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Abstract: Given the limited features (for example, the backscattering coefficient threshold range) of
single-channel Synthetic Aperture Radar (SAR) images, it is difficult to distinguish ground objects
similar to the backscattering coefficients of water bodies. In this paper, two representative research
areas are selected (Yancheng Coastal wetland and Shijiu Lake), and the fully polarized SAR data
based on Gaofen-3 are used to extract water bodies using the method of polarization decomposition
and gray level co-occurrence matrix. Firstly, the multi-dimensional features of ground objects are
extracted, and then the redundancy processing of multi-dimensional features is carried out by the
separability index, which effectively solves the misclassification of non-water bodies and water
bodies and improves the accuracy of water body extraction. The comparison between the results
of full-polarization extraction and single-polarization extraction shows that both full-polarization
and single-polarization extraction can extract water information, but the extraction accuracy of
the full-polarization method can reach 94.74% in the area with complex wetland features, which
can effectively compensate for the lack of precision of the single-polarization method. Although
multi-dimensional features can be extracted from fully polarimetric SAR data, data redundancy
may exist. Therefore, using the Separability index (SI) to process multi-dimensional features can
effectively solve the problem of feature redundancy and improve classification accuracy.

Keywords: GF-3; SAR image; water extraction; target area search; polarization feature; separabil-
ity index

1. Introduction

The rapid and accurate acquisition of water body information is of great significance
to research of water resources [1–4], flood disaster monitoring [4], ecological environmen-
tal protection [3,5], and other fields. Optical remote sensing technology has become an
important technical means to obtain water information due to its spatial and temporal
availability and data processing advantages. However, optical remote sensing is often
susceptible to bad weather, and it is difficult to obtain high-quality images under cloudy
conditions. A Synthetic Aperture Radar (SAR) can make full use of its advantages, featur-
ing high resolution, all-weather observation, and strong penetration, etc., and has become
an important data source for water information extraction in recent years [5,6]. In 2016,
China successfully launched Gaofen-3 (GF-3), a synthetic aperture radar imaging satellite,
which has greatly alleviated the shortage of data from civilian SAR satellites.

Water extraction by SAR images can be divided into the single polarization mode and
the full polarization mode. Single polarization is differentiated according to the intensity
difference of electromagnetic waves reflected by different surface roughness of different
ground objects. The main methods include threshold segmentation, curve evolution, and
machine learning. Lee et al. [7] studied the adaptability of the Otsu threshold segmentation
method and found that when the target area accounted for more than 30% of the whole
image, the OTSU threshold approached the optimal segmentation value; when the target
area ratio was reduced to 10%, the segmentation performance of OTSU declined rapidly.
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The curve evolution method is mainly the curve changes with the movement of time, mainly
affected by geometric parameters on the curve, such as the curvature, normal vector, etc.
Cohen [8] et al. proposed a deformation model, which makes the curve behave similar to a
balloon inflated by extra force. The initial curve converges only when it is no longer close
to the solution, and the curve does not stop until it passes through the weak edge, but only
when it is strong, to avoid falling into the problem of local minimum. Klemenjak et al. [9]
proposed an automatic water body extraction method by using a support vector machine
and other algorithms to extract river regions in Terra SAR-X data as the research object.
The experimental results show that the extraction accuracy of the river can reach 0.7 by
Kappa. However, in the extraction process of single-polarization SAR water information, it
is difficult to determine the segmentation threshold of a large-range SAR image, difficult
to accurately extract the water boundary, both mixed water and plain, and difficult to
distinguish different types of water. Compared with single-polarization SAR, Polarimetric
SAR (Pol SAR) can make good use of the electromagnetic wave characteristics of the radar
antenna, obtain the scattering information of different ground objects on the ground by
combining the different polarization modes of the electric field vector transmitted and
received by radar antenna, and obtain the multidimensional decomposition characteristics
through the polarization decomposition algorithm. It is beneficial to analyze the scattering
characteristics of different ground objects [10]. Deng et al. [11] combined pixel feature
extraction with object-oriented polarization SAR segmentation, fused multiple features
and obtained a water distribution map by the voting method. The results show that
this method can effectively extract water information, and the detection accuracy can
reach 98.9%. Song [12] used Cloude target decomposition method to extract water body
information and found that water bodies have different scattering types on different rough
surfaces, and the Cloude scattering entropy of different scattering types has great difference.
Multidimensional features can be extracted from fully polarized SAR data [13]. However,
due to similar scattering characteristics among these features, there may be correlation
and redundancy, and even some features are full of “noise”, which is not conducive to the
smooth progress of follow-up work.

In this paper, water information extraction from GF-3 full-polarization SAR images
with comprehensive polarization and texture features is compared with the extraction
results of single-polarization SAR images. Combined with the characteristics of the study
area, a kind based on the characteristics of the whole polarization SAR image information
extraction method is built. The problems to be solved for HH/HV polarization data are as
follows: (1) water extraction from a wide range of SAR images and (2) the optimization of
the water boundary. The problems to be solved for the HH/HV/VH/VV polarization data
are as follows: (3) to distinguish tidal flat from water area and (4) to distinguish between
ponds and lakes.

2. Study area and Data
2.1. Study Area

Aiming at the problems encountered in SAR image water information extraction, this
paper selected representative research areas to explore the SAR image water information
extraction methods suitable for different polarization modes, different water objects, and
different environments. The specific schematic diagram of the typical study area is shown
in Figure 1, which is divided into two parts: Yancheng Coastal wetland and Shijiu Lake.
Yancheng coastal wetland is in Jiangsu province near the coastal areas, and Shijiu Lake is in
Jiangsu and Anhui provinces at the junction. The data imaging mode, polarization mode,
imaging time, and problems to be solved in the study area are shown in Table 1.
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Figure 1. Research area: (A) Yancheng coastal wetland on the upper right; (B) Shijiu Lake on the
lower right.

Table 1. Data information and problems to be solved.

Area Imaging
Mode

Polarization
Mode Time Problems to Be

Solved

Yancheng
Coastal wetland QPSI HH/HV/VH/VV 20 September 2017 Mudflats are mixed

with water bodies

Shijiu Lake QPSI HH/HV/VH/VV 12 October 2018 Distinguish between
ponds and lakes

2.2. Data Preprocessing

The GF-3 satellite ground system produces 1–2 standard products, which are mainly
divided into L1A, L1B, and L2 (http://www.sastind.gov.cn/n25770/index.html, accessed
on 3 November 2021). LIA level products are mainly in the form of single look complex
(SLC), which are slant-distance complex data products obtained after a series of processing.
The main product forms of L1B products are single-look products (SLP) and multi-look
products (MLP), which are processed in different ways according to the satellite parameters.
The data used in this paper are all SLC, and the pre-processing mainly includes radio-
metric calibration, data conversion, multi-view processing, filtering, geocoding, power
conversion, etc.

3. Method

For fully polarized SAR images, polarization decomposition and gray level co-occurrence
matrix are used to extract polarization features and texture features, and then multi-
dimensional features are processed by the separability index, which can effectively solve
the feature redundancy problem. The specific process is as follows: (1) Polarization with
decomposition. Krogager decomposition [14], Huynen decomposition [15–18], and Van
Zyl decomposition [19,20] were performed on the preprocessed GF-3 image to extract the
polarization features, and the polarization features were combined to form the feature set
‘All’. (2) According to different features, the separability index of different land features
is calculated. The effective features conforming to certain conditions were selected to

http://www.sastind.gov.cn/n25770/index.html
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form the optimal polarization feature ‘SI’. (3) According to the calculation results of (2),
the polarization feature with the maximum divisibility index is found. Based on this
feature, the gray level co-occurrence matrix (GLDM) is used to construct the statistic as
the texture classification feature, to synthesize the comprehensive feature set ‘SI+GLCM’
with the feature collection group of (3). (4) According to different texture features, the
separability index of different ground objects is calculated, and the effective texture features
that meet certain conditions are screened out, and the optimized comprehensive feature set
SI+SI_GLCM is combined with the feature set of (2). (5) SVM classifier [21] was used to
classify the feature sets of (1), (2), (3), and (4), extract water information, and verify and
analyze the accuracy. The technical research route of this paper is shown in Figure 2.

Figure 2. Technology roadmap.

3.1. Coherent Target Polarization Decomposition
3.1.1. Pauli Decomposition

Pauli decomposition is the most basic polarization decomposition method. Table 2
lists the physical interpretation of Pauli. Given a target region, the scattering matrix of the
target region is obtained as ‘S’, which can be obtained by mapping it to Pauli basis:

S =

[
SHH SHV
SVH SVV

]
=

a√
2

[
1 0
0 1

]
+

b√
2

[
1 0
0 −1

]
+

c√
2

[
0 1
1 0

]
+

d√
2

[
0 −j
j 0

]
, (1)

The calculation formulae of a, b, c, and d are as follows:

a =
SHH + SVV√

2
, b =

SHH − SVV√
2

, c =
SHV + SVH√

2
, d = j

SHV − SVH√
2

, (2)
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Table 2. The physical explanation of Pauli decomposition.

Pauli Matrix Pauli
Coefficient Scattering Type Physical Interpretation

[
1 0
0 1

]
a Single scattering A sphere, a plane, or a

three-sided Angle[
1 0
0 −1

]
b Even order scattering Dihedral angle[

0 1
1 0

]
c 45◦ even order scattering Dihedral Angle at 45◦ tilt[

0 −j
j 0

]
d Cross polarization No corresponding

scattering mechanism

3.1.2. Krogager Decomposition

Krogager decomposition, also known as SDH decomposition, is expressed as follows:

S = ejϕ
{

ejϕs ksSsphere + kdSdiplane(θ) + khShelix(θ)

}
, (3)

where ks is the proportion of the ball scattering Ssphere in the decomposition, kd is the
proportion of the dihedral Angle scattering Sdiplane(θ) in the decomposition, kh is the
proportion of the helix scattering Shelix(θ) in the decomposition, ϕ refers to the Angle of the
absolute phase, and ϕs is the offset Angle of the ball scattering to the other two kinds of
scattering, where the expressions of Ssphere, Sdiplane(θ), Shelix(θ) are as follows:

Ssphere =

[
1 0
0 1

]
, (4)

Sdiplane(θ) =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
, (5)

Shelix(θ) = e∓j2θ

[
−1 ±i
±i 1

]
, (6)

where θ is the azimuth of the latter two components. Parameters decomposed by Krogager
are as follows:

kS = |SLR|, (7)

kD = min(|SLL|, |SRR|), (8)

kH = abs(|SLL| − |SRR|), (9)

3.1.3. Huynen Decomposition

The purpose of Huynen target decomposition theory [14–18] is to distinguish the
desired target from the clutter environment, also known as “N-target”. The average
distributed target is generally expressed by the expected value of coherence matrix T3 of
Kennaugh matrix:

T3 =

 2〈A0〉 〈C〉 − j〈D〉 〈H〉+ j〈G〉
〈C〉+ j〈D〉 〈B0〉+ 〈B〉 〈E〉+ j〈F〉
〈H〉 − j〈G〉 〈E〉 − j〈F〉 〈B0〉 − 〈B〉

, (10)

Among them, only 5 free parameters are required to represent a single target, and
the average target can be decomposed into a single scattering target and a residual term.
The residual term contains 4 degrees of freedom, a total of 9 parameters, and there are 4
dependencies between the parameters. Then, the relational Equation (11) is as follows:

B2
0 = B2 + E2 + F2, (11)
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The formula of partially polarized wave is Equation (12):
g0
g1
g2
g3

 =


g0 − g

g1
g2
g3

+


g
0
0
0

, (12)

In Huynen decomposition, the vector (B0, BN , EN , FN) is decomposed into two parts,
which are represented by subscripts T and N in Equation (13):

B0 = B0T + B0N , B = BT + BN , (13)

E = ET + EN , F = FT + FN (14)

where subscript T represents the equivalent single scatterer target, and subscript N repre-
sents the residual target.

The parameters (A0, C, H, G) are determined, and the single scattering target param-
eters (B0T , BT , ET , FT) have unique solutions:

2A0(B0T + BT) = C2 + D2, (15)

2A0(B0T − BT) = G2 + H2 (16)

2A0ET = CH − DG (17)

2A0FT = CG + DH (18)

3.1.4. Cloude–Pottier Decomposition

Cloude and Pottier proposed Cloude–Pottier decomposition [22–25]. Given the coher-
ence matrix T, the decomposition is to obtain the eigenvalues of T. The specific decomposi-
tion is described in Equation (19):

T3 = U3ΛU−1
3 = U3

 λ1 0 0
0 λ2 0
0 0 λ3

U−1
3 , (19)

where λ1, λ2, and λ3 are the eigenvalues of the matrix, and the expression of Ui is as
follows:

ui =
[
cos aiejφi sin biejδi sin ai sin biejγi

]T
, (20)

The specific parameters in the formula are as follows: a represents the target scattering
type; b is the azimuth Angle between target and radar; φ, δ, γ are the scattered phase
angles of the target.

3.1.5. Van Zyl Decomposition

Van Zyl decomposition [24,25] is special, mainly applied to the decomposition of some
natural features, and the applied natural features are independent of each other on the
cross-polarization channel and co-polarization channel, so its covariance matrix can be
expressed as follows:

C3 =

 〈|SHH | 2〉 0
〈
SHHS∗VV

〉
0 〈2|SHV |2〉 0

SVVS∗HH 0 〈|SVV | 2〉

 = α

 1 0 ρ
0 η 0
ρ∗ 0 µ

, (21)

the parameters are:

α = 〈SHHS∗HH〉, ρ =
〈
SHHS∗VV

〉〈
SHHS∗HH

〉 , (22)
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η =
2
〈
SHVS∗HV

〉〈
SHHS∗HH

〉 , µ =

〈
SVVS∗VV

〉〈
SHHS∗HH

〉 (23)

3.1.6. Freeman–Durden Decomposition

Freeman–Durden decomposition is the most commonly used polarization decomposi-
tion method. By data transformation of scattering matrix S, polarization covariance matrix
C can be obtained. Freeman–Durden decomposition [26,27] decomposed matrix C into the
following form:

C3 = 〈C3〉s + 〈C3〉d + 〈C3〉v

= fs

 |β|2 0 β
0 0 0
β∗ 0 1

+ fd

 |α|2 0 α
0 0 0
α∗ 0 1

+ fv

 1 0 1/3
0 2/3 0

1/3 0 1

,
(24)

where 〈C3〉s, 〈C3〉d, and 〈C3〉v correspond to surface scattering, even scattering, and even
scattering, respectively. fs, fd, and fv correspond to the intensity of the corresponding
scattering components, respectively. α is the polarization coefficient of even scattering; β is
the polarization coefficient of surface scattering.

3.1.7. Yamaguchi Decomposition

Freeman decomposition results in three scattering components. Yamaguchi decompo-
sition [28–31] analyzes and studies the Freeman decomposition method, expands Freeman
decomposition, makes up for the shortcomings of the Freeman decomposition method
itself, and adds spiral scattering on the basis of Freeman decomposition. The polarization
scattering matrix is expressed in the form of four scattering mechanisms:

C3 = 〈C3〉s + 〈C3〉d + 〈C3〉v + 〈C3〉h
= fs[C]s + fd[C]d + fv[C]v + fh[C]h,

(25)

where C3 is the polarization covariance matrix of the scatterer, and the coefficients fs, fd,
fv , fh are complex numbers, which are used to describe the proportion of each scattering
component. [C]s, [C]d, [C]v, and [C]h are the polarization covariance matrices of the above
four kinds of scattering, respectively.

3.2. Feature Extraction of Texture

In remote sensing images, spectral features describe the average tonal changes of
various bands in the visible or infrared part of the electromagnetic spectrum, while tex-
ture features contain information about the spatial distribution of tonal changes within a
band [32]. Gray co-occurrence matrix is mainly affected by distance d, direction θ, quan-
tization level, window size, and other parameters. The statistics calculated based on the
gray level co-occurrence matrix include mean value, variance, homogeneity, contrast, het-
erogeneity, information entropy, second moment, correlation, and so on. Water usually
has less texture and relatively uniform gray value, so it usually has low contrast, high
information entropy, high correlation, and high coordination.

3.3. Separability Index

When two or more classes are considered, a feature is considered to be well separable
if the distance between the means of the feature is greater than the standard deviation of
the feature [32]. The calculation is Equation (26):

SIab, j =

∣∣∣µa,j − µb,j

∣∣∣
Sa,j + Sb,j

(26)
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where a and b represent two different categories under j characteristics. Under j characteris-
tics, the mean value of class a is represented by µa,j; under j characteristics, the mean value
of class b is represented by µb,j; under j characteristics, the standard deviation of class a is
represented by Sa,j; under j characteristics, the standard deviation of class b is represented
by Sb,j. The higher the value of SIab, j, the better the separability between a and b. Through
target decomposition, 38 polarization features are extracted. The specific decomposition
method and corresponding characteristic parameters are shown in Table 3.

Table 3. Feature parameters extracted by different methods.

Decomposition Method Polarization Parameter

Neumann Neu_mod Neu_pha Neu_tau
Huynen JRH_T11 JRH_T22 JRH_T33
Van Zyl Van Zyl_Vol Van Zyl_Odd Van Zyl_Dbl

Krogager Krogager_Ks Krogager_Kh Krogager_Kd
Freeman3 Freeman_Vol Freeman_Odd Freeman_Dbl

Yamaguchi4 Yamaguchi4_Vol Yamaguchi4_Odd Yamaguchi4_Hlx
Yamaguchi4_Dbl

H/A/Alpha

Entropy Anisotropy Alpha
L1 L2 L3
P1 P2 P3

SERD DERD
Luneburg Pedestal Height

Polarization Fraction Polarization Asymmetry
Shannon Entropy Shannon Entropy P

Shannon Entropy I Radar Vegetation Index

4. Results
4.1. Analysis of Feature Selection Results

Taking Yancheng coastal wetland as an example, the SAR images of Yancheng coastal
wetland are divided into seven types of land features, including water, paddy field, dry
land, intertidal zone, ridge, spartina alterniflora (A grass of the family Gramineae), and
reed. By calculating the separability index of the different features in 38 dimensions, the
distinguishing ability of different features is judged and analyzed. The separability index
results are shown in Figure 3, and the separability index of different features on water areas
is shown in Figure 4. The characteristic number and precision corresponding to different SI
thresholds are shown in Figure 5.

Figure 3. Bar chart between SI value and characteristics of Yancheng coastal wetland.
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Figure 4. The separability index of different features to lakes.

Figure 5. Characteristic number and precision corresponding to different SI thresholds.

It can be seen that when the SI threshold is 0.6, the overall accuracy can reach 94.78%.
Therefore, with 0.6 as the limiting condition, when SI > 0.6, it indicates that the ground
objects have good separability. The 15-dimensional features are screened out through the
separability index, which is as follows: Krogager’s Ks, Kd, and Kh components; Huyen’s
JRH_T11 components; Van Zyl’s VZ_Vol and VZ_Odd components; Freeman’s F_Vol and
F_Odd components; Yamaguchi’s decomposition of Y_Vol, Y_Odd, and Y_Hlx components;
and the H/A/Alpha decomposition of L2, L3, SE, and SE_I components. The first three
features with large SI values and the last three features with small SI values are selected to
further show the separability of different ground objects through box plots, as shown in
Figure 6a–c. It can be seen that the pixel value of the water area is relatively low, which can
be distinguished from other ground objects. The main reason is that the smooth surface of
the calm water area has uniform gray distribution, mainly speckle scattering, low scattering
intensity, basically no volume scattering and dihedral Angle scattering, and low SE, SE_I,
and Ks values.
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4.2. Water Classification and Accuracy Analysis

To verify the effectiveness of water area classification, the accuracy of single-polarization
SAR data of different channels and full-polarization SAR data of different feature sets is
evaluated. With the standard support vector machine (SVM) as a classifier, the polarization
SAR will feature the extraction of 38 victors, said ALL the requisition will be deleted
according to the separability index to distinguish the worst of the characteristics of the
optimization of the preserved after polarization feature set marked as SI, and keep the
separability index of the polarization characteristics to ALL the feature set of texture feature
combination of SI + GLCM. The polarization feature retained by the separability index
and texture feature retained by the separability index are denoised as SI+SI_GLCM. The
experimental results are shown in Figures 7 and 8.
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polarization image water area extraction results; (c) VV polarization image water area extraction results; (d) SI water
extraction results; (e) SI+GLCM water extraction results; (f) SI+SI_GLCM water extraction results.

Combined with the statistical results of surface object classification in Table 4 and
the HH polarization images in Figure 7a–c, the differentiation effect of the tidal flat and
water areas is good in marine coastal areas, but on land, rivers are wrongly divided into
smooth flats, and the extraction effect of water areas is poor. In the HV polarization
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image, the misrepresentation of the water area as the tidal flat is quite serious, and the
overall accuracy of the ground object is only 58.60%. In the VV polarization image, the
mixed phenomenon mudflats and other ground objects is serious. The multi-feature
advantage of full polarization can effectively solve the deficiency of a single polarization
image and distinguish water area, plain beach, and other ground objects. In addition,
feature optimization through separability index can reduce the slow operation speed
and invalid data interference caused by too much data, thus effectively improving the
operation efficiency and classification accuracy. The classification accuracy of optimal
feature collection obtained by the separability index can reach 94.74%, which is nearly 7.7%
higher than that of feature set with all features.

Table 4. Accuracy results of feature classification in Yancheng coastal wetland.

Feature Set HH HV VV ALL SI

Feature dimension 1 1 1 38 15
overall accuracy 88.50% 58.60% 79.41% 87.05% 94.74%

Combined with the statistical results of ground object classification in Table 5 and
Figure 8, the overall classification accuracy of single-polarization images for the Shijiu
Lake study area is low, but the classification accuracy can be effectively improved by
integrating multiple polarization characteristics. The multi-dimensional features do not
necessarily improve the classification accuracy because some features may have correlation
and redundancy due to similar scattering characteristics. Some features are even full of
“noise”, which is not conducive to the smooth follow-up work. The separability index can
reduce the dimension of feature and improve the accuracy of classification. Compared with
feature set SI, the classification accuracy of feature set with the texture feature is improved
by 10%. Because the texture characteristic values obtained by GLCM are not completely
applicable to the classification of the Shijiu Lake study area, therefore, the polarization
features and texture features after re-screening by the separability index can be recombined
to obtain a new feature set, which can effectively distinguish lakes and aquaculture ponds.
The overall accuracy of reclassification reached 94.56%.

Table 5. Accuracy results of feature classification in Shijiu Lake.

Feature Set HH HV VV SI SI + GLCM SI + SI_GLCM

Feature dimension 1 1 1 15 23 20
overall accuracy 73.73% 55.33% 64.30% 83.89% 94.34% 94.56%

5. Discussion and Conclusions

Aiming at the problem that it is difficult to accurately extract water and distinguish
different water types in the complex terrain area with GF-3 single-polarization data, the
coastal area and urban lake area are studied and analyzed with GF-3 full polarization data.
In coastal areas, because of the complexity of wetland features, it is difficult to classify
them [6–8]. Moreover, if only unipolar images are used, there will be misclassification of
the beach and water area [9–12]. Therefore, the overall classification accuracy of Yancheng
coastal wetland can reach 94.74% by using fully polarized data, effectively making up for
the difficulty in distinguishing beach and water areas faced by unipolar data. The literal
images can effectively extract water body information, but it is more difficult to distinguish
between different types of water and lake area in cities, so the whole polarization data
classifying the stone mortar lake area can reach an overall accuracy 94.56%, which will be
similar to the scattering coefficient of aquaculture ponds and lakes to effectively distinguish
them. Multi-dimensional features can be extracted from fully polarized SAR data [25–29].
However, due to similar scattering characteristics among these features, there may be
correlation and redundancy, and some features are even full of “noise”, which is not
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conducive to the smooth progress of follow-up work. Multidimensional features are
processed by the separability index to solve the problem of feature redundancy and improve
classification accuracy.

Using the fully polarized SAR data of GF-3 to extract texture features from polarization
decomposition and gray co-occurrence matrix, the multi-dimensional features of ground
objects were obtained, and the multi-dimensional features were redundancy processed
by the separability index, which effectively solved the phenomenon of misclassification
between non-water bodies and water bodies and improved the water body extraction
accuracy. The comparison between the results of full polarization extraction and single
polarization extraction shows that both of them can extract water information, but the
extraction accuracy of the full polarization method can reach 94.74% in the area with
complex wetland features, which can effectively compensate for the lack of precision of
single-polarization method in water extraction.
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