measure the SD at
the time of sample collection. The sampling, preservation, and analytical procedures for TSS,
COD, TOC, TN, TP, and CHL-a were performed according to the approved methods of the
Korean Ministry of Environment [31].

2.3. Trophic Status Index Deviation

The conventional trophic state index (TSI) criteria based on TP, CHL-a, and SD were
used to evaluate eutrophication in the selected reservoirs. The average range of TSI for
oligotrophic conditions is 30–40; mesotrophic conditions are 40–50; eutrophic conditions
are 50–70, and hypereutrophic conditions are greater than 70 [26,32]. The TSI in reservoirs
was determined using the following formulae [23]:

I. TSI (CHL-a, µgL−1) = 10 × [6 − (2.04 − 0.68 ln(CHL-a))/ln2]
II. TSI (TP, µgL−1) = 10 × [6 − ln(48/TP)/ln2]
III. TSI (SD, m) = 10 × [6 − ln(SD)/ln2]
Both the TSI (CHL-a)−TSI (SD) and TSI (CHL-a)−TSI (TP) approaches were used to

infer the deviations of the TSI of the reservoirs. Using this method, eutrophication and
limiting nutrient status in reservoirs and lakes can also be assessed [33].

2.4. Non-Algal Turbidity

Non-algal turbidity (NAT) is widely used to determine the light availability of reser-
voirs and measured using SD and CHL-a, following the method of Jones and Hubbart
(2011) [34]. The following equation has been used to estimate each reservoir’s maximum
potential SD (SDmax) value.

IV. Log10SDmax = 0.90 − 0.29Log10 (CHL-a) − 0.138Log10(CHL-a)2

The back-transformed reciprocal of SDmax was then subtracted from the reciprocal of
the observed SD value at each reservoir to determine NAT using the following equation:

V. NAT = (1/SD) − (1/SDmax)
This technique yielded a quantitative estimation of NAT as expected by Walker’s

(1986) equation [35].

2.5. Statistical Analysis

Each reservoir’s TP, TN, and CHL-a values were used to compute the CHL-a: TP and
TN:TP ratios. It was necessary to log10-transform water quality parameters concentrations
in order to increase the normality of the data before regression analysis. The TP, CHL-
a, and SD datasets were utilized to determine each reservoir’s trophic status. Finally,
regression analysis investigated the link between water quality parameters and constructed
an empirical model. Sigma Plot (Ver. 14; Systat Software Inc., San Jose, CA, USA) was used
to conduct this analysis.

3. Results
3.1. Physicochemical Characteristics of Korean Reservoirs

The physicochemical water quality attributes of selected reservoirs at different ele-
vations showed varying patterns of heterogeneity (Table 1). The surface WT fluctuated
with altitude, with the mean WT nearly 13.44 ◦C at VLLR. However, the WT decreased to
9.06 ◦C in the HLR. The mean DO level was similar in the HLR, MLR, LLR, and VLLR sites.
Nevertheless, the average EC of the VLLR was significantly higher (2913.95 µScm−1) than
the other reservoir types based on altitude (HLR: 103.85 µScm−1, MLR: 112.84 µScm−1, and
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LLR: 128.65 µScm−1. Mean TP, TSS, and organic matter indicators (COD, TOC) displayed
consistently higher loads in the VLLR (TP: 39.10 µgL−1, TSS: 7.98 mgL−1, COD: 7.05 mgL−1,
TOC: 4.12 mgL−1) than in LLR (TP: 20.32 µgL−1, TSS: 4.26 mgL−1, COD: 4.90 mgL−1, TOC:
2.96 mgL−1), MLR (TP: 16.84 µgL−1, TSS: 3.49 mgL−1, COD: 4.57 mgL−1, TOC: 2.89 mgL−1),
and HLR (TP: 14.41 µgL−1, TSS: 2.73 mgL−1, COD: 3.86 mgL−1, TOC: 2.40 mgL−1). Lower
average TN:TP ratios were observed in the VLLR (57.21), followed by LLR (68.55), MLR
(97.51), and HLR (119.44). The mean values of CHL-a and CHL-a:TP ratios were found
higher in VLLR (CHL-a: 19.26 µgL−1, CHL-a:TP: 0.51) than LLR (CHL-a: 8.24 µgL−1,
CHL-a:TP: 0.47), MLR (CHL-a: 6.71 µgL−1, CHL-a:TP: 0.47) and HLR (CHL-a: 5.81 µgL−1,
CHL-a:TP: 0.44). The water transparency (SD) was lower in VLLR (SD: 1.61 m) compared
to LLR (SD: 1.91 m), MLR (SD: 2.55 m), and HLR (SD: 2.48 m).

Table 1. Summary of selected water quality parameters of high land (HLR), midland (MLR), lowland (LLR), and very low
land (VLLR) reservoirs (units mgL−1, except WT (◦C), EC (µScm−1), TP (µgL−1), CHL-a (µgL−1), SD (m), and NAT (2/m).

Reservoir
Types

Summary
Attributes WT EC DO TSS COD TOC TN TP TN:TP CHL-a CHL-a:TP SD NAT

HLR
(n = 19)

Min 4.70 40.00 6.70 0.80 1.80 1.20 0.52 6.58 39.62 1.37 0.14 0.90 −0.01
Max 17.50 312.88 14.30 9.86 8.20 5.90 2.55 25.06 229.43 12.10 0.89 4.50 1.18

Mean 9.06 103.85 10.02 2.73 3.86 2.40 1.45 14.41 119.44 5.81 0.44 2.48 0.31
SE 0.82 15.25 0.50 0.55 0.39 0.29 0.13 1.23 12.73 0.68 0.04 0.25 0.07

MLR
(n = 64)

Min 5.00 26.50 6.15 0.60 1.98 1.30 0.33 5.00 11.26 0.65 0.03 0.70 −0.32
Max 18.80 333.00 13.10 17.50 12.53 9.23 2.51 39.33 362.40 23.00 1.89 10.00 1.06

Mean 10.43 112.84 9.54 3.49 4.57 2.89 1.25 16.84 97.51 6.71 0.47 2.55 0.31
SE 0.41 7.76 0.21 0.39 0.26 0.18 0.07 1.09 7.75 0.50 0.04 0.18 0.03

LLR
(n = 49)

Min 2.50 27.75 4.63 1.00 1.94 1.18 0.49 8.00 15.40 1.24 0.05 0.30 0.04
Max 18.63 414.20 13.45 20.57 9.13 6.37 2.29 44.33 200.75 22.67 1.27 3.50 3.13

Mean 11.22 128.65 9.70 4.26 4.90 2.96 1.12 20.32 68.55 8.24 0.47 1.91 0.47
SE 0.56 12.68 0.25 0.49 0.23 0.16 0.07 1.21 5.56 0.73 0.04 0.11 0.09

VLLR
(n = 72)

Min 5.70 36.00 4.83 1.03 1.60 1.10 0.31 5.00 5.93 2.38 0.06 0.50 −0.91
Max 24.30 54,320.08 15.02 34.68 20.00 9.61 5.64 126.20 334.96 167.48 1.88 5.11 1.43

Mean 13.44 2913.95 10.14 7.98 7.05 4.12 1.33 39.10 57.21 19.26 0.51 1.61 0.43
SE 0.51 1126.26 0.23 0.78 0.44 0.23 0.13 3.65 6.81 3.04 0.04 0.11 0.05

WT: water temperature, EC: electrical conductivity, DO: dissolved oxygen, TSS: total suspended solids, COD: chemical oxygen demand,
TOC: total organic carbon, TN: total nitrogen, TP: total phosphorus, CHL-a: chlorophyll-a, SD: Secchi depth, NAT: non-algal turbidity, Min:
minimum, Max: maximum, SE: standard error).

3.2. Assessment of Nutrients, NAT and Algal CHL-a

Regression analysis on all samples (n = 204) in study reservoirs (supplementary file;
Figure S1) demonstrated TP as a better predictor of CHL-a (R2 = 0.44, p < 0.01) than TN
(R2 = 0.02, p < 0.05). In HLR, algal CHL-a exhibited similar response to TP (R2 = 0.23,
p < 0.03) and NAT (R2 = 0.31, p < 0.01; Figures 2 and 3). A highly significant positive
association was observed between TP and CHL-a in VLLR (R2 = 0.61, p < 0.01) than in LLR
(R2 = 0.03, p < 0.17), MLR (R2 = 0.16, p < 0.01) and HLR (R2 = 0.23, p < 0.03; Figure 2). On
the other hand, a significantly negative relationship was found between TN:TP and CHL-a,
with TN:TP explaining 26% and 17% of the variance in the MLR and VLLR, respectively.
The TN:TP ratio was used as the predictor variable in regression analysis to explain the
nutrient limitation for algal CHL-a (Figure 4). It is well established that a larger TN:TP
ratio points out a greater likelihood of P-limitation. We observed a significant decline in
CHL-a concentration with increasing TN:TP ratios (R2 = 0.24, p < 0.01), with 95.59% of the
observations presenting a P-limitation scenario.
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3.3. Water Clarity, NAT, and Other Variables

Water clarity measured as SD and NAT is widely used to determine the light availabil-
ity in freshwater reservoirs worldwide (Table 2, Figure 5). The SD illustrated a stronger
influence of TP, TN, TSS, and CHL-a concentrations in the varying elevation reservoirs. In
HLR, TSS (R2 = 0.60, p < 0.01) was the better predictor of SD than TP (R2 = 0.53, p < 0.01)
and CHL-a (R2 = 0.48, p < 0.01). A similar pattern was observed in MLR (TSS: R2 = 0.52,
p < 0.01; TP: R2 = 0.31, p < 0.01; CHL-a: R2 = 0.36, p < 0.01), LLR (TSS: R2 = 0.28, p < 0.01;
TP: R2 = 0.24, p < 0.01; CHL-a: R2 = 0.03; p < 0.22) and VLLR (TSS: R2 = 0.38, p < 0.01;
TP: R2 = 0.23, p < 0.01; CHL-a: R2 = 0.24; p < 0.01). A significant positive relationship
was observed among NAT with TP, and TSS in HLR, MLR, and LLR, but it showed an
insignificant negative relationship in VLLR (Figure 5). TP and TSS explained 47% and 34%
of the variance in NAT in HLR, respectively. In contrast, it was 18% and 29% in MLR and
32% and 20% in LLR of the variance in NAT.
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Table 2. Regression analysis of log-transformed Secchi depth (SD) with total phosphorus (TP), total
nitrogen (TN), total suspended solids (TSS), and chlorophyll-a (CHL-a) in high land (HLR), midland
(MLR), lowland (LLR), and very low land (VLLR) reservoirs.

Reservoir Types Models R-Value R2 p-Value

HLR

Log10 (SD) = 1.35 − 0.89 × Log10 (TP) −0.72 0.53 <0.01

Log10 (SD) = 0.37 − 0.20 × Log10 (TN) −0.17 0.02 <0.48

Log10 (SD) = 0.51 − 0.51 × Log10 (TSS) −0.77 0.60 <0.01

Log10 (SD) = 0.78 − 0.6 × Log10 (CHL-a) −0.70 0.48 <0.01

MLR

Log10 (SD) = 1.02 − 0.57 × Log10 (TP) −0.56 0.31 <0.01

Log10 (SD) = 0.56 − 0.49 × Log10 (TSS) −0.72 0.52 <0.01

Log10 (SD) = 0.67 − 0.43 × Log10 (CHL-a) −0.60 0.36 <0.01

LLR

Log10 (SD) = 0.94 − 0.54 × Log10 (TP) −0.49 0.24 <0.01

Log10 (SD) = 0.44 − 0.37 × Log10 (TSS) −0.52 0.28 <0.01
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3.4. Trophic Status Index and Its Deviation

Analysis of TSI and trophic status index deviation (TSID) in reservoirs presented
valuable insights into algal growth, nutrient, and other factors. A TSI value between 40 to
50 is usually associated with the mesotrophic condition (Figure 6). TSI (TP) indicated
mesotrophic conditions in HLR, MLR, and LLR, while it showed eutrophic tendency in
the VLLR. TSI (CHL-a) alluded to the eutrophic trend in all elevation reservoirs. The HLR
and MLR presented mesotrophic status based on TSI (SD), while LLR and VLLR were in a
eutrophic condition.
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total phosphorus (TP), chlorophyll-a (CHL-a), and Secchi depth (SD). The red line indicates the mean value.

The visual TSID assessment showed that phosphorus-limited BGA predominated in all
reservoirs during the study period (Figure 7). For instance, in HLR, 26.31% of observations
accounted for P-II, which indicated phosphorus limited smaller particles. Conversely, only
4.68% and 14.06% of observations pointed to NAT and phosphorus limitation as deciphered
from the smaller particles in MLR. Correspondingly, only 20.40% and 8.16% of observations
revealed phosphorus limited smaller particles and NAT in LLR. It was significant that a
lower zooplankton grazing (4.16%) occurred in VLLR, while this was 15.27% and 5.55% for
phosphorus limited smaller particles and NAT.
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4. Discussion
4.1. Reservoirs Physicochemical Water Quality Attributes

Reservoir features are primarily regulated by local and regional weather patterns, the
geological landscape, land use, hydrology, and altitude [4,5,12]. Most of the reservoirs
occur from midland (ML) to very lowland (VLL) altitudinal regions in Korea. Consequently,
there are fewer lakes and reservoirs in the highland (HL) areas. In Korea, surface water
temperature differences were observed with altitude level and were affected by land use,
wind action, watershed morphometry, and radiant heat [8]. The present study clearly
observed water temperature response to altitude (Table 1; VLLR: WT 13.44 ◦C; HLR: WT
9.06 ◦C).

The reservoir’s biochemical cycles are dependent on wide-ranging factors such as
watershed area, atmosphere, outflow, inflow, evaporation, and sedimentation [6,8,36]. EC
is a function of total dissolved ions in reservoirs and increased significantly from highland
to lowland regions. HLR are usually small in extent and have shallow soil with steep slopes
that allow percolating water to pass quickly, resulting in short water residence time (WRT)
and less ionic strength [37,38]. On the contrary, lowland reservoirs are relatively large with
deep soil and gentle slopes, allowing more significant mixing of minerals and percolating
water, resulting in a longer WRT and increased ionic concentration [37]. Our findings on
EC in reservoirs suggest that it was more diluted in HLR than LLR.

Suspended solids (TSS), COD, TOC, and TP in the reservoirs increased with decreasing
altitude. On the other hand, TN concentration was higher in the HLR than LLR, owing to
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the insufficient water retention capacity of atmospherically deposited nitrogen in the high
altitude catchments [37]. Mean TP concentration in VLLR was 2.7 times higher than HLR.
As should be expected, given these nutrient concentration disparities, the average CHL-a
concentration was 3.3 times higher in the VLLR compared to HLR. The water clarity based
on SD of the reservoirs displayed an increasing tendency with altitude. These findings are
consistent with the assumptions that VLLR have relatively higher nutrient import rates
due to sedimentary or alluvial watersheds than highland water bodies [4,6,10]. Industrial-
ization, urbanization, and agriculture farming are relatively intense in the alluvial plains
and it can be hypothesized that VLLR are prone to a higher inflow of pollutants than the
HLR. Researchers studying the highlands have claimed that the reservoirs have extremely
low EC and nutrient concentrations with modest phytoplankton biomass [6,37,39,40].

4.2. Limiting Factors for Algal Growth

It is widely established that TP and TN are the key regulators of algal growth in
aquatic systems [10,29,41]. We investigated whether TP, TN, or co-limited limit algal CHL-
a along with NAT in Korean freshwater waterbodies. Empirical models based on TP, TN,
and CHL-a suggested that TP played a dominant role in CHL-a growth regulation in the
Korean reservoirs (supplementary file; Figure S1). This is frequent in temperate lakes
worldwide [10,42,43]. This finding is consistent with prior research on reservoirs, which
indicated that TP was the most critical component influencing algal growth, followed by
TN, light regime, turbidity, and WRT [6,44,45]. However, TP and NAT are essential for algal
development (Figures 2 and 3). NAT can enormously reduce the light penetration in the
highland waterbodies, providing light limited conditions for algal growth. Several studies
have reported that NAT can also lessen the algal biomass [46,47]. Our results suggest that
light is also a limiting factor for algal development in HLR. In comparison, the primary
productivity of the VLLR and MLR is more limited by the availability of TP than TN and
NAT, indicating a robust P-limitation. However, additional research is required to elucidate
the mechanisms between NAT and CHL-a in Korean reservoirs.

The TN:TP ratios are widely used indicators to determine nutrient limitations status of
algae in aquatic habitats (Figure 4). It is widely accepted that a higher TN:TP ratio suggests
a greater likelihood of P-limitation [22,48]. The present study showed a significantly
decreasing CHL-a concentration trend with increasing TN:TP ratios that indicated strong
P-limitation. To put it another way, the TN:TP ratios drop as CHL-a levels rise. In addition,
a decreasing TN:TP ratio trend with increasing CHL-a level has been seen on a global
scale. Yan et al. [49] observed a similar negative connection between the TN:TP ratio and
CHL-a utilizing worldwide data from 157 publications. Abell et al. [7] concluded that
TN:TP ratios were lower in lakes with a higher trophic status across a more comprehensive
latitudinal range.

4.3. Light Availability with Nutrients, Solids, and Algal Chlorophyll

SD and NAT values for water clarity can significantly affect the underwater light
availability in lentic environments [11,41]. In addition, light is required for algal growth
to be viable [11]. Therefore, light availability significantly affects water column depth,
nutrients (TP, TN), suspended solids (TSS), and algal growth [6,11].

Reservoir water transparency is affected by nutrients, phytoplankton, and turbidity
associated with TSS (Table 2). SD is a simple and reliable method to determine reservoir
water clarity. The reservoirs in the highland and midland are relatively transparent than
those in the lowland and very lowland regions. The present study found that SD is highly
influenced by TSS than TP and CHL-a in all reservoirs, irrespective of their elevation. TSS
is strongly associated with silt and clay particles, organic colloids, and phytoplankton.
The present results have coincided with previous studies [10,47,50]. SD values less than
1 m indicate poor water quality problems caused by organic turbidity and suspended
particles in reservoirs [5]. The current study demonstrated a similar low water clarity in
a few reservoirs based on the minimum SD value. NAT showed a significant positive
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relationship with TP and TSS in the HLR, MLR, and LLR (Figure 5). By contrast, it exhibited
an insignificant and negative relationship in VLLR. The positive relationship between NAT
with TP and TSS in Kansas and Missouri reservoirs support our findings [9,46]. However,
the empirical connections of SD and NAT with TP, TSS, and CHL-a should be investigated
further to ascertain other aspects of light availability in different elevation reservoirs.

4.4. Trophic Status Evaluation of Reservoirs with Its Deviation

The TSI of studied reservoirs based on TP, TN, CHL-a, and SD showed heterogenic re-
sponses of the varying altitude levels. All the reservoirs were categorized, from mesotrophic
to eutrophic nutrient enrichment status, during this study (supplementary file; Table S1;
Nürnberg, 1996 [51]). The VLLR displayed a eutrophic state, while HLR, MLR, and LLR
showed a mesotrophic state based on mean TP and CHL-a concentrations. The higher TP
concentrations supported a relatively higher concentration of algal biomass in VLLR. Thus,
both point and non-point sources may contribute significantly to the anthropogenic nutri-
ent loadings in the Korean and Asian lowland reservoirs [6,52,53]. The primary sources
of nutrient loading are associated with agricultural fertilizer, animal manure, municipal
sewage, and industrial effluents [10]. It is well known that a higher nutrient loading rate
is linked with intensive agriculture farming, industrialization, and urbanized land-use
(VLLR) than watersheds supporting the natural ecosystem (HLR) [6,54]. These differences
in land-use indicate that the nutrient enrichment level of the reservoirs decreased with
increasing elevation [6]. Notably, we found that all the reservoirs were in a mesotrophic
state based on mean TN level. According to the proposed mean SD threshold values, LLR
and VLLR exhibited eutrophic status, while HLR and MLR were mesotrophic.

Evaluating a water source’s capacity and monitoring cyanobacterial blooms or BGA
is critical to practical water resource management [55]. WT, TP, CHL-a, and SD all play
a crucial role in influencing the cyanobacterial growth in aquatic systems [41,56]. The
concentrations of TP and CHL-a in VLLR implied a moderate risk of cyanobacterial expo-
sure (supplementary file; Table S2; WHO, 2015). In contrast, they indicate a low risk of
exposure in HLR, MLR, and LLR. SD suggested a moderate risk of cyanobacterial presence
in the VLLR and LLR, while it showed a lower risk in the HLR and MLR. These find-
ings align with the assumptions that very lowland reservoirs are relatively vulnerable to
cyanobacterial growth compared to highland reservoirs because of high nutrients [6,10].

The TSI and TSID analyses provided valuable information on the patterns of algal
CHL-a development and the variability of nutrients and other significant factors in the
aquatic ecosystems (Figures 6 and 7). TSI (TP) indicated the mesotrophic conditions in
HLR, MLR, and LLR, while it showed eutrophic status in the VLLR. TSI (CHL-a) also
revealed that all the reservoirs were in the eutrophic state. However, the HLR and MLR
were in a mesotrophic state according to the TSI (SD), whereas LLR and VLLR were in
eutrophic conditions.

The TSID showed that BGA were prevalent in all the reservoirs according to the
relationships of TSI (CHL-a) with TSI (SD) and TSI (TP). It also indicated that BGA blooms
are associated with reservoir eutrophication. The lower levels of NAT, zooplankton grazing,
and P-limited small particles were observed in a few reservoirs. Furthermore, the TSID
data showed that TSI (CHL-a) was significantly higher than TSI (TP) in all reservoirs,
indicating algal productivity higher than expected and emphasizing the regulatory role
of phosphorus [45,57]. Besides, Carlson’s TSI (CHL-a) was consistently greater than 50,
suggesting that all reservoirs were in the eutrophic state. The consistent eutrophic condition
can lead to lower oxygen levels and disrupts sustainable ecological functioning [4,58]. If
reservoirs remain eutrophic for an extended period, they may be dominated by macrophyte
beds, resulting in the eventual loss of the reservoir [45]. These outcomes are consistent
with earlier findings in Korean reservoirs [8–10].
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5. Conclusions

In conclusion, this study supported the hypothesis that reservoir limnology varies
with altitude and provides comparable insights into the physicochemical water quality
characteristics of reservoirs. The average nutrients, algal CHL-a, TSS, organic matter (COD,
TOC), WT and EC were consistently higher in the VLLR than other elevation reservoirs.
This richly supported the assumption that VLLR has relatively higher nutrient, organic
matter and ionic content import rates due to the watersheds’ sedimentary or alluvial nature.
The TP and CHL-a level in VLLR were relatively higher than the established eutrophic
status limits and suggested a moderate risk of cyanobacterial exposure. The empirical
relationship between nutrients and CHL-a indicated that TP was the most critical nutrient
regulating algal growth. At the same time, TP and NAT are both essential for algal CHL-a
in HLR. The TN:TP ratios revealed that TP was mainly responsible for the eutrophication
in the studied reservoirs. TSI (CHL-a) was constantly greater than 50 in the HLR to VLLR,
signifying that all reservoirs are in the eutrophic state. TSID suggested that BGA were
predominant in all the reservoirs, and TP regulated the algal CHL-a. The results indicate
that the external phosphorus loading may contribute to the rapid eutrophication events and
increased primary productivity in all reservoirs, especially in VLLR. Therefore, it is essential
to minimize the imminent nutrient enrichment in Korean reservoirs. The following steps
can be taken: reducing industrial and domestic effluent disposal, minimizing fertilizer use,
using low-impact and organic fertilizers, and controlling the inflow of livestock wastewater
through the reservoir’s catchment. Furthermore, it is essential to enforce stricter water
quality regulations for reservoirs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13243640/s1, Figure S1: Empirical relations among nutrients (TP: total phosphorus, TN:
total nitrogen) with chlorophyll-a (CHL-a), Table S1: Trophic state criteria based on TP, TN, CHL-a,
and SD from Nurnberg (1996) for high land (HLR), midland (MLR), lowland (LLR), and very low
land (VLLR) reservoirs. (TN: total nitrogen, TP: total phosphorus, CHL-a: chlorophyll-a, SD: Secchi
depth, O: oligotrophic, M: mesotrophic, E: eutrophic and H: Hypereutrophic), Table S2: Thresholds
of risk associated with potential growth of cyanobacteria in high land (HLR), midland (MLR),
lowland (LLR), and very low land (VLLR) reservoirs (adopted from WHO, 2015, LRG: lower risk
of growth, MRG: moderate risk of growth and HRG: higher risk of growth, TP: total phosphorus,
CHL-a: chlorophyll-a, SD: Secchi depth).
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