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Abstract: The effects of climate change on water resources management have drawn worldwide
attention. Water quality predictions that are both reliable and precise are critical for an effective water
resources management. Although nonlinear biological and chemical processes occurring in a lake
make prediction complex, advanced techniques are needed to develop reliable models and effective
management systems. Artificial intelligence (AI) is one of the most recent methods for modeling
complex structures. The applications of machine learning (ML), as a part of AI, in hydrology and
water resources management have been increasing in recent years. In this paper, the ability of deep
neural networks (DNNs) to predict the quality parameter of dissolved oxygen (DO), in Lake Kastoria,
Greece, is tested. The available dataset from 11 November 2015, to 15 March 2018, on an hourly
basis, from four telemetric stations located in the study area consists of (1) Chl-a (µg/L), (2) pH,
(3) temperature—Tw (◦C), (4) conductivity (µS/cm), (5) turbidity (NTU), (6) ammonia (NH4, mg/L),
(7) nitrate nitrogen (N–NO3, mg/L), and (8) dissolved oxygen (DO) (mg/L). Feed-forward deep
neural networks (FF-DNNs) of DO, with different structures, are tested for all stations. All the
well-trained DNNs give satisfactory results. The optimal selected FF-DNNs of DO for each station
with a high efficiency (NSE > 0.89 for optimal selected structures/station) constitute a good choice
for modeling dissolved oxygen. Moreover, they provide information in real time and comprise a
powerful decision support system (DSS) for preventing accidental and emergency conditions that
may arise from both natural and anthropogenic hazards.

Keywords: deep learning; feed-forward network; dissolved oxygen; decision support system;
Lake Kastoria

1. Introduction

The physical, chemical, and biological responses of lakes to the climate give a variety
of priceless information [1]. Lakes are affected directly by changes in climate: (a) due
to changes in mixing regime, including lake stratification, oxygen saturation by increase
in temperature, and the frequency of extreme wind events; (b) by changes in trophic
structure determined by temperature; and (c) by complex interactions between temperature,
nutrients, and physical forces [2]. In recent years, waterbodies have undergone extensive
change as a result of widespread qualitative and quantitative degradation.

Dissolved oxygen is a very important water quality parameter, and its variation can be
wide-ranging over a period of 24 hours [3]. When high concentrations of DO are observed,
they mainly occur: (a) at shallow eutrophic lake systems; (b) at late spring–early summer;
(c) in the morning and at noon, when high concentrations of DO are observed due to the
photosynthetic productivity of algae and/or cyanobacteria, which are also associated with
correspondingly high concentrations of Chl-a; and (d) when they are associated with low
values of water temperature, which favors high values of DO of saturation, except in cases
that the lake has an ice cap, which favors DO consumption and the inability to replenish.

A typical example is the lake of Kastoria, where measured values of DO, higher than
those of oxygen saturation (DOs), have been recorded during the spring, mainly in May
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and June. Therefore, due to the intense activity of the photosynthesis from phytoplankton,
from all primary producers of the system, high DO values are observed, which are also
associated with correspondingly high concentrations of Chl-a. This phenomenon is reverses
in the autumn, when respiration favors photosynthesis and DO depletion occurs, causing
stress to the biota [4].

Moreover, when low concentrations of DO are observed, they mainly occur (a) in the
evening and night, when no photosynthetic activities take place and the DO is consumed
for the respiration of micro-organisms and the degradation of non-preservatives; and (b)
at water depths near the bed, where DO values are expected to be very low and may
approach hypoxic conditions (1–2 mg/L) or even anoxic conditions (~0 mg/L). Anoxia
may also enhance phosphorus release from the sediment into the water column, resulting
in increased eutrophic conditions.

Apart from the above reasons, low DO values may occur due to the sediment’s oxygen
demand at the bed of a lake, known as sediment oxygen demand (SOD). These low DO
values can harm aquatic life, leading to stress, and affect water quality. For this reason, it is
necessary to have intensive measurements with many repetitions on a daily basis, so that
one can monitor the evolution and the duration of such a phenomenon. During summer,
before the advanced phase of eutrophication, where the consumption of DO, due to the
respiration activities of benthic biota and invertebrates, is higher than the production of
DO, due to photosynthetic activities, concentrations of DO values vary widely [5].

Artificial neural networks (ANNs) are divided into traditional ANNs and deep ANNs
and are typically used for both regression and classification problems. ANNs are usually
organized into layers, where the learning procedure takes place. The layers consist of a
number of units or nodes that are interconnected in such way that one unit is linked to many
other units of the same or another layer. The units influence other units by stimulating or
inhibiting their activation. To achieve this, the unit receives the weighted sum of all inputs
through the links leading to it and produces a single output through the transition function
if the sum exceeds a threshold value. The inputs are presented to the network via the input
layer that communicates with one or more hidden layers. The hidden layers are associated
with the output layer, from where the prediction is given. Deep ANNs are most widely
referred to as deep learning (DL) or deep neural networks (DNNs) [6,7].

The concern of scientists, in the applications of artificial neural networks (ANN)
in hydrology and water resources management, has been increasing in recent years.
The application of artificial neural networks (traditional or deep) has been introduced
in the field of hydrological studies and water balance parameters, linear and nonlinear,
such as precipitation, evaporation, runoff, and various water quality parameters and it has
been concluded that the results produced are quite satisfactory in that concerns the field
of forecasting [8–12]. In a developing world, where water is extensively polluted, many
models have been applied to predict water quality parameters with the help of machine
learning. Artificial machine learning (ANNs), which mimic human brains, are able to
map the nonlinear relationships among variables that are characteristic of ecosystems [13].
That is the reason why artificial neural network techniques have been applied in many
case studies [14,15] to predict water quality parameters such as dissolved oxygen [16–20].
Nowadays, specifically deep neural networks, as an upgraded and complex version of
deep neural networks, have dramatically improved the state-of-the-art in many scientific
fields such as environmental studies.

French et al. [21] were first applied a feed-forward ANN to make predictions of
abundance of species of phytoplankton in Saidenbach Reservoir in Germany. Cho et al. [22]
and Karul et al. [23] used a feed-forward neural network with the help of Levenberg–
Marquardt algorithm in order to predict the eutrophication process.

Lek and Guean [24] introduced two kinds of ANNs (back-propagation and Kohonen
self-organizing network) in ecology. Yabunaka et al. [25] also applied a back-propagation
artificial neural network model to predict algal bloom by simulating the future growth
of five phytoplankton species and the Chlorophyll-a (Chl-a) concentrations. In addition,
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a feed-forward back-propagation artificial neural network model, including one hidden
layer, was built by Lu et al. [26] to predict the total phosphorus (TP) concentration in the
Lake Champlain.

Zhang et al. [11] applied a multilayer neural network to approach complex regression
functions and predict the trends in dissolved oxygen. The aforementioned model gave
accurate and better results in predicting the trend of DO than the typical ANN model, sup-
port vector regression (SVR) and linear regression model (LRM). Moreover, Kuo et al. [20]
gave useful information for effective water quality management by predicting concen-
trations of water quality and eutrophication problems in the Te-Chi Reservoir in Taiwan
by developing a DO back-propagation neural network model. The correlation coefficient
between predicted values and measured data was well above 0.7.

In this paper, the ability of deep neural networks to predict the quality parameter of
dissolved oxygen, in Lake Kastoria in Greece, is tested. Increases in water temperature lead
to reduced oxygen solubility, thus reducing DO concentrations that will have an impact
on the duration and intensity of algal blooms [27]. Moreover, the variation of parameters
such as DO can be wide-ranging over a period of 24 hours. That is why it is so crucial
to have continuous and uninterrupted measurements of the DO concentrations of a lake.
The objectives of this paper are (a) to provide a useful supportive tool for water quality
management of lakes and (b) to provide real-time prediction of DO in accidental and
emergency situations.

The importance of this work lies in the fact that there is no other published work
using the same platforms, tools, and methodology of deep learning, as in the present paper,
to investigate the predictive capacity of water quality parameters of lakes in real time.
Moreover, the fact that Lake Kastoria is monitored by our telemetric stations, offering
continuous and uninterrupted data sets (a few hundred thousand), supports the use of
deep neural networks, which need large amount of data to complete their learning process,
and enhances the originality of the present study.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) comprises the catchment area of Lake Kastoria, which is
located in the region of Western Macedonia in Greece, protected by directives, regulations,
and international conventions. Lake Kastoria is a shallow polymictic lake with intense
agricultural activities in its catchment area, which load both point and nonpoint source
pollutants. To record water quality characteristics (on the lake’s surface), on an hourly
basis, four telemetric stations were installed at specific locations in Lake Kastoria, namely,
Gkiole, Stavros, Psaradika, and Toichio.

The aforementioned telemetric stations assist the main monitoring station of Lake
Kastoria (according to Directive 2000/60, Law 3199/2003 and JM 140384/2011), both
spatially (more stations in different locations) and chronologically (continuous monitoring).
After all, without the present monitoring system of Lake Kastoria, it would be impossible
to apply deep neural network techniques.

The criteria of the choice of the monitoring stations in the present positions were:
(a) the environmental pressures occurring from the land uses of the catchment area;
(b) the hydromorphological characteristics of the lake; (c) the presence of corrosion, trans-
port, and deposition phenomena; (d) the inflows and outflows; and (f) issues related to the
accessibility and the costs of stations’ installation and maintenance.

2.2. Programming Language

The Python programming language is used for the purpose of the study. Its main
feature is its flexibility, as the same piece of code can be used with little or no change
over a wide range of devices with different architectural and computing capabilities [28].
Another advantage is the use and interconnection of many libraries, which makes it an
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ideal programming language for developing ML models that use many different libraries
and platforms. One of its applications is to develop DNNs.
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2.3. Tools and Platforms

To develop DNNs—based on machine learning methods—the Python programming
language, the Spyder scientific environment, the Tensorflow open-source machine learning
platform, and Nvidia’s Compute Unified Device Architecture (CUDA) parallel platform
(graphics card) are used. All of the above have been integrated into Anaconda, an open-
source programming language. The CUDA platform is a parallel computing platform
developed by Nvidia that enables users to exploit the computing power of graphics card
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kernels for training and testing machine learning models. This results in the verification
and creation of many models very fast. The main reason for using Anaconda and CUDA
is that the model can be created in a variety of virtual environments and with the possi-
bility of using parallel programming through the computing power of the graphics card.
The above procedure gives the user the advantage of using large databases, such as in the
present study, and complex learning algorithms, without having to install and reinstall
various versions of libraries, offering training, verification, and testing of the model in a
very short time [29].

2.4. Graphical User Interface

The Spyder scientific environment, written in Python, is used as it offers a unique com-
bination of the advanced editing, analysis, debugging, and profiling functionality with an
integrated deployment tool with interactive execution, data exploration, and visualization
capabilities of a scientific package. Spyder is also an open-source code-processing environ-
ment, but only for the Python programming language. The Spyder environment enables
the user to execute code line by line while displaying the results for each execution step.
This allows the user to see if each step of the code is able to print individual diagrams or
sections of code without having to re-execute the entire code again [30].

2.5. Libraries

Various libraries (Pathlib, Matplotlib, Pandas, Seaborn) have been used for Python
programming. The libraries needed are not loaded in default. For that reason, a good
practice to begin the code is by importing all the libraries needed. The most important
of all libraries is the open-source Tensorflow machine learning library. The Tensorflow
platform is an end-to-end open-source platform for developing machine learning models,
developed by Google. It consists of a comprehensive, flexible ecosystem set of tools and
libraries that allow users to easily use and develop ML models [31]. This library provides
state-of-the-art machine learning methods, allowing the users to create their own machine
learning models in a user-friendly, multipack, and add-on environment. In the present
study, the Tensorflow GPU library is used, which enables the user with the CUDA tool
to train and test the models they have developed through the computing power of the
graphics card kernels.

2.6. Input and Output Data

The predictive ability of networks is based on their training, which in turn depends
on the amount of information available on the network. For the purpose of this study, time
series of quality parameters from 11 November 2015 to 15 March of 2018 were used on
an hourly basis from four telemetric stations located in the study area, namely, Gkiole,
Toichio, Psaradika, and Stavros (Table 1). More specifically, the available data consist of
(1) Chl-a (µg/L), (2) pH, (3) Tw (◦C), (4) ECw (µS/cm), (5) turbidity (NTU), (6) ammonia
nitrogen (N–NH4, ppm) (not available (NA) data for Stavros station), (7) nitrate nitrogen
(N–NO3, mg/L), and (8) dissolved oxygen (mg/L). Indicatively, the descriptive statistics of
the available data are given for Toichio station (Table 2).

Table 1. Number of data/parameter.

Station Number of Data/Parameter

Gkiole 16,922
Toichio 19,763

Psaradika 16,574
Stavros 19,154

An important step in DL is the selection of appropriate input variables. Based on the
literature, neural network studies reported that most important water quality parameters,
for the modeling of dissolved oxygen, are pH and water temperature [15,19]. In addition to
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those two inputs, the importance of NO3–N and NH4–N as input variables for DO models
has been proposed [19,20]. Moreover, turbidity [13], Chl-a [20], and ECw [17,19] have been
reported as input variables for DO modeling. Here, based on the literature [15,17,19,20], all
the available parameters are taken into account as input parameters for each investigated
model. Subsequently, based on the literature and taking into account the resulting tables,
concerning the impact of each input parameter to the output parameter (DO), DNNs
consisting of four input parameters, namely, (1) nitrate nitrogen (N–NO3, mg/L), (2) pH,
(3) Tw (◦C), and (4) ECw (µS/cm), are also tested.

Table 2. Descriptive statistics of the water quality data for Toichio Station.

Variables Unit Mean Std Dev Min 25% 50% 75% Max

Chlorophyll-a µg/L 11.74 11.48 0.30 5.40 8.40 14.10 453.30
Conductivity µS/cm 316.18 25.26 239.00 307.00 318.00 331.00 369.00

pH - 8.41 0.35 5.40 8.10 8.40 8.60 9.80
Turbidity NTU 20.87 52.28 0.10 0.00 1.80 49.00 3000.00

Temperature oC 14.33 7.83 0.80 6.80 13.80 21.80 30.40
NH4 mg/L 0.56 1.14 0.10 0.00 0.10 0.60 19.70
NO3 mg/L 1.30 0.74 0.01 0.83 1.24 1.70 3.72
DO mg/L 8.10 2.60 0.01 6.34 8.29 9.73 18.27

2.7. Number of Hidden Layers

The generalization capability of a neural network is linked to its hidden layer. Too
many hidden layers in a network increase computational burden and cause over-fitting,
which results in poor prediction. Several studies [32,33] show that one or two hidden layers
mostly produce better performance. It should be reminded that if an ANN has more than
three layers, including input and output layers, it is called a deep neural network [34].
As the scope of this paper is to apply a deep neural network for modeling and prediction
of quality parameter, two hidden layers are used for different structures.

2.8. Number of Nodes in the Hidden Layer

Deciding the appropriate number of nodes is crucial for effective learning and per-
formance of the network. Nevertheless, there is no systematic approach to determine the
optimal number of nodes to utilize for a problem [32,33]. Here, a preliminary investiga-
tion of deep neural networks for simulation and real-time prediction is used as default
64 neurons per hidden layer. The predictive ability of a deep neural network, consisting of
32 nodes per hidden layer, is also tested.

2.9. Training Epochs

In order to train a neural network, many epochs (cycles of training process) are needed.
Some studies [32,33] have indicated that convergence could be achieved by training 85 to
5000 epochs. Here, 1000 epochs were able to achieve the convergence.

2.10. Activation Function

Activation functions are an essential part of neural networks as they provide nonlin-
earity. The absence of nonlinearity turns the neural network to a simple logistic regression
model. Here, the rectified linear unit (ReLU) is used, which is defined as (Equation (1)):

f(x) = max (0, x) (1)

where x is the input to the neuron.
An advantage of ReLU is that it is a highly simplified and easy-to-calculate function.

It is also very quick to use and train compared with other activation functions. Moreover,
in ML, updating a parameter is proportional to the partial derivative of the error function
with respect to these parameters. If the gradient becomes too small, the updates will not
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work and the network may stop the training procedure. ReLU does not saturate in the
positive direction, while other activation functions such as sigmoid and hyperbolic tangent
saturate in both directions. Therefore, it has fewer vanishing gradients, resulting in better
training. The limitation of ReLU is that its mean output is not zero [35].

2.11. Learning Rate

The learning rate is a hyper-parameter that controls how much to change the model
in response to the estimated error each time the model weights are updated. If the learning
rate is too large, the network fails to converge with allowable error over training set.
Choosing a too small learning rate results in slow training process. Most of the neural
networks utilize a value from 0.01 to 0.3 of the learning rate. In the present paper, taking
advantage of the computing power of the graphic card, a learning rate of 0.001 is used.

2.12. Optimization Algorithm

With a strong ability to find the most optimistic result, RMSprop is used. RMSprop
is one of the most popular optimization algorithms used in DL, as it is a fast and good
optimizer [30]. It uses a moving average of squared gradients to normalize the gradient
itself. It has an effect of balancing the step size; it decreases the step for a large gradient to
avoid exploding and increases the step for a small gradient to avoid vanishing. RMSprop
avoids the decay of the learning rate to zero.

2.13. The Structures

Deep learning-based technique is used in order to develop the DO model, which is
applied to the data of the four stations separately. To achieve the goal, a DNN was built for
each case consisting of:

• an input layer of quality parameters, depending on the investigated structure;
• two densely connected hidden layers, consisting of 64 or 32 units/nodes each, de-

pending on the investigated structure; and
• an output layer of DO quality parameter.

The examined deep neural networks structures are listed below:
The DO model with structures:

• 7-64-64-1 for Gkiole, Psaradika, and Toichio stations (Figure 2a) and 6-64-64-1 for
Stavros station, where NH4 parameter is not available;

• 4-64-64-1 for all stations (Figure 2b);
• 7-32-32-1 for Gkiole, Psaradika, and Toichio stations (Figure 2c) and 6-32-32-1 for

Stavros station where NH4 parameter is not available; and
• 4-32-32-1 for all stations (Figure 2d).

Here, a DNN with structure, for example, 7-64-64-1, indicates a model comprising
7 inputs, 64 nodes per hidden layer, and 1 output node. In terms of how the nodes are
connected to each other, a feed-forward neural network is used for each case, as there is no
feedback from the outputs toward the inputs.

2.14. Preparation of the Dataset

In this context, there were three phases—training, testing, and validation—for each
station. In total, 80% of the data was used for the training process and 20% for testing,
and 80% of the training data was re-divided into 60% for the training process and the
remaining 20% for validation.

2.15. Statistical Descriptors

The following statistical measures were used to evaluate the predictive ability of the
neural network models: (a) the mean absolute error (MAE), (b) the mean square error
(MSE), and (c) the Nash–Sutcliffe model efficiency coefficient (NSE).
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and Toichio stations and 6-32-32-1 for Stavros station, where NH4 parameter is not available; (d) 4-32-32-1 for all stations.

3. Results
3.1. Toichio Station

The procedure that was followed is described in detail for Toichio station. The same
procedure was followed for all the examined stations and structures, the results of which
are given in Table 3.

3.1.1. Structure: 7-64-64-1

Figures 3 and 4 illustrate the mean absolute error and the mean square error of the
DO model for Toichio station, respectively, during the training process of 1000 epochs.
The model seems to “learn” from the dataset after the 20th epoch. The training means
absolute error equals to 0.48, while the training means square error equals to 0.52. Moreover,
the resulting values of mean absolute error and mean square error for test set equal to 0.49
and 0.51, respectively. The fact that the obtained training errors were slightly lower than
the tested ones indicates that a good fit is obtained. Figure 5 shows that the DO model with
structure 7-64-64-1 for Toichio station predicts very well. Finally, Figure 5 illustrates the
prediction error distribution.
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Table 3. Statistical descriptors of the investigated structures for all stations.

Station Structure
Training Test

MAE MSE NSE MAE MSE NSE

Gkiole

7-64-64-1 0.69 0.89 0.81 0.71 0.92 0.79

4-64-64-1 0.58 0.83 0.84 0.61 0.85 0.82

7-32-32-1 0.54 0.65 0.89 0.55 0.68 0.86

4-32-32-1 0.64 0.84 0.82 0.67 0.94 0.81

Toichio

7-64-64-1 0.48 0.52 0.92 0.49 0.51 0.93

4-64-64-1 0.62 0.70 0.89 0.62 0.72 0.91

7-32-32-1 0.50 0.54 0.91 0.54 0.57 0.92

4-32-32-1 0.58 0.76 0.90 0.62 0.77 0.91

Psaradika

7-64-64-1 0.60 0.77 0.88 0.63 0.80 0.90

4-64-64-1 0.57 0.65 0.91 0.58 0.68 0.92

7-32-32-1 0.57 0.70 0.89 0.58 0.72 0.90

4-32-32-1 0.58 0.69 0.89 0.60 0.71 0.90

Stavros

6-64-64-1 0.73 1.02 0.87 0.74 1.08 0.86

4-64-64-1 0.69 1.07 0.88 0.72 1.11 0.86

6-32-32-1 0.69 0.98 0.91 0.70 1.01 0.90

4-32-32-1 0.73 1.23 0.86 0.78 1.30 0.85
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3.1.2. Structure: 4-64-64-1

Figures 6 and 7 demonstrate the mean absolute error and the mean square error
of the DO model, respectively, with structure 4-64-64-1 for Toichio station, during the
training process of 1000 epochs. The model “understands” the dataset after the 40th
epoch. The training means absolute error equals to 0.62, while the training means square
error equals to 0.70. Moreover, the testing means absolute error and mean square error
equal to 0.62 and 0.72, respectively, showing that the DO model predicts reasonably well.
Finally, Figure 8 illustrates the true values versus the predicted ones and the prediction
error distribution.
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3.1.3. Structure: 7-32-32-1

The DO model with structure 7-32-32-1 produces results with an MAE of 0.50 and
0.54 and an MSE of 0.54 and 0.57 for the training and the testing process, respectively,
for Toichio station. The training process takes place for 1000 epochs, and convergence is
achieved (Figures 9 and 10). Finally, Figure 11 shows the prediction error distribution of
the DO models for the aforementioned station.
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3.1.4. Structure: 4-32-32-1

The dissolved oxygen model with structure 4-32-32-1 produces results with MAE
of 0.58 and 0.62 and the MSE of 0.76 and 0.77 for the training and the testing process,
respectively, for Toichio station (Figures 12 and 13). Figure 14 shows the obtained versus
the predicted values and the prediction error distribution. The DO model with structure
4-32-32-1 predicts reasonably well.
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3.2. All Stations/Structure

The dissolved oxygen models are trained for two different numbers of neurons in the
hidden layers and for two different input combinations. All the investigated structures
give satisfactory results. The optimal network architecture of each structure for each station
is selected based on the one with the minimum statistical descriptors of MAE and MSE.
The NSE is used to assess the predictive power of the models. The lower the MAE and
MSE, the more the model is optimized (NSE reaches the unit). Overall, four structures are
compared as shown in Table 3 for each station.

The well-trained DNN with structure 7-32-32-1 produces results with an MAE of 0.54
and 0.55 and an MSE of 0.65 and 0.68 for the training and the testing process, respectively,
with a good predictive ability for Gkiole station. For Toichio station, the structure 7-64-64-1
prevails with an MAE of 0.48 and 0.49 and an MSE of 0.52 and 0.51 for the training and
the testing process, respectively, and it constitutes the structure with the best performance
compared with all the structures for all stations. For Psaradika station, the structure
4-64-64-1 produces the best results in relation to the other structures of this station with
an MAE of 0.57 and 0.58 and an MSE of 0.65 and 0.68 for the training and the testing
process, respectively. Finally, Stavros station presents results with an MAE of 0.69 and
0.70 and an MSE of 0.98 and 1.01 for the training and the testing process, respectively
(structure 6-32-32-1). However, the selected structure 6-32-32-1 for Stavros station is
less appropriate compared to the aforementioned selected structures for Gkiole, Toichio,
and Psaradika stations.

It should be mentioned that, in all the investigated structures, the training errors are
slightly lower than the tested ones, which indicates that a good fit has been achieved. Based
on the investigated structures, the results demonstrate that the proposed DNN models
(Table 4) constitute a good choice for modeling dissolved oxygen for each station. Table 4
also illustrates the high efficiency of the selected structures.

Table 4. The optimal selected structures for each station.

Station Structure
Training Test

MAE MSE NSE MAE MSE NSE

Gkiole 7-32-32-1 0.54 0.65 0.89 0.55 0.68 0.86

Toichio 7-64-64-1 0.48 0.52 0.92 0.49 0.51 0.93

Psaradika 4-64-64-1 0.57 0.65 0.91 0.58 0.68 0.92

Stavros 6-32-32-1 0.69 0.98 0.91 0.70 1.05 0.90
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4. Discussion

It is clear that the models that show the most appropriate predictive ability, based
on their statistical descriptors for Gkiole, Toichio, and Stavros stations, are the models
consisting of all the input parameters. Despite the fact that not all the input parameters
have a high impact on the output, the use of all the available information seems to give a
better performance in deep learning. In other words, all the parameters have a significant
effect on the performance of the DNN model and cannot be excluded from the input
variables. This inability to explain network behavior may seem unacceptable to the scientist,
but one should remember that when one is moving in the ambiguous contexts of stochastic
phenomena and, in particular, artificial intelligence, this may not only be acceptable,
but that is the scope. Moreover, the structure and function of the network becomes
“autonomous,” achieving the idea of “machine learning”.

In case of Psaradika station, the selected model does not use all the parameters to
achieve good performance, but it needs a deep network of 64 nodes per layer instead of
32 in order to give the best results compared to other structures for this station. The fact
that the model with structure 4-32-32-1, utilizing fewer inputs and nodes in hidden layers,
is less appropriate in relation to all the investigated models for all stations, constitutes the
evidence that complex neural networks are a promising field for improvement. The use of
the selected tools and platforms gives the advantage of using large databases, while the
training and testing procedure is obtained in a very short time (GPU card).

Learning rate is a crucial hyper-parameter in deep learning, controlling how much
to change the model in response to the estimated error, each time the model weights are
updated. If the learning rate is too large, the network fails to converge. Most of the neural
networks utilize a value from 0.01 to 0.3 of the learning rate. In the present study, taking
advantage of the computing power of the graphic card, a learning rate of 0.001 is used.
Moreover, the Tensorflow provides state-of-the-art machine learning methods, and the
possibility of using parallel programming through the computing power of the graphics
card makes the process of machine learning constantly gain ground.

The optimal selected feed-forward deep neural networks (DNN) of the DO for each sta-
tion provide information comprising a powerful decision support system (DSS) to prevent
accidental and emergency conditions that may arise from both natural and anthropogenic
hazards in real time. In practice, the use of neural networks in hydrology tends to mimic
hydrological processes, which science does not fully understand or can express with the
help of a mathematical formula. However, it should be noted that, according to their
structure and function, neural networks generally do not provide a better understanding
of hydrological processes and natural phenomena, as they simplify physics and “degen-
erate” into weights and threshold values. To select the appropriate network structure
and to apply the appropriate training algorithm, one must understand the natural proce-
dures that occur. Moreover, the right choice of network architecture, activation functions,
and learning methods could be substantiated through a test and control process. In ad-
dition, the selection of training data is of paramount importance, as it requires proper
preparation and normalization. However, from a water management point of view, due to
the user-friendly nature of the proposed neural networks, they can be implemented in real
time by nonspecialists, as no knowledge of the phenomenon is required after the end of
training phase.

The possible future work could include the following:

• Use additional information captured from a modern drone (uncrewed aerial vehicle)
equipped with a multispectral camera as ground-truth information to calibrate satellite
imagery in order to improve quantification of the specific quality parameters of the
water from the study area. The additional information could also be enhanced by
using data (ground data collection) derived from field work (targeted area samplings)
in the study area. The existing operational algorithms could be tested, or maybe new
ones could be created in order to find the best fit of the band ratio.
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• Use more complex machine learning methods (such as convolutional neural networks
(CNNs)), not only for Lake Kastoria but also for other national and international lakes,
mainly in neighboring countries with cross-border water resources.

• Use the same methodology in order to test the adequacy of the proposed models for
other national and international lakes.

5. Conclusions

The selected DO models for each station provide information in real time and comprise
a powerful decision support system (DSS) for preventing accidental and emergency condi-
tions. The real-time monitoring of the water quality parameters contributes in management
by (a) controlling water quality for irrigation, (b) monitoring atmospheric conditions,
(c) determining microclimate indicators, (d) issuing a warning in case of crises caused by
extreme events, (e) providing continuous knowledge of the state of the water bodies,
and (f) maintaining the ecological balance of the ecosystems and water resources of
the region.
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