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Abstract: During the exposed season, the water level fluctuation zone of the Three Gorges Reservoir
has suffered from hillslope-concentrated flows and riverine stream waves, which considerably
complicates the processes and magnifies the rate of bank erosion. This study depicts the forms and
patterns of integrated bank erosion in this reservoir marginal landscape, decouples the evolutionary
processes involved, explores the underlying mechanisms, and quantifies the magnitude through a
case study on a fine-grained sandy bank. Hillslope-concentrated flows over rainfall storm events
developed continuous gullies starting from uplands and extending throughout the entire slope of the
reservoir bank, characterized by relatively larger depths and widths compared with discontinuous
gullies on the lower slope developed by riverine stream waves.

Keywords: bank erosion; hillslope-concentrated flow; wave action; water level fluctuation zone;
Three Gorges Reservoir

1. Introduction

The riparian zone is defined as all stream-adjacent landforms likely to be inundated or
saturated by riverine overbank discharges [1]. It delivers dynamic and complex interactions
with river channels via bank erosion and sediment deposition (Figure 1), acting as an
important structural and functional component of river systems [2–4]. More specifically,
bank erosion has been recognized as a contributor to suspended sediment load transported
by global rivers [5,6]. For instance, bank erosion was found to contribute to 5–15% of the
suspended sediment load in British rivers, and the proportion was even larger than 40% in
many catchments [7]. A three-year field measurement regime indicated over 90% of the
total sediment load in a 486 km2 catchment in Denmark originating from bank erosion [8].
Fine-grained suspended sediment in rivers has many negative consequences to stream
ecology (e.g., fish reproduction, benthic community, and rotifers density), water quality
(diffuse contaminants input, mobilization, and transfer), and flooding and sedimentation
risk [9,10]. Lateral adjustment of river channels following bank erosion threatens the
sustainable use of fertile upland agricultural lands, degrades riparian landscapes, disrupts
vegetation succession by the loss of favorable habitat, and impairs ecosystem services such
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as biodiversity maintenance, bank stabilization, sediment retaining, diffuse agricultural
contaminants filtering and abatement, and runoff regulation [11–13].

Water 2021, 13, x FOR PEER REVIEW 2 of 12 
 

 

threatens the sustainable use of fertile upland agricultural lands, degrades riparian land-
scapes, disrupts vegetation succession by the loss of favorable habitat, and impairs eco-
system services such as biodiversity maintenance, bank stabilization, sediment retaining, 
diffuse agricultural contaminants filtering and abatement, and runoff regulation [11–13]. 

 
Figure 1. The components of interactions between the riparian zone and river channel (partly mod-
ified from [14]). 

The riparian zone of the Three Gorges Reservoir is a unique artificial landscape cre-
ated by flow regulation following regular dam operations, where bank erosion differs 
substantially from that in the conventional natural riparian zone of unregulated rivers in 
terms of driving forces, forms, evolutionary processes, and magnitude [15]. The combina-
tion of hillslope-concentrated flows and riverine stream waves over the exposed season 
has complicated the processes and magnified the rate of soil erosion in the reservoir mar-
ginal landscape. Loss of original terrestrial vegetation by extreme flooding stress further 
facilitates soil erosion, given the key role that vegetation plays in bank stabilization 
through land surface protection by aboveground biomass and soil consolidation by root 
structure. Change of soil geophysical properties makes the soil bank more susceptible to 
erosion by a collection of external forces. Given the key role that the reservoir riparian 
zone plays as a critical buffer strip or ecological corridor, knowledge of the form, evolu-
tionary processes, mechanisms, and magnitude of soil erosion is critical for restoration 
purposes. 

Our previous study carried out field measurements using traditional erosion pins 
and reported the temporal trend of total bank erosion rates since the formation of this 
landscape and its spatial variability between the mainstream and tributary reaches [16]. 
In this study, we describe the forms and patterns of integrated bank erosion in the riparian 
zone of the Three Gorges Reservoir, analyze the evolutionary processes involved, explore 
the underlying mechanisms, and quantify the magnitude, through a case study performed 
on a fine-grained sandy bank. Major results obtained may enhance our current knowledge 
on integrated bank erosion in the reservoir riparian zone, which has been significantly 
disturbed by flow regulation, and provide implications for potential measures for bank 
consolidation and vegetation restoration. 

  

Figure 1. The components of interactions between the riparian zone and river channel (partly
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The riparian zone of the Three Gorges Reservoir is a unique artificial landscape created
by flow regulation following regular dam operations, where bank erosion differs substan-
tially from that in the conventional natural riparian zone of unregulated rivers in terms
of driving forces, forms, evolutionary processes, and magnitude [15]. The combination
of hillslope-concentrated flows and riverine stream waves over the exposed season has
complicated the processes and magnified the rate of soil erosion in the reservoir marginal
landscape. Loss of original terrestrial vegetation by extreme flooding stress further facili-
tates soil erosion, given the key role that vegetation plays in bank stabilization through
land surface protection by aboveground biomass and soil consolidation by root structure.
Change of soil geophysical properties makes the soil bank more susceptible to erosion by a
collection of external forces. Given the key role that the reservoir riparian zone plays as a
critical buffer strip or ecological corridor, knowledge of the form, evolutionary processes,
mechanisms, and magnitude of soil erosion is critical for restoration purposes.

Our previous study carried out field measurements using traditional erosion pins
and reported the temporal trend of total bank erosion rates since the formation of this
landscape and its spatial variability between the mainstream and tributary reaches [16]. In
this study, we describe the forms and patterns of integrated bank erosion in the riparian
zone of the Three Gorges Reservoir, analyze the evolutionary processes involved, explore
the underlying mechanisms, and quantify the magnitude, through a case study performed
on a fine-grained sandy bank. Major results obtained may enhance our current knowledge
on integrated bank erosion in the reservoir riparian zone, which has been significantly
disturbed by flow regulation, and provide implications for potential measures for bank
consolidation and vegetation restoration.

2. Methodology
2.1. Study Area

The Three Gorges Dam on the upper Yangtze River has a full storage capacity of
34.3 billion m3 and a flood regulation capacity of 22.4 billion m3, which allows it to
supply multiple services including hydropower generation, flood control, and navigation
improvement. The Three Gorges Reservoir extends 661 km long and impounds a water
area of 1080 km2 (Figure 2). A specific operational strategy defined as “impounding clean
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water and draining turbid water” has been adopted, generating a specific schedule for
water level fluctuating. On a hydrological year basis, water level fluctuates between the
base level of 145 m in the rainy season (May–September) and the peak level of 175 m in
the dry season (October–April). A unique reservoir riparian zone with a vertical height of
30 m and a total area of 349 km2 has been created [16–19].
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Figure 2. Map of the Three Gorges Reservoir and location of study area.

The Three Gorges Reservoir area is dominated by northeast–southwest paralleling
mountains and valleys (Figure 2). Regional landform is dominated by hills and low moun-
tains in the western–central section, where the channel width is large and slope gradient is
low, and by high mountains in the eastern section, where channels are narrow with steep
slopes and bare rocks. The study area is located in the backwater reach of the Three Gorges
Reservoir (Figure 2). The selected riparian reach is a fine-grained sandy bank. This area
has a humid subtropical monsoon climate, with an annual precipitation of 1072 mm, a
significant portion of which falls during the rainy season from May to September.

2.2. Field Measurement

Field measurement was carried out in late May 2013, when local riverine water level
was kept at around 152 m and river channel exhibited a natural flow state. Previously, a
storm event with daily precipitation larger than 50 cm and a natural flood event with water
level rising to 155 m has occurred (Figure 3), giving rising to the cooccurrence of hillslope-
concentrated flow erosion and fluvial wave entrainment in the selected riparian zone.

A typical observation plot (with length 5 m and width 5 m) was set up in the selected
riparian zone. The length (L), depth (D), and width (W) of the gully were measured by a
measuring tapes and ranging poles. The measuring section was set at 0.5 m intervals in
each of the erosion gullies. The gully length was obtained by multiplying the number of
intervals points by 0.5 [20]. For measuring the widths of the bottom and shoulders, each
interval points were successive marked by a ranging pole, and then the gully bottom and
shoulder width were measured with the measuring tape at each point. The mean width
(W) of each gully was calculated using the following formula [20]:

Mean bottom width, Wb =
Sum of bottom width readings

Number of interval points
(1)

Mean shoulder width, Ws =
Sum of shoulder width readings

Number of interval points
(2)

Mean gully width, W =
Wb + Ws

2
(3)
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The average gully depth (D) was estimated using the following procedures: (1) placing
one of the poles at the deepest part of the gully floor, (2) measuring the bed and shoulder
widths at the same interval point, (3) deploying the tape at ground level and stretching
across the gully channel over the ranging pole, and (4) using the below equation to calculate
D value.

D =
Sum of interval depths

Number of interval points
(4)

The volume of each gully (V) was calculated by the following formula presented by
Kaczmarek (2016) [21]:

V = ∑
(

Si + Si+1

2
× Li−i+1

)
(5)

where V is gully volume, Li−i+1 is distance between two adjacent profiles, and Si + Si+1 is
cross-sectional area of the measured profiles i and i + 1.
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2.3. Data Acquisition

The daily water level operated by the Three Gorges Dam and daily rainfall in the
study area are depicted in Figure 3. The data of daily rainfall and reservoir water level
were assembled to interpret potential function of extreme storms and stream flood pulses
on gully formation in the study riparian zone. Daily data of water level (inundation height)
of the Three Gorges Reservoir was collected from the China Three Gorges Corporation
(www.ctgpc.com.cn (accessed on 31 December 2013)). Daily rainfall recorded at nearby
Fengdu Station is available from the National Meteorological Information Center (http:
//cdc.cma.gov.cn (accessed on 31 December 2013)).

3. Results
3.1. Morphologic Features of Soil Erosion in the Reservoir Riparian Zone

Our field visit showed that the landform of the riparian zone was homogeneous due
to sedimentation in the previous inundation period by reservoir impoundment, and bank
erosion was mainly performed in the form of gullying. Two categories of gullies can be

www.ctgpc.com.cn
http://cdc.cma.gov.cn
http://cdc.cma.gov.cn
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generally identified based on their morphological features, showing different lengths and
cross-section profiles. Two continuous gullies were observed with lengths ranging from 38
to 46 m, which started from upland hillslopes, extended throughout the entire slope of the
riparian zone, and collected with the reservoir regime (Figure 4a). Six discontinuous gullies
were found with lengths ranging from 3.1 to 3.8 m occurring in the lower portions of the
riparian zone (Figure 4b). The cross-section profile of continuous gullies was characterized
by relatively larger depths varying between 0.3–1.9 m and lower widths varying between
0.2–0.8 m, compared with that of the discontinuous gullies, with depths and widths varying
between 0.1–0.4 m and 0.4–1.6 m, respectively (Table 1).
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Figure 4. Photographs: (a) continuous gullies start from upland hillslopes and extend throughout the
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the flooding level.

Table 1. Morphologic features of gullies developed in the water level fluctuation zone.

Morphologic Features Number Lengths (m) Widths (m) Depths (m)

Continuous gullies 2 38–46 0.2–0.8 0.3–1.9
Discontinuous gullies 6 3.1–3.8 0.4–1.6 0.1–0.4

A distinctive line showing the deposition of woody debris indicates the peak level
of a previous overbank flood event (Figure 4b). Sheeting occurs on the inter-gully surface
which was subjected to repeated stream wave flushing during the flood. Surface erosion
caused loss of large quantity of bank materials, leading to a larger bed slope compared
with that in the riparian zone without flooding disturbance (Figure 4b).

3.2. The Evolutionary Process of Bank Erosion in the Riparian Zone

The development of continuous and discontinuous gullies was driven by different
forcing agents and went through contrasting processes. Original drainage networks in the
riparian zone remained unmanaged after water inundation and were gradually silted by
sediments and, consequently, the draining capacity was lost. Concentrated flows collected
from upland hillslopes in storms events directly entered the riparian zone. During the
initial runoff period, flow path in the riparian zone migrated frequently when the shear
stress was still below the erosion threshold of the bank. Flow path would be fixed if
denudation force exceeds resistance strength, and continuous gullies were initiated. A
large quantity of sediments was detached through subsequent processes of gully wall
failure and bed scouring, creating discontinuous gullies characterized by relatively high
depths and narrow widths.

The discontinuous gullies were initiated in the riparian zone where the erosive force
of concentrated flows exceeds the resistance force of bank material, and further developed
by riverine stream waves over a flood period.

Concentrated overland flows and natural flood pulses simultaneously operated on
bank erosion in the riparian zone. The processes of gully initiation and development
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which led to significant bank erosion are interpreted in Figure 5. Originally, the gullies
were initiated by concentrated shallow flows generated in the upper reach of the riparian
zone during the extreme storm event. Fluvial entrainment had greatly contributed to
the development of the gullies through widening and downslope mass movement. The
presence of concentrated overland flows subsequently contributed to head-cutting and,
thus, up-moving of gullies head. This can explain large gullies with head at relatively high
elevation level (Figure 6).
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Furthermore, it can be observed that the averaged gradient of the slopes above the
flood level was relatively larger than that of the slope below the flood level. This means
that the inter-gully area had been degraded due to erosion caused by stream forces. Conse-
quently, the processes that contributed to the occurrence of gullies in the lower parts of the
riparian zone include gullying, scouring, mass failure, sheeting, and sediment transport.
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3.3. Quantifying the Magnitude of Bank Erosion in the Riparian Zone

In this study, a typical observation plot was set up in the reservoir riparian zone, and
six gullies in total were studied, and parameters analyzed. Table 2 shows the parameters of
both gullies in the observation plot. From the observations, one can notice that the gullies
were extremely developed, an area which accounts for 52.96% of the observing area. The
depth and width have a significant difference between the two gullies, while there was no
significant difference in the mean bed gradient (p-value of statistical significance < 0.05).
The mean gully width in the study area ranges from 0.30 m to 0.68 m, while the mean
depth ranges from 0.10 m to 0.21 m. The gully was dominated by type of wide–shallow,
and the ratio of width to depth was ranged from 2.95 to 3.75, with an average ratio of 3.31.
The volume of total gully erosion was 1.01 cubic meters in the typical observation plot. It
was hence estimated that the 0.040 cubic meters of soil may be supplied to the stream per
square meter of observation plot by the gully erosion.

Table 2. Bank erosion rate estimated by measuring the size of gullies.

Map Area
(m2)

Surface Area
(m2)

Gully
Length (m) Mean W (m) Mean D (m) W/D Gradient

(%)
Eroded

Volume (m3)

25

1.36 2.37 0.45 0.12 3.75 16.30 0.096
2.67 3.88 0.62 0.21 2.95 16.80 0.21
1.35 3.45 0.30 0.10 3.00 16.20 0.085
2.65 3.90 0.62 0.20 3.10 16.40 0.20
2.36 3.85 0.55 0.15 3.67 16.30 0.16
2.85 3.95 0.68 0.20 3.40 16.60 0.26

Total 13.24 21.40 0.54 0.16 3.31 16.43 1.01

4. Discussion
4.1. The Specificity of Soil Erosion in This Reservoir Marginal Landscape

Gully erosion is one of the major types of soil water erosion in many parts of the
world [22,23]. Traditional gully erosion studies mainly focus on the hillslopes, where
gullies generally form due to the scoured process in the aeolium, colluvium, eluvium,
weak sedimentary rock, or other weathered rock [24]. In this study, the reservoir riparian
zone gullies originate from the relatively gentle alluvial terraces in the adjacent banks of
the river channel (Figure 4). Their characteristics rather agree with the description in the
literature of alluvial gullies, valley-bottom gullies, and bank gullies [25–27]. Similar to the
alluvial gullies [26], these gullies here have relatively young topographic characteristics,
and usually cut into alluvium (Figure 4). Alluvial gullies are commonly found in large
alluvial deposits along main streams or other large bodies of water such as inlets or lakes
(e.g., Figure 6). Therefore, they have high sediment transport rates and are the main sources
of fine suspended sediment [28]. In contrast to the gullies in the reservoir riparian zone,
traditional gullies in the hillslope are not always connected directly to the channel system
downstream, with the eroded sediment deposited in a floodplain or low-lying land of
small valley [29]. In this case, the contribution of traditional hillslope gullies to the stream
sediment transport is much less than if they were completely connected to the drainage
system (i.e., riparian bank gully). Because of the lack of structural control over their lateral
expansion, the riparian bank gully generally expands in longitudinal and lateral direction
until it develops a new stable bed slope. In the meantime, it erodes large amounts of
floodplain alluvial deposits [26,27,30]. In term of geomorphic features, the gullies in this
study are usually as wide as deep or wider than deep (Tables 1 and 2).

Many researchers worldwide have attempted to investigate the gully retrogressive
erosion rates and to quantify the eroded volumes using the repeated measures over different
periods [31–34] or the remote sensing image of time series [35]. General morphology
characteristics of gully channels are important for determining gully retrogressive erosion
rates and soil erosion amount [31]. The accurate measurement of the geomorphological
parameters of the gully is important not only for the calculation of the amount of soil
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erosion [34,36] but also for understanding erosion dynamics [31,37]. The most commonly
measured parameters are gully width, depth, length, bottom gradient, and ratios between
these parameters [31,38,39], and the parameters proportion (i.e., the relationship between
width and depth) is an important morphology characteristic of gully cross sections [31].
Many studies have indicated that gully eroded volume (V) has a positive correlation with
the aspect ratio (W/D) [20,26]. In addition, higher W/D values reveal relatively wide and
shallow cross sections of the gully, while lower values indicate narrow and deep cross
sections. [31,38]. The ratio of W/D were reported in Table 3. W/D in each of the investigated
six gullies ranged from 2.95 to 3.75, with an average of 3.31. Based on the statistical analysis
of field survey of gully dimensions, the US-SCS observed that the width of gullies formed
on cohesive soils is three times their depth, while on frictional soils, the W/D ratio is
1.75 [20,31]. The results were also comparable with those reported in the Upper Yangtze
River Basin and Loess Plateau [34,39], where the ratio of W/D was 0.84 to 3.52 and 0.24 to
1.47, respectively, with an average of 1.91 and 0.79, respectively.

Table 3. Bank erosion through gullying and sheeting processes.

Forms Processes Agents Water Level

Gully Raindrop detachment, scouring,
micro-scale mass failure

Raindrops, overland flows,
stream waves

Higher water level or water level
fluctuation

Inter-gully Sheeting Stream waves, runoff Higher water level and low water
level

In contrast to the development of the traditional hillslopes gullies, the gully lateral
erosion was a more prevalent phenomenon in the reservoir riparian zone than the gully
downcutting. The difference in W/D reported in these studies may be due to different
erosion mechanisms and erosion forces [26]. The erosion mechanism of the hillslopes gully
erosion is generally overland flow shear stress exceeding the resisting forces [20,40,41].
Eroding force and gully head position are influenced by the slope grade and the catchment
area above the gully head [20,42]. Hillslope gullies are mainly expanded by gully head
erosion [20], which is the main trigger for the expansion of the gully system [43] and, to a
lesser extent, by the scouring of the wall of the gully [44]. However, gully development
in the riparian zone of manmade reservoirs is characterized by particular characteristics
which are defined by interaction with other geomorphological processes in the context
of water level fluctuations [45]. The hydrological regime of water level fluctuations and
wave becomes the primary factor responsible for the development of erosion at the riparian
zone [19,46]. The initiation and development of erosional landforms in the riparian zone
of the reservoir show a seasonal character related to reservoir water level fluctuations
(Figure 3). Gully erosion of the riparian zone is usually jointly triggered or accelerated by
the extreme rainfall events, wave, gravity, and water level fluctuation. Moreover, the wave
and water level fluctuation induce accelerated gully-side erosion, which is represented as
gully wall failure (Figure 5).

4.2. Geomorphological Role of Gully Erosion in Bank Erosion

The main geomorphologic processes in the riparian zone are wave erosion, bluff
erosion and landslides, cliff retreat, sheet erosion, and aeolian processes [15,45–47]. Ac-
celerated gully development has been observed in the manmade reservoirs shore [48,49].
For instance, an increase in the volume of gullies formed in loess-like sediment is two to
three times greater than the degradation of the shoreline due to the abrasion processes
of overland flow in the Kamsk reservoir [50]. The development of a gully in a reservoir
bank may be linked to those geomorphological processes controlled by the fluctuations in
the water level of the reservoirs [45,50]. Moreover, gullying is important to the landform
reconstruction of the riparian zone as a mechanism for slope retreat. The landform features
of the gully erosion include V-shaped cutting profile in the high and steep slopes of water
bodies or large river valleys in different morphoclimatic zones [45,51]. These landforms
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were evolved following the erosion by surface runoff and then underwent accelerated
development by the wave scouring and flooding disturbance (Figure 4b). They may quickly
evolve in one storm event as a result of the increased erosion rate caused by fluctuating
water levels. In addition, the shore erosion processes, especially the gully erosion, have led
to a decrease in the erosion base level and the accelerated retreat of reservoir bank scarp
edges [45,50]. However, the function, form, and effect of riparian gully erosion on the bank
retreat is different under different reservoir water level (Table 3).

As shown in Figures 4 and 5, gully mouths were submerged in periods of higher water
level or flood event. The scouring of the shore slopes by the waves has resulted in the
formation of shore scarps of different heights. The failure of ground blocks over wave-cut
notches induced retrogressive erosion in the gully bottoms. Thus, there is a transition of
gullies from a state of decay to a growth stage at high reservoir water levels [45]. The
development of bank gullies on the shore zone of the Bratsk Reservoir indicated that the
reservoir water level fluctuation plays a critical role in the geomorphological processes
of the reservoir shoreline [50]. Overall, riparian bank gullies are commonly related to the
relatively concentrated runoff path; a system of scattered and moving forward gullies on
the riparian zone can merge together to form a continuously eroding gully [28]. When the
erodible soils exist, the broad gully head can quickly retreat to the mountainous slopes and
higher water level zone, which is shown in the schematic diagram of channel evolution
in Figure 6. The initial conditions of gully erosion and bank retreat include the effects of
internal and external factors [40,52,53]. At the same time, it also has long-term factors such
as climate, geology, material composition, and topography, and short-term influencing
factors such as rainfall, flood process, vegetation cover, and land use [54–56].

5. Conclusions

Bank erosion in the riparian zone of the Three Gorges Reservoir has been intensified by
the combined effect of hillslope-concentrated flows and riverine streams. The processes of
bank erosion in the riparian zone were well evidenced in the geomorphic features (gullies)
developed in a typical fine-grained riparian zone. Both upland flows and flood tides
were effective in causing significant soil erosion through gullying and souring processes.
However, the relative contributions of these two physical processes differed spatially and
temporally. Deep flows originating from upland hillslopes contributed to form large deep-
situated gullies with high amounts of soil loss. Though of relatively small quantity and low
detachment power, shallow concentrated overland flows developed on the upper riparian
zone were proven to be essential in gully initiation and, consequently, large quantities of
bank materials were detached by flood tides and removed by streams. Subsequent repeated
functions of rainfall drop, overland flow, and flood pulses rendered the formed gully area
the most vulnerable for erosion and sediment loss.
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