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Abstract: With the unique rainfall patterns of typhoons, plum rains, and short-term heavy rainfalls,
the frequent landslide and debris flow disasters have caused severe loss to people in Taiwan. In the
studies of landslide susceptibility, the information of factors used for analysis was usually annual-
based content, and it was assumed that the same elements from different years were independent
between each year. However, the occurrence of landslides was usually not simply due to the changes
within a year. Instead, landslides were triggered because the factors that affected the potential of
landslides reached critical conditions after a cumulative change with time. Therefore, this study had
well evaluated the influence of temporal characteristics and the ratios of antecedent landslide areas in
the past five years in the landslide potential evaluation model. The analysis was conducted through
the random forest (RF) algorithm. Additional rainfall events of 2017 were used to test the proposed
model’s performance to understand its practicality. The analysis results show that in the study area,
the RF model had considerably acceptable performance. The results have also demonstrated that
the antecedent landslide ratios in the past five years were essential to describe the significance of
cumulative change with time when conducting potential landslide evaluation.

Keywords: landslide potential; random forest; antecedent landslides; machine learning

1. Introduction

Taiwan is an island located in the hot zone of the Circurm-Pacific Earthquake Belt,
typhoons, and subtropics monsoon climatic region. About 70% or more of the island’s area
is hillsides and mountains. Because of the steep topography and geological vulnerability,
two or more natural disasters are common in Taiwan. Landslide disasters have become
a critical issue in recent years due to their increasing frequency of occurrence caused by
extreme weather and climate change.

To better understand and deal with the increase in landslide disasters, researchers
conducted studies on the potential for landslide and occurrence probability by considering
environmental conditions. Most researchers used the landslide susceptibility analysis (LSA)
to develop landslide evaluation models. Factors that describe the environmental conditions
and triggering behavior of landslides were usually used in the LSA method. The LSA-based
models can be divided into qualitative and quantitative methods [1,2]. The approaches
of statistical analysis, geotechnical engineering analysis (deterministic and probability),
artificial intelligence [3–9], and data mining were commonly used for quantitative LSA
modeling. Artificial intelligence has become a popular data analysis method in recent
years [8] utilizing machine learning, and deep learning algorithms have become more
efficient and reliable in recent years. The machine learning algorithm, Random Forest (RF),
was often used for landslide potential evaluation [9–15] and was the study focus of this
paper.
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Landslide risk analysis (LRA) is another approach to study the landslide disaster.
The concept of the risk triangle, proposed by Crichton [16], including hazard, vulnerability,
and exposure, is usually used to develop an LRA model, in which probability assessment
is performed to describe the risk level. A recently developed landslide evaluation model
using the landslide fragility curves (LFC) was a model of LRA [1,2,17]. LFC model used
spatial statistics and GIS for data processing on the grid base. Rainfall data over the study
areas and landslide cases were obtained and analyzed by constructing a fragility curve
to describe the exceeding probability of landslide for given environmental conditions.
Fragility curves were built for each combination of factors in the model. With the fragility
curves, the critical hazard potential and critical fragility potential were determined to
express the probability of exceeding a damage state of landslides under certain conditions
of rainfall intensity and accumulated rainfall [2].

Both LSA and LRA models use factors to describe the potential of landslides. These
factors, such as rainfall intensity, accumulated rainfall, slope degree, etc., were categorized
as environmental factors and triggering factors. The development of the landslide potential
evaluation model was usually conducted by considering the effectiveness of each chosen
factor for a given period, e.g., the accumulated rainfall of each heavy rainfall event used for
developing the model. Among the rainfall-induced researches, the rainfall thresholds are
usually the main factor when evaluating the landslide susceptibility [18], and the temporal
resolution of rainfall affects the thresholds significantly [19]. In these studies, the rainfall
factors were included in the evaluation procedure by yearly-based input, not considering
the consecutive influence from previous years.

In addition to rainfall factors, previous studies [1,2,20,21] on landslides usually used
other annual factors of each year to establish a potential evaluation model. The variation
of the same factors between each year was typically assumed to be independent and
uncorrelated. However, landslides were usually caused not simply due to the change that
occurred within a year. The cumulative impacts of the factors had affected the landslide
potential over time, and the landslide was triggered when the critical condition was reached.
Therefore, not only the spatial factors but the temporal consecutive characteristics should
be considered in the model. For this purpose, a novelty attempt was made by including
the consecutive changes of landslide areas in this study. The antecedent landslide area
was adopted as a temporal characteristic factor in the proposed model, and its effect was
discussed in this paper.

Finally, the performance of the proposed RF model was evaluated, and two events of
heavy rainfalls in 2017 were used for specific event-driven performance tests. The insights
from the newly developed RF model were also included in this paper.

2. Study Areas and Environmental Factor Database
2.1. Study Areas

In the middle south of Taiwan, the watershed areas of the ChenYuLan River, the Lao-
nong River, and the Qishan River (Figure 1) were chosen to develop the landslide potential
evaluation model. The ChenYuLan River watershed is located in the mountainous area
of Nantou County. The mainstream ChenYuLan River is one of the important tributaries
of the Zhuoshui River, with a total length of about 42 km. The terrain of the ChenYuLan
River is characterized by a significant height difference and steep slope. The watershed
area of ChenYuLan River is about 448 km2, and the average gradient is over 55%. Most
of the Laonong River watershed area is located in Kaohsiung City. The mainstream of
the Laonong River is the first tributary of the Gaoping River basin, with a total length of
about 137 km. The terrain of the Laonong River is characterized as the valley topography,
and the downstream is a suddenly widened sediment area. The watershed area of the
Laonong River is extensive, with an area of 1408.71 km2 and an average slope of over
65%. The Qishan River watershed area is located in Kaohsiung City and Chiayi County.
The mainstream Qishan River is a tributary of the Gaoping River, with a total length
of about 117 km. The terrain of the Qishan River is characterized as the terraces valley.
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The river is suddenly widened at the downstream section. The watershed of Qishan River
is about 750.79 km2 and with an average slope of more than 55%.

Figure 1. Watersheds of ChenYuLan River, Laonong River, and Qishan River in Taiwan.

To better understand what has occurred in the region, satellite images from 2011 to
2016 were used to build the model factor for this study. The images had undergone a
radiometric correction and orthorectification process. The satellite images of 2011 and 2016
are shown as examples in Figure 2.

2.2. Slope Units

To develop the RF models, the area impacted by landslides was first calculated based
on slope units. A slope unit is defined as one slope part or the left/right part of a water-
shed. Slope units can be topologically divided by the watershed divide and drainage line
(Figure 3) with the help of the GIS tool [22]. We used the slope unit as the analysis basis to
physically and adequately represent the local conditions. Then, the environmental database
was applied in accordance with the slope units at the site of interest. The ChenYuLan
River, Laonong River, and Qishan River watersheds are 6651, 21,279, and 10,985 units,
respectively (Figure 4).
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Figure 2. Satellite images of the ChenYuLan River watershed in (a) 2011, (b) 2016.

Figure 3. Slope unit delineation, the (a) and (b) slope units of a watershed.

2.3. Environmental Database and Model Factors

From research and studies, the landslide factor used for analysis included slope,
lithology, aspect, elevation, land use, river system-related (including distance, density, etc.),
vegetation-related (including species, density, age, etc.), geology (including distance, type,
geological structure, etc.), soil-related (including type, thickness, content, etc.), slope shape,
curvature (including horizontal, vertical, etc.), rainfall (including accumulated rainfall,
rainfall intensity), and many more.

Factors directly or indirectly related to landslide occurrence were analyzed by their
importance to establish the model for landslide potential evaluation. These factors were
generally classified as environmental and triggering factors [23–25]. The rainfall was
the primary concern, and the rainfall intensity (maximum hourly precipitation, Imax) and
effective accumulated rainfall (Rte) were used as triggering factors in this study. In addition,
elevation, slopes, slope aspects, normalized difference vegetation index (NDVI), distance
to the river (stream), geology type, and the ratio of incremental landslide area were used as
environmental factors of hillside slope in the study. These factors (Table 1) were collected
from satellite images, digital elevation model (DEM), and monitoring records, and a GIS
database was created to obtain and process the necessary content of factors. The basic
statistical information of the database is shown in Table 2.
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Figure 4. The slope units of watersheds (a) ChenYuLan River, (b) Laonong River, (c) Qishan River.

Table 1. Environmental database of factors.

Type Source Factors Data Format

Grid
DEM

Elevation
Slope (degree)

Aspect
Raster, 5 m

SPOT satellite images NDVI (from 2011 to 2016) Raster, 20 m

Rainfall Maximum hourly rainfall (Imax) of events from 2006 to 2016
Effective accumulated rainfall (Rte) of events from 2006 to 2016 Raster, 20 m

Vector
River system River system

Distance to river (stream) Shapefile, Polygon
Geology Map Geology type
Landslide 1 Incremental landslide areas, from 2011 to 2016

1 the source of satellite images was from Taiwan’s government open data platform (https://data.gov.tw accessed on: 27 August 2021).

Table 2. Statistical information of database.

Watersheds Year Imax (mm)
(Mean, SD)

Rte (mm)
(Mean, SD)

NDVI
(Average)

Slope (Degree)
(Average)

Elevation (m)
(Average)

Distance to the River (m)
(Average)

ChenYuLan
River

2011 (46.7, 14.2) (289, 84) 0.1261

33.7 1591.2 287.3

2012 (40.1, 9.9) (223, 46) −0.1072
2013 (53.2, 23.1) (166, 39) 0.0344
2014 (21.4, 4.0) (202, 75) 0.0497
2015 (31.7, 3.5) (139, 28) 0.0055
2016 (55.4, 6.8) (509, 58) 0.0893

Laonong River

2011 (50.4, 11.8) (509, 152) 0.1016

32.2 1508.0 265

2012 (49.5, 10.7) (248, 85) −0.1372
2013 (62.9, 18.7) (289, 73) 0.0225
2014 (41.4, 13.4) (322, 74) −0.0051
2015 (53.7, 13.9) (347, 179) 0.0235
2016 (58.8, 9.8) (421, 161) −0.0010

Qishan River

2011 (49.8, 12.1) (322, 117) 0.0956

24.7 926.8 190.6

2012 (49.0, 8.2) (187, 58) −0.0376
2013 (56.1, 15.1) (311, 130) −0.2053
2014 (40.9, 6.9) (278, 74) 0.0799
2015 (50.3, 9.9) (287, 103) 0.0997
2016 (64.1, 8.8) (473, 70) −0.0062

https://data.gov.tw
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In the database, the landslide area, especially the incremental landslide area, was con-
sidered significant when describing the landslide situation in each target area. Figure 5
illustrates the difference of landslide areas between two periods of SPOT image. The total
area, labeled as No. 3 and No. 4 in the figure, was treated as the new landslide areas during a
single period. The ratios related to landslide areas, i.e., the proportions of No. 1, No. 2, No. 3,
No.4, and No. 5 in Figure 5 were calculated for each slope unit after satellite image processing
and interpretation. The condition of a slope unit would be classified as landslide when the
ratio of incremental landslide area (No. 3 + No. 4) was greater or equal to 5%. The landslide
ratios on each period from 2006 to 2016 were estimated and used in the proposed model.

Figure 5. Illustration of landslide area between two periods of a satellite image.

According to the Soil and Water Conservation Bureau (SWCB), Taiwan, a rainfall event
starts when the hourly rainfall is greater than 4 mm. The event ends when the accumulated
rainfall of continuous 6 h does not exceed 24 mm, and any hourly rain is less than 10 mm
during the 6-h period (Figure 6).

The factor, effective accumulated rainfall, Rte, was calculated by the expression as follows.

Rte = R0 +
7

∑
i=1

(0.7)iRi (1)

where the R0 is the current daily rainfall, and Ri represents the daily rainfall i-th day before.
The maximum hourly rainfall, Imax, was used to label the timing of landslides by

assuming that the landslide occurred when the hourly precipitation reached Imax. First,
for a given rainfall event, each grid’s Imax and Rte were calculated by applying Kriging
interpolation based on the data of reference weather stations. Then, the Imax and Rte of a
slope unit were determined by averaging the values of grids within the slope unit. Figure 7
shows the processed results of factors in the study areas, and Figure 8 shows an example
of the interpolation of rainfall of given rainfall events in 2011.
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Figure 6. The definition of a rainfall event and rainfall factors.

Figure 7. The factors of (a) elevation; (b) slope; (c) slope aspects; (d) geology type; (e) NDVI (2011) of study areas.
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Figure 8. Examples of Imax and Rte in the study area in 2011. From left to right are events of
0719 Heavy Rainfall, Typhoon Nanmadol, and 1001 Heavy Rainfall.

3. Development of Landslide Potential Evaluation Model

Machine learning, a branch of artificial intelligence (AI), has become popular in vari-
ous fields. Computer algorithms are necessary and essential in machine learning to robustly
analyze and predict information based on learning from training data [22]. Among its
applications, the use of machine learning has increased in landslide susceptibility analy-
sis [10]. The methods of artificial neural network (ANN) [26,27], logistic regression [28],
support vector machine (SVM) [29], and random forest [11,12] have been popular for
landslide-related analysis.

The random forest is a classifier based on the ensemble method and consists of many
decision trees. Each tree must meet the basic classification ability and certain accuracy
conditions. The built-in classifier performance will eventually be better than the result
predicted by a single classifier. The random forest will randomly take the data for training,
and the output will be based on the voting in each decision tree. At present, random forests
are also widely used due to the advantages of accurate classification, the capability of large
amounts of data processing, multi-variable data, and fast calculations.

In the analysis of landslide prediction, rainfalls and landslides in the past years
may cause the current site condition to be unstable in the investigated areas. Therefore,
the impacts of temporal characteristics should be taken into account in the analysis. Thus,
the antecedent rainfalls and landslides were used as the temporal characteristics in the
proposed random forest model. The data of the past five years were considered to represent
the previous environmental impacts related to current landslide conditions.

In addition to the six environmental factors of elevation, slope, slope aspects, geology
type, distance to the river, and NDVI, the temporal factors of annual landslide areas in the
past five years were also considered. Therefore, these temporal factors were included in the
model in annual area ratios of five-type landslides (Figure 5) in a slope unit. Furthermore,
the triggering factors of annual Imax and annual Rte of a slope unit in the past five years
were also treated as temporal characteristics in the model. Therefore, there was a total of
43 factors (6 environmental factors, 25 annual landslide area ratios in the past five years,
ten annual factors of Imax and Rte in the past five years, and current yearly Imax and Rte) in
the model database. The examples of annual landslide areas are shown in Figure 9.
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Figure 9. Annual incremental landslide areas of the Qishan River Watershed in (a) 2011 and (b) 2016.

The program WEKA (Waikato Environment for Knowledge Analysis) was used to
develop the random forest model. The data were processed by standardization method,
Z-Score, and normalization procedure (values of 0 to 1). From a total of 38,915 slope units,
10,000 units were randomly selected for model development, with a landslide to a non-
landslide ratio of 1:1. In total, 50% of data were used for training during the development,
and the 50% left were used for internal validation. The supervised classification algorithm
was applied in training.

Validation indices are usually used to evaluate the performance of a model. In machine
learning, the validation indices can be divided into classification metrics and regression
metrics. The proposed model was mainly a binary case. Thus, the confusion matrix of
classification metrics (Table 3) was used to validate the model performance.

Table 3. The confusion matrix of landslide evaluation.

Predicted\Actual Landslide (1) Non-Landslide (0)

Landslide (1) True Positive (TP) False Positive (FP)
Non-Landslide (0) False Positive (FP) True Negative (TN)

The validation indices from Table 2 include accuracy (ACC), precision, sensitivity
(or recall), Kappa (kappa index of agreement, KIA), and receiver operating characteristic
curve (ROC) and area under the curve (AUC). These indices were used to validate the
performance of the proposed model.

The random forest model was trained using data from 2006 to 2010 to obtain the 5-year
temporal factors (rainfall factors of Imax and Rte, and ratios of antecedent landslides) and
the data from 2011 as the input to represent the current state. After establishing the RF
model, the landslide area data from 2012 to 2016 and the annual Imax and Rte were used
as the external validation to analyze the model performance of prediction. In addition to
the confirmation of the 43-factor model, the version of the model using only eight factors
(elevation, slope, slope aspects, geology type, distance to river, and NDVI, and Imax and Rte)
in 2011, i.e., without factors of antecedent landslide ratios, was also evaluated. The training
and validation results were represented by the indices of the confusion matrix, as shown in
Table 4. The examples of training and validation results are shown in Figures 10 and 11.
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Table 4. RF Model training and validation results.

Training/Validation Year Accuracy Precision Recall Kappa AUC

2011 (model training) 0.808 0.791 0.833 0.616 0.889

2012 0.716 0.860 0.515 0.431 0.839
2013 0.706 0.870 0.485 0.412 0.844
2014 0.839 0.773 0.708 0.622 0.901
2015 0.833 0.664 0.828 0.616 0.898
2016 0.834 0.619 0.819 0.592 0.897

2011 (8 factors) 0.702 0.680 0.758 0.406 0.776

Figure 10. The results of model training and validations of Laonong River watershed (a) 2011; (b) 2012; (c) 2014; (d) 2016.

From Table 4, the analysis showed that the accuracy and sensitivity (recall) of the RF
model had been greatly improved after adding factors of antecedent landslide ratios, which
indicated a noticeable improvement in the model’s capability of classification. Although
the overall ACC of the model was improved due to a large amount of TN, the lower
missing rate, i.e., 1-recall, from the RF model, was critical to denote more landslide samples.
The Kappa value showed fair to good accuracy [30], within an acceptable range (0.4~0.74).

It was also noted that the precision values from 2012 to 2014 were at the same level
of around 80% as 2011, and the precision from 2015 and 2016 was slightly lower than the
level of the trained model. The precision variation from the tests had indicated that the
proposed RF model was valuable and referential when applied to predict future landslide



Water 2021, 13, 3348 11 of 15

potential without re-training the RF model. However, it was also noted that the model
might need to update every three years if precision performance was a concern.

In any subsequent year (2012 to 2016), the AUC value of the temporal-factor-added RF
model was higher than that of the model that did not include factors of antecedent landslide
ratios. The validation results show that the RF model with temporal characteristics had
better performance than the model without those temporal factors.

Figure 11. The comparison of model training between 43 and 8 factors using 2011 database of the
Qishan River watershed.

4. Model Performance Evaluation for Individual Rainfall Events

Instead of using annual Imax and Rte for analysis, the selected rainfall events in 2017
(Table 5) were used to test the model’s ability of landslide potential prediction if only
short-period data were available. The test results would help to understand the capability
of the RF model in practical applications during disaster response operations.

Based on the data from the 73 rainfall stations surrounding the study area, the Imax
and Rte of each event (Table 5) were determined and inputted into the model as the factors
of current annual rainfall indices. The in-situ rainfall conditions, I and R, disaster overview,
and disaster scale were available from the disaster case reports, as shown in Table 5.
The proposed RF model obtained the predicted landslide areas using events’ rainfall
conditions, and the result of the ChenYuLan River watershed was shown in Figure 12.
The local government reported the landslide disasters, and three locations were in the
study areas. Figure 13 shows the predicted landslide locations and observed ones from
the disaster reports of events. It is noted that the reported three locations of landslides
are not precisely at the expected locations by the proposed RF model. The model did not
capture the two landslide locations at the northern ChenYuLan River watershed. However,
the third landslide location at Tongfu Village was close to the predicted area by the model.
The results imply that the “hit rate” of the RF model might not perform well when targeting
event-based predictions. A rational inference was that the rainfall conditions used in the
model input were different from the actual local rainfall conditions since the maximum
rainfall intensity was determined from the surrounding rainfall stations, which might not
be suitable to represent the local conditions. Another possible explanation of the model’s
miss-hit was the lack of past five years’ data of landslides at the two northern locations in
the ChenYuLan River watershed. Nevertheless, the proposed RF model had a promising
performance for landslide potential evaluation when applied to rainfall events.



Water 2021, 13, 3348 12 of 15

Table 5. Selected landslide disaster cases in 2017 [31,32].

Event Imax/Rte
(mm) 1 Disaster Location 2 Time & Date Rainfalls at

Occurrence 3 Disaster Overview Disaster Scale Hazard Type

0601 Heavy Rainfall
(2017/06/02 ~
2017/06/04)

76.7/749.0

Shuili
Township/Xinshan

Village
(X:236472 Y:2628694)

8:00 on 3 June

I = 43 mm/h
R = 270 mm

(Rainfall Sta.: XiLuan
01H47)

During the 0601 Heavy
Rainfall, the landslide of
Renlun Forest Road had

caused blockage of about 10 m
on Taiwan Provincial

Highways 21.

The landslide scale was
about 20 m in length, 10 m
in width, and 2 m in depth.
The landslide area was 200

m2, and the amount of
debris accumulated was

about 400 m3.

landslide

Xinyi
Township/Mingde

Village
(X:235029 Y: 2622652)

15:00 on 3 June

I = 17 mm/h
R = 430 mm

(Rainfall Sta.: Xinyi
C0I080)

During the heavy rainfall,
the slopes on both sides of

potential debris flow torrent
DF187 collapsed. As a result,
existing rivers were piled up

with soil and rocks, and a
large amount of debris could

not be discharged in time,
resulting in blockage of 87

k~88 k of Taiwan Provincial
Highways 21.

The landslide was about 10
m long, 5 m wide, 2 m deep
and covered an area of 100

m2.
The accumulation of debris
was about 600 m3, with the

length about 100 m,
the width about 3 m,

and the depth about 2 m.

landslide

Typhoons Nesat and
Haitang 62.2/307.8

Xinyi Township/Tongfu
Village

(X:239004 Y:2607456)
7:50 on 30 July

I = 0 mm/h
R = 150 mm

(Rainfall Sta.: Heshe
C1I070)

During Typhoons Nesat and
Haitang, the slope at 115

k+540 of Taiwan Provincial
Highways 21 collapsed and

caused road blockage.

The landslide was about 15
m long, 10 m wide, and 2 m
deep. The area of soil and

debris was 150 m2, and the
accumulated earth volume

was about 3500 m3.

rock-fall,
landslide

1 Reference rainfall station: Nan Tian Chih (0601 event); San Di Men (Typh. Nesat and Haitang). 2 at Nantou County, coordinate using TWD97. 3 The recorded rainfalls when the landslide occurred. R:
accumulated rainfall; I: hourly rainfall.
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Figure 12. The predicted landslide areas of ChenYuLan River watershed: (a) 0601 Heavy Rainfall;
(b) Typhoons Nesat and Haitang in 2017.

Figure 13. The predicted and observed landslide locations of events in 2017.

5. Conclusions

Based on the analysis results from the study, the importance of antecedent landslide
areas in the past five years has been emphasized and discussed. Furthermore, the perfor-
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mance of the proposed RF model was also highlighted by conducting annual validation
from 2011 to 2016. As a result, the following conclusions were derived.

1. According to the analysis results, adding temporal characteristics had significantly
improved the performance of landslide potential prediction by the proposed random
forest model.

2. The contribution of antecedent landslide ratios was significant in improving the
model performance. The performance improvement of the model indicated that the
time-dependent factors should be taken into consideration, in terms of a series of
inputs within a period, such as the five years in this study.

3. The results of better model performance had shown the significance of cumulative
change with time. Therefore, a relevant factor, e.g., the antecedent landslide ratios of
the past five years, to describe the time effects was significant in landslide potential
evaluation.

4. The trained model by considering annual temporal factors provided an angle to
estimate the landslide potential in event-type disaster responses.
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