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Abstract: Water quality estimation tools based on real-time monitoring are essential for the effective
management of organic pollution in watersheds. This study aims to monitor changes in the levels
of chemical oxygen demand (COD, CODMn) and dissolved organic matter (DOM) in Erhai Lake
Basin, exploring their relationships and the ability of DOM to estimate COD and CODMn. Excitation
emission matrix–parallel factor analysis (EEM–PARAFAC) of DOM identified protein-like component
(C1) and humic-like components (C2, C3, C4). Combined with random forest (RF), maximum
fluorescence intensity (Fmax) values of components were selected as estimation parameters to
establish models. Results proved that the COD of rivers was more sensitive to the reduction in C1
and C2, while CODMn was more sensitive to C4. The DOM of Erhai Lake thrived by internal sources,
and the relationship between COD, CODMn, and DOM of Erhai Lake was more complicated than
rivers (inflow rivers of Erhai Lake). Models for rivers achieved good estimations, and by adding
dissolved oxygen and water temperature, the estimation ability of COD models for Erhai Lake was
significantly improved. This study demonstrates that DOM-based machine learning can be used as
an alternative tool for real-time monitoring of organic pollution and deepening the understanding
of the relationship between COD, CODMn, and DOM, and provide a scientific basis for water
quality management.

Keywords: water quality estimation; machine learning models; random forest; EEM–PARAFAC;
DOM; COD; CODMn

1. Introduction

With the acceleration of the industrialization process, the problem of organic pollution
in receiving river basins has become increasingly prominent [1,2]. Organic pollution to
Erhai Lake Basin, a local drinking water source, has caused deterioration of the aquatic
ecosystem and poses a threat to human health [3]. Therefore, continuous water quality
monitoring and evaluation for organic matter are essential for rapid pollution control, to
ensure the reliability of drinking water, and to help understand the ecosystem functioning
of the basin. Traditionally, chemical oxygen demand (COD and CODMn) tests are widely
used to determine the organic content of watersheds [4]. The main difference between
COD and CODMn test methods lies in the oxidant. COD uses potassium dichromate as
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the oxidant, while CODMn uses potassium permanganate, but both methods demand
high-quality personnel, expensive or poisonous reagents, and long analysis time, limiting
their application for rapid continuous safety monitoring [5–7].

Recently, fluorescence technology has introduced a wide prospect of applications in the
field of hydrological monitoring, due to the small amount of sample required, fast analysis
speed, and pollutant-free analysis [8,9]. Excitation emission matrix–parallel factor analysis
(EEM–PARAFAC) has been found effective in reflecting the composition and source of
dissolved organic matter (DOM), but its application in the estimation of water quality
parameters in human affected basins has not been fully explored [10–13]. In addition,
understanding the relationship between COD, CODMn, and DOM is helpful to provide a
basis for water quality management. Past studies have shown a direct relationship between
DOM, COD, and CODMn, which indicates that DOM may be used as a COD and CODMn
estimation tool in hydrological monitoring [14,15].

Clarifying the contribution of DOM components to COD and CODMn is conducive
to the proposal of scientific water quality management measures, but due to the spatial
and temporal heterogeneity and dynamic nature of COD and CODMn in Erhai Lake Basin,
traditional regression methods can have difficulties considering the non-linear relationship,
which may exist between COD, CODMn and DOM [16]. To capture non-linear relationships
that are common in environmental processes, machine learning has recently begun to
be used for hydrological monitoring, since it includes algorithms and models that can
provide multivariate, nonlinear, nonparametric regression or classification methods [17].
In addition, machine learning models can be trained for several key environmental quality
parameters and the final environmental outcomes, using the current archived data, and can
further predict future results after inputting new parameters [18]. This shows the potential
of using DOM to quickly predict COD and CODMn on site. The study by Peterson et al.
(2018) in the Missouri–Mississippi River system proved that machine learning models
outperform regression models in predicting water quality parameters, which will help to
improve the reliability of estimated COD and CODMn data [19].

Erhai Lake is the second-largest freshwater lake in southwestern China and is an
important source of drinking water, irrigation, tourism, and fisheries for Dali (Yunnan,
China) [20]. Therefore, understanding the dynamic changes of organic matter content
and realizing the real-time monitoring of COD and CODMn are of great significance
for the water quality management of Erhai Lake Basin. Herein, we collected 651 water
samples from the Erhai Lake Basin in 12 months, used EEM–PARAFAC to obtain the main
components of DOM and the maximum fluorescence intensity (Fmax) of each component.
Using machine learning algorithms, we trained and modeled the gained data sets. The
aims of this study were to (1) analyze seasonal changes of COD, CODMn, and DOM
in Erhai Lake Basin; (2) compare the difference in the contribution of different DOM
fluorescent components to COD and CODMn; (3) test the ability of DOM to estimate COD
and CODMn.

2. Material and Methods
2.1. Study Area and Sample Collection

The Erhai Lake Basin is located in the watershed of the major water system of Lan-
cang River in Yunnan Province, China (Figure 1), with a drainage area of approximately
2565 km2 [21]. The basin is located in a plateau in a subtropical monsoon climate zone,
with an average annual rainfall of 858 mm and a mean annual air temperature of 18.1 ◦C.
Erhai Lake (25◦47′ N, 100◦11′ E) is the second-largest freshwater lake in Yunnan Province,
with an area of approximately 250 km2 and a water depth of 10.2 m [21].

In this study, the water samples were collected from Erhai Lake and its main 27 inflow
rivers, with annual runoff accounting for 95% of the total river flow into the lake. A total of
19 sampling points were set in the lake, and 27 sampling points were set at river mouths
running into the lake (Figure 1). For the lake, surface water samples (0.5 m from the surface)
and bottom water samples (0.5 m from the bottom) were collected. For rivers, surface
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samples (0.2 m from the surface) were collected [22,23]. Water samples were collected
monthly in 2020 ( 65 sites, provided that the rivers were not dried up). Water temperature
(WT) and pH were measured with HACH HQ40d, and different portable dissolved oxygen
meters (YSI550A, Yellow Springs, OH, USA) were used for the measurement of dissolved
oxygen (DO). Water samples were collected with a LIMNOS water sampler and were
temporarily stored in 1L PVC bottles. The water sample was first sieved (250 mesh) and
then placed in an HPDE container that was preliminarily soaked in 0.1 mol L−1 HCL for
24 h and rinsed with Milli-Q water (Millipore Co., Bedford, MA, USA). The determination
of all indicators was completed within 24 h.
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Figure 1. Study area and sampling sites.

2.2. Analytical Measurements
2.2.1. Water Quality Index

COD was determined following the potassium dichromate index method [24]. CODMn
was analyzed by the potassium permanganate index method [25]. Total nitrogen (TN)
and ammonia (NH4-N) concentrations were determined by alkaline potassium persul-
fate digestion–UV spectrophotometric method (The Chinese National Standard HJ636-
2012) [26]. The dissolved organic nitrogen (DON) concentration is the value obtained by
subtracting the dissolved inorganic nitrogen from the total dissolved nitrogen [26]. Total
phosphorus (TP) and orthophosphate concentrations were measured by using the ammo-
nium molybdate spectrophotometric method (The Chinese National Standard GB11893-89) [27].
Water for Chlorophyll a (Chla) was first filtered through a 0.45 µm glass fiber membrane,
and then, the sample membrane was extracted with 90% acetone for 24 h and measured
colorimetrically [28].

2.2.2. DOM Measurements and Analyses

Before the measurement, a pre-burned (500 ◦C, 4 h) Whatman GF/F glass fiber filter
(GE Healthcare, Pittsburgh, PA, USA) was used to preliminarily filter the water samples;
then, a 0.45 µm glass fiber membrane rinsed with ultrapure water was used to further filter
the water samples. The filtered water samples were stored in a brown glass bottle. The
measurement was completed within 24 h.
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In order to build excitation–emission matrices (EEMs), the measurement of the fluo-
rescence intensity was carried out in a fluorescence spectrophotometer (RF-6000, Japan),
across excitation wavelengths ranging from 260 to 400 nm (2 nm increments) and emission
wavelengths ranging from 300 to 600 nm (1 nm increment). Bandpass was set at 5 nm, and
the scanning speed was 6000 nm/min. Milli-Q ultrapure water was used to calibrate the
three-dimensional fluorescence spectrum of the sample, thereby reducing the influence of
instrument and Raman scattering [29]. The fluorescence data were used to calculate the
fluorescent index (FI), freshness index (β/α), humification index (HIX), and spontaneous
source index (BIX) (Table S1) [8,12,30–32].

PARAFAC can decompose the matrix data of the three-dimensional fluorescence spec-
trum into discrete variables to obtain the main components in the complex mixtures of
DOM fluorophores [9]. This study was based on the method of Stedmon and Bro (2008),
using the DOMFlour toolbox to carry out the analysis in MATLAB R2020a (The Math-
Works, Inc., Natick, MA, USA) [33]. The inner-filter effects were corrected by the formula
reported by Larsson et al. (2007) [34]. EEMs were normalized before model validation, and
the appropriate number of components was verified by split-half analysis and random
initialization, as suggested by Murphy et al. (2013) [35]. Split-half validation was per-
formed on 4-, 5-, 6-, and 7-component models, and the 4-component model was validated,
while others were not. The PARAFAC analysis finally separated the multiple fluorescence
components and their respective maximum fluorescence intensity (Fmax). The Sum of
Fmax (SOF) for C1-C4 was used to indicate the total fluorescence of the DOM sample.
The final results of DOM components were further uploaded to the OpenFluor network
(https://openfluor.lablicate.com/, accessed on 6 June 2021), and the criteria for match-
ing components were set at 95% similarity and assessed through Tucker’s Congruence
Coefficient [36].

2.3. Machine Learning

COD, CODMn, and the Fmax values of DOM components were trained by random
forest (RF). RF is a machine learning algorithm for classification and regression that consists
of a set of decision trees [37]. In RF regression, it first extracts bootstrap samples from the
original data and then generates regression trees by using the classification and regression
tree (CART) [38]. After the best split on each node is completed, multiple estimations on
target variables are produced. By voting them, we obtain a final output [37,39]. As one of
the well-known machine learning algorithms, RF has the advantages of high estimative
performance, the ability to capture the nonlinear dependencies between predictor and
dependent variables, and the ability to handle highly correlated predictor variables [40–42].

RF models were constructed through Anaconda 3 (v5.2.0) (Anaconda Inc., Austin, TX,
USA), and the program code was written by Python programing language. In this study,
80% of randomly selected data were used in the training phase of the model, and the other
20% examined the model performance. The RandomForestRegressor function of the library
Scikit-Learn was used to build estimative models. Using the GridSearchCV function from
the Scikit-Learn library, a grid search was implemented to gain a set of the ideal value
of the parameters (Table S2). Then, fivefold cross validation (CV) was used to establish
and validate the estimation results (Figure S1). The entire training data set was randomly
divided into 5 subsets, 4 of which were used for model training and to make estimations
for the subsets not involved in training. The whole process was repeated 5 times until
each subset was tested [37]. Further, R square (R2), root-mean-squared error (RMSE), and
residual estimation deviation (RPD) were calculated to judge the generalizing capability
of the model [43]. If the RPD value was greater than 2, the model was considered to be a
stable and accurate estimative model, while a value between 1.4 and 2 indicated that the
model had a certain estimative ability but still had room for improvement; a value less
than 1.4 indicated that the model had almost no estimative ability [44].

https://openfluor.lablicate.com/
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In this study, we followed the following steps for data analysis and modeling:

1. Firstly, EEM–PARAFAC was used to analyze the water samples of the Erhai Lake
Basin and identify the main DOM components. The seasonal differences in the COD,
CODMn, DOM components, and the fluorescence index of the rivers and Erhai Lake
were explored. The four seasons in this study were defined as spring (February–April),
summer (May–July), autumn (August–October), and winter (November–January of
next year).

2. Secondly, RF was used to train the Fmax values of DOM components and correspond-
ing COD and CODMn data. Considering that there may be differences between rivers
and Erhai Lake, the models were established separately [15].

3. Thirdly, using RF, the Fmax of each component of the DOM would be sequentially
reduced (Fmax was reduced in steps of 10% until it became 0) for COD and CODMn
estimation. This was to explore the differences in the effects of DOM components on
COD and CODMn.

4. Finally, the effectiveness of adding new environmental variables to the models in
improving the prediction ability of COD and CODMn was explored.

2.4. Other Statistical Analysis

By using SPSS Statistics 26.0 software (IBM Corp., Armonk, NY, USA), Pearson’s
correlation analysis was used to evaluate the correlation between the parameters, and
one-way ANOVA (analysis of variance) was used for each variable to determine if the
differences in the means between sampling depths were statistically significant. Significant
correlations in the statistics were evaluated using p values. The descriptive statistics and
graph production of the data were carried out in origin 2020b and ArcGIS 10.8.

3. Results and Discussion
3.1. Seasonal Changes of COD, CODMn, and DOM

Using PARAFAC, we identified four DOM components in Erhai Lake Basin—one
protein-like component (C1) and three humic-like components (C2, C3, and C4) (Figure S2,
Table S3). The one-way ANOVA test showed that there was no significant variation in each
variable among different depths (p > 0.05) (Table S4); thus, for all variables, the average
values of surface water and bottom water are discussed in this section (Table S5).

With the arrival of summer, C1 reached its peak in the lake (Figure 2). This has been
associated with an increase in biological activity in summer, which promotes the increase in
the protein-like component [45]. The spatial distribution of DOM in summer suggested that
C1 was more internally affected (Figure S3). For example, C1 values in the middle sampling
sites (2 and 18) were higher than that of the sampling sites (1, 11, 12, 13, and 14) near the
river mouth. This was consistent with the endogenous influence indicated by FI, which
reached the highest value in summer. The relative abundance of humic-like substances in
the rivers reached the highest value in summer, which was similar to the results of previous
studies in temperate rivers and related to the rainfall [46,47]. The mean annual rainfall
of Erhai Lake Basin is 858 mm, of which 90% falls in the wet season between May and
October [20]. Studies have shown an increased abundance of humus components of DOM
following rainstorm events, as more rainfall in summer may promote the release of soil
organic matter into the river and terrestrial plants in the form of humus substances [48,49].
In addition, the SOF of the lake was on an upward trend throughout the year, while that of
the rivers began to decline after reaching a peak in summer (Figure S4). This indicated that
after summer, the DOM level in the Erhai Lake was not mainly controlled by the rivers.
Combined with the FI value of Erhai Lake, close to 1.8 instead of 1.4, we believe that the
DOM of Erhai Lake thrived by internal sources (extracellular release and leachate from
bacteria and algae).
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COD and CODMn have been widely used to evaluate organic content in water sys-
tems [50,51]. Similar to other lakes in China, our results showed that COD and CODMn of
the lake reached their peak in summer, which may be related to phytoplankton detritus
and the release of dissolved organic matter from phytoplankton [52–55]. Although the
humic-like components in rivers reached their peak in summer, COD and CODMn had a
certain degree of decline, compared with spring, and the downward trend of COD was
more obvious. The protein-like component may contribute to more COD. Therefore, with
the decrease in C1 in summer, COD was also reduced to a certain extent. In addition,
the amount of water brought in summer may have diluted the concentration of organic
matter in the river to a certain extent so as to reduce COD [56]. Although both COD and
CODMn were indirect expressions of the oxidation degree of organic matter, the correla-
tion between COD and CODMn in rivers was obviously stronger than that in Erhai Lake
(Tables S6 and S7). COD measured by the potassium dichromate method can express most
of the reducing substances in the water body and oxidation rate can reach 90%, while the
CODMn value obtained based on the potassium permanganate method can only reflect
some reducing substances that were easily oxidized [57–59]. Therefore, a lower correlation
means there were more complex substances that were not easily oxidized in the water body.
These results indicated that the organic matter in the Erhai Lake may be more complex and
include more substances not easy to be oxidized by potassium permanganate. The correla-
tion results of DOM, COD, and CODMn were also quite different in the rivers and Erhai
Lake. COD, CODMn, and DOM components had a good correlation in rivers. Correlation
coefficients were all greater than 0.6, in which the correlation coefficients of humic-like
components, and CODMn were all greater than 0.8, indicating that the humic-like com-
ponents and CODMn had a close relationship in the rivers. There was no strong positive
correlation (correlation coefficient >0.6) between COD, CODMn, and DOM in Erhai Lake.
In summer, there were high COD and CODMn values in the north of Erhai Lake, while
humic-like components (C2, C3, and C4) were mainly concentrated in the south, and the
protein-like component (C1) was widely distributed in the whole lake (Figure S4). These
results implied that relying on DOM to estimate COD and CODMn in the lake may have
poor accuracy.
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3.2. Performance of Models and Variable Importance

A Pearson’s correlation analysis was performed on all variables (Tables S6 and S7). The
results showed that the DOM components (C1, C2, C3, and C4) had a significant positive
correlation with each other, which indicated that there may be a potential multicollinearity
problem between the independent variables. This was one of the reasons why we chose
RF to build the model because it had been proved that this machine learning method was
equally applicable to highly correlated variables [60,61].

The RF model has been widely used in the estimation of water quality indicators in
recent years and has been proven to have good estimative capabilities [62]. RPD values of
river models were generally greater than 2, which showed that they had a good estimation
of COD and CODMn in rivers, while RPD values in lake models were between 1.4 and 2,
which showed that they had a certain estimation ability for COD and CODMn (Figure 3).
CODMn model of rivers (CODMn-R) had a higher R2 value and smaller RMSE value than
the COD model of rivers (COD-R), which proved that the estimation error of CODMn-
R was less. RF is an ensemble learning model optimized on the basis of traditional
learning models [63]. By integrating the results of multiple independent decision trees
and estimating a result, the final result will be better than the calculation result of a
single tree [64]. The results proved that RF models based on fluorescent components were
effective for estimating COD and CODMn in rivers and had certain estimation ability
for COD and CODMn in Erhai Lake, which revealed the development potential of DOM
fluorescence intensity in the estimation of water quality indicators. As a nonlinear model,
RF results showed that DOM tends to be nonlinear with COD and CODMn in Erhai Lake
Basin [41]. In addition, it showed that the source of COD and CODMn in Erhai Lake was
more complicated than that of rivers, and it was not enough to estimate COD and CODMn
of Erhai Lake rely on DOM alone, which was consisted with weak correlation results of
COD, CODMn and DOM in the lake.
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Since river models showed better estimation ability, we reduced the Fmax of DOM
and substituted it into the river models to obtain the difference in the contribution of DOM
components to COD and CODMn (Figure 4, Tables S8 and S9). Overall, with the decrease in
Fmax of the DOM components, the level of COD and CODMn decreased correspondingly.
For COD models (Figure 4a–d), when the reduction level was 100%, the results of C1
and C2 were similar, that is, C1 and C2, respectively, led to a 29% and 26% drop in COD
concentration. This was consistent with the close relationship of C1, C2, and COD in the
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correlation results. The influence of C3 and C4 was relatively small, but that of C4 (14%)
was greater than that of C3 (6%). In the CODMn models (Figure 4e–h), C4 had the greatest
impact. When C4 was completely removed, CODMn was reduced by 16%. When the
reduction degree was 100%, the reduction degree of CODMn corresponding to C1, C2, and
C3 was 4%, 6%, and 6%, respectively.
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Machine learning methods have been increasingly used in hydrological monitoring in
recent years. The results of this study showed an obvious advantage of RF in considering
nonlinear relationships and the effectiveness of RF in COD and CODMn prediction. This
will be beneficial to the real-time monitoring of organic pollution in Erhai Lake Basin as
COD and CODMn can be obtained through the real-time calculation of machine learning
models. The results also promoted the understanding of the relationship between COD,
CODMn, and DOM. C1 and C2 have a greater impact on COD and less on CODMn, which
may indicate that these two components contain substances that were not easily oxidized
by potassium permanganate. Past studies have suggested that protein substances were
more difficult to degrade than humus substances, which may explain the difference in
protein-like component C1 in different models [65]. C2 was identified as a refractory
humic-like component, with a high aromatization degree and complex structure [66,67].
This may make it less susceptible to oxidation by potassium permanganate. In the past,
C4 was recognized as resembling plant-derived humus. CODMn was most sensitive
to the reduction in C4, which suggested that C4 may be easily oxidized by potassium
permanganate [68,69]. The results showed that COD was more sensitive to the reduction in
C1 and C2, while CODMn was more sensitive to the reduction in C4, which suggested that
we should pay attention to the change in C1, C2, and C4 and reduce their concentration in
water to prevent possible organic pollution in Erhai Lake Basin.

3.3. Optimization of Estimation Models in Erhai Lake

Although the COD and CODMn models based on DOM in Erhai Lake had certain
estimative capabilities, compared with rivers, their estimation ability was poor. We adopted
the concept of using additional indicators (WT, DO, pH, TN, DON, NH4-N, TP, orthophos-
phate, and Chla) with the RF method to upgrade the accuracy of model estimation, as
this method has been proven effective [70]. For COD, the addition of WT made the model
stable and accurate (RPD value > 2), the addition of orthophosphate and NH4-N improved
the prediction ability of models (1.4 < RPD value < 2) (Table 1). Although orthophosphate
and NH4-N cannot be oxidized by potassium dichromate or potassium permanganate,
our results may suggest that they can indirectly reflect the level of organic matter in the
water. For CODMn, the addition of indicators improved the estimative ability to a certain
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extent, it did not exceed 2 overall. This showed that for Erhai Lake, it was difficult to
construct CODMn estimative models with general water quality indicators, and further
research is needed.

Table 1. Results of RF models.

Add Indicator
L-COD L-CODMn

R2 RPD RMSE R2 RPD RMSE

WT 0.74 2.03 0.66 0.53 1.51 0.22
DO 0.67 1.81 0.74 0.50 1.46 0.23
pH 0.64 1.73 0.77 0.53 1.52 0.22
TN 0.60 1.63 0.82 0.42 1.36 0.24

DON 0.63 1.70 0.79 0.48 1.44 0.23
NH4-N 0.69 1.86 0.72 0.53 1.50 0.22

TP 0.63 1.71 0.78 0.51 1.47 0.22
Orthophosphate 0.66 1.77 0.75 0.54 1.53 0.21

Chla 0.66 1.77 0.75 0.47 1.43 0.23
WT, DO 0.77 2.14 0.62 0.57 1.57 0.21
WT, pH 0.75 2.09 0.64 0.55 1.53 0.21
DO, pH 0.71 1.92 0.70 0.54 1.53 0.21

WT, DO, pH 0.75 2.06 0.65 0.56 1.55 0.21

Compared with other indicators, DO, pH, and WT have the advantages of easy access
and no pollution. Therefore, we tried to combine these three indicators with DOM to further
improve the model. Results showed the combination of DO and WT can further optimize
the COD and CODMn models since their RPD values reached the highest in L-COD and
L-CODMn, respectively. This may be because both can affect COD and CODMn through
regulating chemical reactions, as well as biological physiology. For example, the increase
in WT may lead to an increase in phytoplankton abundances, which can release organic
matter into the water body [71]. A study by Marcinek et al. (2020) showed the production
of organic matter is linearly related to oxygen consumption in hypoxic waters [72]. The
results of this study showed the close relationship between DO, WT, COD, and CODMn
and suggested the importance of choosing appropriate parameters in establishing machine
learning models.

4. Conclusions

Herein, we adopted RF to estimate COD and CODMn in the Erhai Lake Basin based
on DOM components. The Fmax of DOM, COD, and CODMn for 12 months in 2020 was
put into models for training. Next, we reduced the Fmax of DOM proportionally and
put it into the models for COD and CODMn estimation. We compared and analyzed the
differences in the contribution of different components. Finally, we attempted to add new
variables to improve the estimation ability of models. The major findings of this study are
listed as follows:

1. The DOM of Erhai Lake thrived by internal sources (extracellular release and leachate
from bacteria and algae);

2. The aquatic ecosystem of Erhai Lake is more complicated than rivers. In Erhai Lake,
the correlation between COD, CODMn, and DOM components and the estimative
ability of COD and CODMn models based on DOM were not as good as that of rivers;

3. There were differences in the contribution of DOM components to COD and CODMn.
COD was more sensitive to the reduction in C1 and C2, while CODMn was more
sensitive to the reduction in C4;

4. The selection of appropriate environmental variables will help improve the accuracy
of RF models. DO and WT were considered to be the best indicators to improve the
accuracy of the COD and CODMn estimation models in Erhai Lake;
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5. As an integrated learning model composed of multiple learning, RF showed an
advantage to consider nonlinear relationships between COD, CODMn, and DOM,
which proved its potential in hydrological monitoring.

The RF model showed accurate training and validation results for the estimation of
COD and CODMn. This can reduce the experimental cost and time. Through an in-depth
understanding of seasonal changes in COD, CODMn, and DOM, the differences in the
contribution of DOM components to COD and CODMn, which were conducive to taking
targeted response measures to potential organic pollution, so as to create a better water
quality ecological environment. Our research showed the potential of DOM and machine
learning in constructing water quality estimation models. In the future, we propose to
invest a wider range of monitoring data into existing models to improve stability and apply
more water quality index estimation models to the pollution assessment system of the
aquatic environment to reduce testing costs, speed up testing time, and avoid potential
pollutants problems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13243629/s1, Figure S1. The sketch map of 5-fold cross validation. Figure S2. PARAFAC
model output showing fluorescence signatures of the four DOM components. Figure S3. Spatial
distribution of COD, CODMn and DOM in Summer. a: C1; b: C2; c: C3; d: C4; e: COD; f: CODMn.
Figure S4. Sum of Fmax for C1-C4. Table S1. Spectral parameter description. Table S2. Values of the
parameters contained in the grid search. Table S3. Characteristics of four PARAFAC components.
Table S4. Seasonal Changes of COD, CODMn and DOM. Table S5. ANOVA of variables. Table S6.
Correlation coefficient of COD, CODMn and DOM in rivers. Table S7. Correlation coefficient of COD,
CODMn and DOM in lake. Table S8. COD response of DOM’s Fmax reduction. Table S9. CODMn
response of DOM’s Fmax reduction.
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