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Abstract: Digital rock images may capture more detailed pore structure than the traditional labora-
tory methods. No explicit function can correlate permeability accurately for flow within the pore
space. This has motivated researchers to predict permeability through the application of numerical
techniques, e.g., using the finite difference method (FDM). However, in order to get better perme-
ability calculation results, the grid refinement was needed for the traditional FDM and the accuracy
of the traditional method decreased in pores with elongated cross sections. The goal of this study
is to develop an improved FDM (IFDM) to calculate the permeabilities of digital rock images with
complex pore space. An elliptical pore approximation method is invoked to describe the complex
pore space. The permeabilities of four types of idealized porous media are calculated by IFDM. The
calculated results are in sound agreement with the analytical solutions or semi-empirical solutions.
What’s more, the permeabilities of the digital rock images after grid coarsening are calculated by
IFDM in three orthogonal directions. These results are compared with the previously validated
lattice-Boltzmann method (LBM), which indicates that the predicted permeabilities calculated by
IFDM usually agree with permeabilities calculated by LBM. We conclude that the presented IFDM is
suitable for complex pore space.

Keywords: improved finite difference method; permeability; digital rock image; pore space approxi-
mation; grid coarsening

1. Introduction

Permeability describes how easily fluid can flow through rock. The accurate prediction
of permeability on small rock samples has important applications in petroleum engineering,
environmental studies, hydrogeology and coal mining [1–3]. However, determining the
permeability by traditional physical experiments usually costs a lot of time and money.
Three dimensional (3D) images of rock samples, obtained with micro computed tomogra-
phy (micro-CT), may be useful to estimate permeability. CT imaging is an effective tool
for describing mechanical and transport behaviors of digital rocks [4–10]. The quality of
the pore network extracted plays a significant role in the prediction of the permeability,
and the permeability is then calculated mathematically from physical principles. Many
researchers have studied multiphase flow systems [11–16], but in this study, we focus on
the single-phase flow system. The lattice Boltzmann method (LBM) [17–20] is relatively
more commonly used for simulating fluid flow phenomena at the pore scale and is a
straightforward method. However, this method is time-consuming and requires the use of
massively parallel computing approaches [21]. The finite difference method (FDM) is an ef-
fective tool to calculate the permeability [1,22–28]. The FDM can save much computational
time relative to the LBM with similar results [29].
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Most porous media are very complex, which makes it very difficult to describe their
internal structure accurately. In order to develop theoretical models of various transport
processes, an approximation of the pore space should be adopted. The pore-scale correlations
found in Finney packing may exist in granular porous media [30–33], but these correlations
may be not suitable for carbonate digital rock images. Javadpour and Pooladi-Darvish [34]
presented a two-dimensional representation of a network of unit cells that are connected by
branches to investigate the effects of oil viscosity on gas mobility in porous media. Raoof
and Hassanizadeh [35] presented a 3D network representing porous media with coordination
number of 26. Coordination number is defined as the number of bonds (or pore throats)
associated to a site (or pore body) in the network. Shabro et al. [27] presented a finite
difference approximation method to calculate the permeability of digital rock image, and they
applied a geometrical pore approximation to describe the irregular pore space. However,
the geometrical pore approximation is not suitable for elongated cross sections, because the
irregular cross sections are partitioned into the form of many interconnecting cylindrical
pores. Wang et al. [36] applied a pore network model combined with CT imaging to simulate
and calculated the flow properties of methane hydrate. An et al. [37] adopted a random
pore network model to simulate two-phase flow. A maximal ball algorithm was adopted to
simulate the pore network [38]. The big spheres represented the large chambers, whereas small
spheres represented the pore throats. Jiang et al. [39] applied an improved capillary bundle
model to calculate the permeability of porous media. Compared with other methods, the pore
approximation method can quickly simulate the pore structure, but the over simplification of
the real pore structure will make the description of fluid flow inaccurate.

Fort the traditional FDM, the irregular cross sections are partitioned into the form of
many interconnecting cylindrical pores. When the pore shape is elongated, the calculated
permeability is lower than the actual value. The pore structure of digital core is complex,
especially there are many fractures in carbonate core [40,41]. This is a challenge for the
traditional FDM, so this paper proposes the elliptical pore approximation method, which
can better adapt to the elongated pores. For the rectangular tube section with a length
of 400 µm and a width of 20 µm, the permeability calculated by traditional FDM is 51%
lower than the analytical solution [27], while the permeability calculated by this method
is 12% lower than the analytical solution. Due to the traditional FDM [27] has large
calculation error for elongated pores, in this study, an improved finite difference method
(IFDM) is proposed to calculate the permeabilities of digital rock images. Firstly, we derive
the Laplace equation and obtain the fluid pressure distribution by solving the equation.
Secondly, we propose an elliptical pore approximation method to describe the pore space.
To verify the effectiveness of IFDM, we first calculate the permeabilities of a straight-line
tube with a rectangular cross section, a model consisting of two tube segments with circular
cross sections in sequence, a model consisting of five tubes with circular cross sections,
and a model consisting of three tubes with circular cross sections. Then the permeabilities
of digital rock images are calculated by IFDM for the further verification. Zakirov and
Galeev [20] found that when grid is coarsened two times, the simulation of single-phase
flow is still reliable. This result allows one to reduce the grid dimensions 23 times, which can
significantly improve the economy of the computational cost. Grid coarsening really affects
the accuracy of the permeability result. In this study, we calculated the permeabilities of
the digital rock images after grid coarsening two, three or four times.

2. Methods
2.1. The Improved Finite Difference Method

In this study, the skeleton is impermeable for a binary 3D digital rock image. Constant
pressure is applied on the two opposite faces while on-flow boundary conditions are
assumed on the other four faces. Assume that the effects of inertia and fluid compressibility
are neglected. Moreover, we only consider single-phase flow. The mass balance is expressed
as follows:

∇ · J = 0 (1)
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where J is the mass flux.
It is difficult to calculate the permeability distribution of a digital rock image directly,

which is why some researchers divide the irregular cross section into several interconnect-
ing cylindrical regions [27,42]. Each cylindrical region can be regarded as a tube. This
assumption is valid when the length to width ratio of the irregular region is not large.
However, with the increase of the aspect ratio of the irregular section, the error caused
by this assumption is more and more large. The aspect ratio is the length to width ratio.
Moreover, experts also mentioned that it is not always possible to approximate the shape
of pores to be cylindrical [43]. Therefore, in this paper, we assume that the irregular pores
consist of a series of interconnected elliptic tubes. The volume flow rate of the elliptical
tubes can be expressed as [44]:

Q =
π

4µ

(
−dp

dz

)
a3b3

a2 + b2 (2)

where Q is the volume flow rate, µ is the fluid viscosity, dp/dz is the pressure gradient in
direction of z, and a and b represent the semi-major and semi-minor axes of the elliptical
tube, respectively.

Accordingly, in an elliptical tube with no-slip conditions on the inner wall, the mass
flux in the direction of z is given by:

Jz =
ρQ
A

=
ρa2b2

4µ(a2 + b2)

(
−dp

dz

)
(3)

where ρ is the average fluid density and A is the cross-sectional area of elliptical tube.
According to Equation (3), we hold that all the cubes in the same elliptical tube have

the same coefficient in direction of z:

wz =
ρa2b2

4µ(a2 + b2)
(4)

Each cube has three coefficients (wx, wy, and wz) that are positioned in the center of
six surfaces (Figure 1). For each cube which belongs to an elliptical tube on the layer of xoy,
wz is calculated by Equation (4). The calculation method of parameters a and b is given
in the Section 2.2. If the original size of a 3D model is Nx × Ny × Nz, then each layer is
defined as a Nx × Ny × 1 grid network (Figure 2). After this layer is divided into different
elliptical tubes, the coefficient wz of all pore cubes composed of this layer can be calculated
by Equation (4). The calculations of wx and wy are the same.
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Figure 1. Schematic of one cube applied in IFDM. wx, wy, and wz are the coefficients of one cube in
the x, y and z directions, respectively.
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Figure 2. The schematic of a three-dimensional model and one layer of the model. Nx, Ny and Nz are
the number of pixels of the model in the x, y and z directions, respectively.

According to Equations (1), (3) and (4), a generalized Laplace equation in each cube
can be expressed as:

∇ · (w∇p) = 0 (5)

where w represents the coefficient of one cube.
The finite initial pressures are set at the inlet and outlet faces via additional external

grid-blocks facing the grid-blocks of porous media, and the Dirichlet boundary condition
is applied there. No-flow boundary conditions are assumed on the other four faces, to
which the Neumann’s boundary condition is applied. Because of null flow across grain
boundaries, Neumann’s boundary condition at grain boundaries is also implemented here.
The pressure is positioned in the center of each cube. Moreover, if the cubes with indices
(i, j, k), (i − 1, j, k), (i+ 1, j, k), (i, j − 1, k), (i, j + 1, k), (i, j, k − 1), and (i, j, k + 1) are pores,
Equation (5) can be expressed by discretize equation. The central difference derivation at
the cube with index (i, j, k) can be expressed as:

wx+pi+1,j,k + wx−pi−1,j,k + wy+pi,j+1,k + wy−pi,j−1,k + wz+pi,j,k+1
+wz−pi,j,k−1 − (wx+ + wx− + wy+ + wy− + wz+ + wz−)pi,j,k = 0

(6)

where, wx+ = (wx(i + 1,j,k) + wx(i,j,k))/2; wx− = (wx(i,j,k) + wx(I− 1,j,k))/2; wy+ = (wy(i,j + 1,k)
+ wy(i,j,k))/2; wy− = (wy(i,j,k) + wy(i,j − 1,k))/2; wz+ = (wy(i,j1,k + 1) + wz(i,j,k))/2; wz− =
(wy(i,j,k) + wz(i,j,k − 1))/2 and the pressure values are the unknowns.

If the cubes adjacent to the cube with index (i, j, k) are grains, the form of Equation (6)
will be changed. For only the cube with index (i − 1, j, k), which is a grain boundary in
Equation (6), Equation (6) is expressed as:

2wx+pi+1,j,k + wy+pi,j+1,k + wy−pi,j−1,k + wz+pi,j,k+1
+wz−pi,j,k−1 − (2wx+ + wy+ + wy− + wz+ + wz−)pi,j,k = 0

(7)

Then, using central difference derivations for all cubes representing pores, Equation
(5) can be expressed as:

WP = B (8)

where W represents the coefficient matrix, P represents an unknown column vector which
is made up of the pressures of the center of the cubes (p1,1,1, p1,1,2, pNx,Ny,Nz), and B is the
given column vector of boundary conditions (wz(1,1,1)PI, wz(1,2,1)PI, . . . ,wz(Nx,Ny,Nz)PI,
0, . . . ,0, wz(1,1,Nz)PO, . . . , wz(Nx,Ny,Nz)PO). We assume that the inlet and outlet surface
pressures are constant and are represented by PI and PO, respectively (Figure 2). The fluid
flows in direction z.

As shown above, the matrix W is sparse, so the biconjugate stabilized method [45]
is applied to calculate the pressure distribution. For large W, the biconjugate stabilized
method can be memory efficient. By solving Equation (8), the spatial distribution of
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the pressure can be obtained and the total volume flow rate of the porous media in the
macroscopic flow direction gives the following:

Qtot = ∑
ij

Jij Aij
∣∣∆pij

∣∣/ρ (9)

where, i and j are the horizontal and vertical coordinates on the cross section normal to the
macroscopic flow direction, respectively, Jij is the mass flux of one cube on a one-cell thick
layer normal to the macroscopic flow direction which pressure gradient has been applied,
Aij is the cross-sectional area of one cube, and ∆pij is the pressure drop between this cube
and the adjacent cube in the macroscopic flow direction.

Then according to Darcy’s law, the effective permeability, K, of the porous media is:

K =
µLQtot

A(PI − PO)
(10)

where L represents the length of the porous media in the macroscopic flow direction, A
represents the cross-sectional area of the porous media normal to the macroscopic flow
direction, and PI and PO are the inlet and outlet pressures, respectively.

2.2. Elliptical Pore Approximation Method for the Calculation of Coefficient w

This section mainly introduces the calculation of the coefficients of all the cubes
constructing the pore space in digital rock image. Here we partition each layer of the digital
rock image into a series of interconnecting elliptical tubes [46]. Figure 3 shows that this
layer of the digital rock is irregular. The red part is pore and the blue part is grain. For
any elliptical tube that is perpendicular to the direction of z, all coefficients wz of the cubes
inside this tube are of the same value which can be obtained by Equation (4).
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Figure 3. One layer of digital rock. The red part is pore and the blue part is grain.

The definition of several key parameters is introduced here. rmax and r are the largest
inscribed radius and the distance to the grain boundary, respectively; and dmax and d are
the digital equivalents of rmax and r, respectively. As depicted in Figure 3, the size of a
block is 1 pixel × 1 pixel. Firstly, we will introduce how to calculate the d of every block.
For a block representing pore, its initial value of d is “1”. For a block representing grain, its
initial value of d is “0”. For a certain block with index (i, j) constituting a pore, the square
range is found (i − d ≤ I ≤ i + d; j − d ≤ J ≤ j + d). Then, the distances between the block
with index (i, j) and all the blocks in the square range are calculated, indicated by dis. If all
the blocks satisfying the condition (dis ≤ d) are pores, then the value of d becomes d + 0.5;
if not, the value of d remains unchanged. Finally, if it is an isolated block, the d value of
the block is reassigned to “0.5”. What’s more, we provide a flowchart of the algorithm to
show the calculation process of d value more intuitively (Figure 4). Figure 5a shows the
distribution of d for one layer of digital rock.
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Figure 5. (a) The distribution of d for one layer of digital rock. The value of the color bar represents
the number of pixels. (b) The distribution of S for one layer of digital rock. The value in the color bar
represents the number of S.

Next, we introduce the regional division of pores. Different regions are represented
by S. d is assigned to S as the initial value. In this case, e represents the value of different
regions and the initial value of e is “0”. The maximum value dmax of S is searched and the
position of dmax is recorded at the first step. If the location of dmax is indicated by index (i, j),
find the square range (i − dmax ≤ I ≤ i + dmax; j − dmax ≤ J ≤ j + dmax). Then, the distances
between the block with index (i, j) and all the blocks in the square range are calculated, and
are indicated by dist. The values of blocks satisfying the condition (dist ≤ (dmax − 0.5)) are
assigned to (e − 1). Then the previous steps are repeated. S is finally determined until the
maximum value of S is “0”. Different S values represent different regions at this time. Then
each region is simulated by an ellipse and the coefficient w of every region can be calculated
using Equation (4). Figure 6 shows the flowchart of the calculation of S. Figure 5b shows the
distribution of S for one layer of digital rock.
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3. Model Validation

In order to validate our method, we first apply IFDM to calculate four types of ideal-
ized porous media that have analytical or semi-empirical solutions [44,47–50]. Analytical
permeability refers to the solution obtained by strict formula. Effective permeability refers
to the solution obtained by numerical method. The four models are one of straight tubes
with rectangular cross sections, a model consisting of two tube segments with circular
cross sections in sequence, a model consisting of five tubes with circular cross sections,
and a model consisting of three tubes with circular cross sections. The pore structure of
the digital rock image is more complex than that of idealized porous media. Computation
of the permeabilities for the 11 digital rock images from the Imperial College London by
IFDM is given for further validation of the method [50]. The lithology of these digital rocks
are carbonate rock, Berea sandstone and sandstone.

3.1. Model One: Straight Tubes with a Rectangular Cross Section

We first consider the simple case that the fluid flows through a straight tube with
rectangular section, and the permeability of this model has an analytical solution. We
compare the permeability calculated by IFDM with the analytical solution. For the straight
tube with a rectangular section, the expression of velocity distribution can be expressed
as [44]:

u =
16a2

µπ3

(
−dp

dz

) ∞

∑
i=1,3,5,...

(−1)(i−1)/2
[

1− cosh(iπx/2a)
cosh(iπb/2a)

]
× cos(iπy/2a)

i3
(11)
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where u is the velocity, µ is the fluid viscosity, dp/dz is the pressure gradient in direction
of z, and a and b represent the semi-major and semi-minor axes of the rectangular tube,
respectively. x and y are the coordinates on the X and Y axes, respectively.

For the straight tube with a rectangular section, White (1991) provided an expression
for calculating the volume flow rate of the tube [44]:

Q =
4ba3

3µ

(
−dp

dz

)[
1− 192a

π5b

∞

∑
i=1,3,5,...

tanh(iπb/2a)
i5

]
(12)

where 2a and 2b represent the length and width of the rectangle, respectively.
Combining Equation (12) with Darcy’s law, the analytical permeability of the straight

tube can be expressed as:

krectangular =
4ba3

3A

[
1− 192a

π5b

∞

∑
i=1,3,5,...

tanh(iπb/2a)
i5

]
(13)

where A is the cross-sectional area of the model normal to the main flow direction.

3.2. Model Two: Two Tube Segments with Circular Cross Sections in Sequence

Figure 7 shows a model consisting of two tube segments in sequence [47]. The size of
the model is L3. The flow direction is from left to right. The radii of the two segments are
a1 and a2, respectively, and the length of both of the two segments are L/2. The volume
flow rate of model two is [10,47]:

Q =
−πa4

1a4
2ρg∆h

4µ(a4
1 + a4

2)
(14)

where ∆h is applied piezometric head drop, constant ρ is the density of the single fluid, g is
the gravitational acceleration.

Water 2021, 13, 3290 8 of 21 
 

 

where u is the velocity, μ is the fluid viscosity, dp/dz is the pressure gradient in direction 
of z, and a and b represent the semi-major and semi-minor axes of the rectangular tube, 
respectively. x and y are the coordinates on the X and Y axes, respectively. 

For the straight tube with a rectangular section, White (1991) provided an expression 
for calculating the volume flow rate of the tube [44]: 

( )3

5 5
1,3,5,...

tanh / 24 1921
3 i

i b adpba aQ
dz b i

π
μ π

∞

=

  
= − −  

    
  (12)

where 2a and 2b represent the length and width of the rectangle, respectively. 
Combining Equation (12) with Darcy’s law, the analytical permeability of the straight 

tube can be expressed as: 

( )3

rectangular 5 5
1,3,5,...

tanh / 24 1921
3 i

i b aba ak
A b i

π
π

∞

=

 
= − 

  
  (13)

where A is the cross-sectional area of the model normal to the main flow direction. 

3.2. Model Two: Two Tube Segments with Circular Cross Sections in Sequence 
Figure 7 shows a model consisting of two tube segments in sequence [47]. The size of 

the model is L3. The flow direction is from left to right. The radii of the two segments are 
a1 and a2, respectively, and the length of both of the two segments are L/2. The volume 
flow rate of model two is [10,47]: 

π ρ
μ

− Δ
=

+

4 4
1 2

4 4
1 24 ( )

a a g h
Q

a a
 (14)

where Δh is applied piezometric head drop, constant ρ is the density of the single fluid, g 
is the gravitational acceleration. 

 
Figure 7. Model with two tube segments in sequence. 

Thus, combining Equation (14) and Darcy’s law, the analytical permeability of this 
model is [10,47]: 

π
=

+

4 4
1 2

2 4 4
1 24 ( )

a a
k

L a a
 (15)

3.3. Model Three: A Model Consisting of Five Tubes with Circular Cross Sections 
Figure 8 depicts the cross section of an idealized porous medium normal to the di-

rection of y, which consists of five tubes. The flow direction is from left to right. The 

1 2

L

z
y

x
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Thus, combining Equation (14) and Darcy’s law, the analytical permeability of this
model is [10,47]:

k =
πa4

1a4
2

4L2(a4
1 + a4

2)
(15)

3.3. Model Three: A Model Consisting of Five Tubes with Circular Cross Sections

Figure 8 depicts the cross section of an idealized porous medium normal to the
direction of y, which consists of five tubes. The flow direction is from left to right. The
lengths of the tubes are denoted by S1, S2, S3, S4, and S5, respectively. The cross sections of
all the tubes are circles. The diameters of tube 1 and 5 are δa. The diameters of tube 2 and 4
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are δb and the diameter of tube 3 is δc. In order to apply IFDM to calculate the permeability
of model three, this porous medium is divided into 64 × 64 × 64 µm blocks. The lengths of
tubes 1, 2, 3, 4, and 5 are 30 µm, 29 µm, 30 µm, 24 µm, and 35 µm, respectively. The values of
δa, δb, and δc are 15 µm, 11 µm, and 11 µm, respectively. This model is an idealized porous
medium for understanding the flow phenomena, rather than for predicting permeabilities
of real porous media. Ruth and Suman [48] analyzed the microscopic cross flow in idealized
porous media and presented the “averaging theorem permeability”:

1
k1

=
32
ξL

(
f1S1 + f5S5

δ2
a

+
f2S2 + f4S4

δ2
b

+
f3S3

δ2
c

∣∣δ2
a − δ2

b

∣∣
δ2

c

)
(16)

where k1 is the permeability of this model in one direction, fi represents the ratio of volu-
metric flow rate in tube i and the total volumetric flow rate, Si is the length of tube i, L is the
length of the model in the main-flow direction (i = 1, 2, 3, 4, and 5). In ξ = π(δ2

a + δ2
b)/(4A),

A is the cross-sectional area of the model normal to the main flow direction.
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Figure 8. Cross section with the maximum pore area normal to direction y for an idealized porous
medium. Ph and Pl are the inlet and outlet pressures, respectively. Tubes 1, 2, and 3 meet at junction 1
and tubes 3, 4, and 5 meet at junction 2.

3.4. Model Four: A Model Consisting of Three Tubes with Circular Cross Sections

Kozeny [49] presented the well-known semi-empirical Kozeny-Carman equation
and assumed that the porous medium could be regarded as a bunch of streamtubes.
Carman [51] linked the microscopic fluid velocity to the Darcy velocity for porous media
and introduced a tortuosity factor τ. The Kozeny-Carman equation is widely used in the
calculation of the permeability of porous media. The effective permeability calculated by
the Kozeny equation can be expressed as [52,53]:

kkc =
φ3

τ f S2
r (1− φ)2 (17)

where φ is the porosity, τ is the hydraulic tortuosity, Sr is the specific surface area per unit
pore volume, f is the shape factor, and f = 2 for a tube with circular cross section.

3.5. The Permeability of Digital Rock Image

Figure 9 depicts the 3D micro CT image and pore space of carbonate C1, which
indicates that the pore structure of the digital rock image is really very complex. Red is a
pore space and white is a skeleton. Because of the complex pore structure in digital rock
images, the IFDM is further confirmed by calculating the permeabilities of 11 digital rock
images. Berea and Si (i = 1, 2, 3, . . . , 9) are sandstone. Isolated pores exist in digital rock
images, which do not contribute to seepage, so we remove the isolated pores, which will
save much computational time. 6-connected neighborhood is applied to classify the cubes
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representing the pores [54,55]. Assuming that there are only pores and solid skeleton in
the digital rock model, the connected regions of pore pixels are detected by seed filling
method [56]. A group of pixels connected with each other but not connected with other
pixels are marked as a connected region, and then these connected regions are analyzed
and classified. Seed filling algorithm is derived from computer graphics. The general steps
are as follows:

(1) Mark an unlabeled pixel as a seed. Mark the seed and create an empty stack;
(2) All the neighboring pore pixels with a distance of 1 from the seed are retrieved. If the

adjacent pore pixels are not marked, the adjacent pore pixels are incorporated into
the stack;

(3) Take out a pixel from the top of the stack as a new seed and repeat step (2);
(4) Repeat steps (2) and (3) continuously until the stack is empty again.
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Figure 9. Carbonate digital rock C1 [50]. The size of the digital rock is 4003 grids and the length of a
grid is 2.85 µm in three directions. The porosity is 23.3%. (a) The schematic of micro CT image of C1;
and (b) Pore space distribution of C1.

In the above steps, all the pixels and initial seeds that have been put on the stack are
marked as a group. The connected pore space consists of all kinds of pores which connect
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the inlet and outlet faces. Here, C1 is taken as an example to show the effect of removing
isolated pores. The red part shows the connected pores and the blue part shows the isolated
pores in Figure 10a. Figure 10b shows the isolated pore space of C1.
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Figure 10. (a) The schematic of 3D micro CT image of C1, the red part represents the connected pores
and the blue part represents the isolated pores. (b) The isolated pore space of C1.

4. Results and Discussion

The model one is partitioned into 70 × 70 × 70 µm. We assume that the length and
the width of the cross section are 20 µm and 8 µm, respectively. Figure 11a shows the
distribution of d on the rectangular cross section and Figure 11b shows the partition of
the rectangular cross section. Figure 12 depicts the distribution of w on this layer. And
the distribution of w on each layer in three orthogonal directions can be calculated in
the same way. Then the effective permeability of this model with a straight tube can
be calculated by the IFDM. The permeability values of this straight tube calculated by
IFDM and the analytical method are 0.126 D and 0.130 D, respectively. The estimated
permeability presents an error of 3.1% in comparison with the analytical solution. Moreover,
the permeabilities of straight tubes with different cross-sectional areas are calculated
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(Figure 13). The width of a cross section is constant and its value is 8 µm. The length-
to-width ratio increases with increase of the length. The analytical solutions are in good
agreement with the results calculated by IFDM. The IFDM presented in this study works
well for this simple model. Moreover, Shabro et al. [27] presented a finite-difference
approximation called FDGPA and the permeability of a 3D model with a straight tube
was calculated by FDGPA. The size of the model is 400 µm × 400 µm × 400 µm and the
rectangular cross section is 20 µm × 400 µm. The permeabilities calculated by analytical
expression, FDGPA and the method presented in this study are 1.69 D, 0.8281 D and 1.62 D,
respectively. The comparison results show that the method presented in this study has
better applicability for elongated pores.
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Figure 11. (a) Distribution of d on the rectangular cross section. (b) Partition of the rectangular cross
section. The cross-sectional area of this rectangular tube is 8 × 20 µm.
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Figure 13. Comparison between the permeabilities calculated by IFDM and by the analytical method
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Model two is partitioned into 64× 64× 64 µm. Here, a1 and a2 are equal to 4.5 µm and
2.5 µm, respectively. We present the distributions of d and w for one layer as an example
(Figure 14). After we get the distributions of d and w for all the layers in three orthogonal
directions, we get the permeability of model two by IFDM. The permeabilities calculated
by IFDM and analytical method are 0.0073 D and 0.0068 D, respectively. The error between
these two results is 7.4%.
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Figure 14. (a) Distribution of d for a one-cell-thick layer of model two. (b) Distribution of w for a
one-cell-thick layer of model two.

The effective permeability of model three can be calculated by IFDM. Figure 15a,b
show the distribution of d and the distribution of coefficient w, respectively, for the cross
section of Figure 8. The permeability values of this idealized porous medium calculated by
IFDM and the averaging theorem method are 0.331 D and 0.342 D, respectively. The error
between these two results is 3.2%.
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Figure 15. (a) Distribution of d for a one-cell-thick layer of model three. (b) Distribution of w for a
one-cell-thick layer of model three.

Model four consists of three tubes with circular cross sections in sequence. All three
tubes have the same diameters. The fluid flows from left to right. A layer of model four
is illustrated in Figure 16. Then we can calculate the parameters in Equation (17). The
porosity of model four is 0.0342. Here τ = (Le/L)2 represents the definition of the tortuosity.
Le is the total length of the tube and L is the length of the model in the main flow direction.
The hydraulic tortuosity is 2.743 and Sr is equal to 0.0273. Finally, we get the permeability
of model four calculated by Equation (17) and the result is 0.0105 D. In addition, we present
the distribution of d and w of the layer shown in Figure 16 as an example (Figure 17).
When we calculate the distribution of coefficient w for all the layers in three orthogonal
directions, the effective permeability of model four can be calculated by IFDM and the
value is 0.0109 D. The error between the Kozeny equation and IFDM is 4%.
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Figure 16. One layer of model four in the direction of y. The diameter of the tube is 5 µm.
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Figure 17. (a) Distribution of d for a one-cell-thick layer of model four. (b) Distribution of w for a
one-cell-thick layer of model four.

Table 1 shows the porosity, resolution and original size for these digital rock images.
Berea sandstone and C1 carbonate digital rock images have 4003 voxels and the others have
3003 voxels. In order to verify the applicability of this method in digital cores, the effective
permeabilities of original digital cores are calculated by IFDM. Figure 18 shows the distribution
coefficients wy in one-cell layer of C1 and the pressure distribution of the whole digital rock.
And we compared the permeabilities calculated by IFDM with the permeabilities calculated
by LBM [50,57] in three orthogonal directions (Figure 19). This indicates that the predicted
permeabilities calculated by IFDM usually agree with the permeabilities calculated by LBM.
If we calculate the permeabilities of digital rock images at their original size by IFDM, it
will take a great deal of time and computer memory. Consequently, we need to coarsen
the grid while ensuring the accuracy of the calculation of permeability. When grids are
coarsened, the calculation results will become inaccurate for the traditional finite difference
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method [27]. Sometimes it is even necessary to refine the grid to obtain more accurate values.
When the size of digital core is large, the traditional finite difference method is obviously no
longer applicable. Next, we will introduce whether the finite difference method proposed
in this study can get reasonable results in the case of grid coarsening. A grid coarsened
two times is acceptable for calculation of permeability with good accuracy [20]. Therefore,
we first calculated the effective permeabilities of 11 digital rock images after coarsening
the grid two times. And C1 carbonate digital rock is taken as an example to illustrate the
specific permeability calculation process. Constant pressures are applied to two surfaces
perpendicular to direction of z. Firstly, we use the elliptical pore approximation method to
obtain the coefficients distribution of all grids. Figure 20a shows the distribution coefficients
wy in one-cell layer of C1. Secondly, the pressure distribution of the whole digital rock is
obtained by solving the Laplace equations (Figure 20b). Finally, the effective permeability
of digital rock is obtained by Equations (9) and (10) in direction of z. We compare the results
calculated by finite difference method with the absolute permeabilities calculated by LBM
(Figure 21), which shows that the permeability calculation method proposed in this study
is feasible for digital rock images. However, the size of the digital rock images used in this
study is still too large after coarsening the grid two times. In this study, we calculated the
permeabilities of the digital rock images after grid coarsening four times for Berea sandstone
and C1 carbonate, and three times for the other digital rock images. Figure 22 shows the
distribution coefficients wy in one-cell layer of C1 and the pressure distribution of the whole
digital rock. The size of all the digital rock images was made 1003 when we compared the
permeabilities calculated by IFDM with the permeabilities calculated by LBM [50,57] in three
orthogonal directions (Figure 23). This indicates that the predicted permeabilities calculated
by IFDM usually agree with the permeabilities calculated by LBM. Figures 21 and 23 show
that the results calculated by FDM and LBM are not exactly the same. This discrepancy is
suggested to be related to a combination of image resolution and discretization effects [5]. In
summary, the IFDM performs well for digital rock images even after grid coarsening.

Table 1. Porosity and resolution of the digital rock images and original digital rock image size used for flow simulation.

Berea C1 S1 S2 S3 S4 S5 S6 S7 S8 S9

Porosity (%) 19.6 23.3 14.1 24.6 16.9 17.1 21.1 24 25.1 34 22.2
Resolution (µm) 5.35 2.85 8.68 4.96 9.1 8.96 3.997 5.1 4.80 4.89 3.40

Original digital rock image size 4003 4003 3003 3003 3003 3003 3003 3003 3003 3003 3003
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Figure 18. The distribution of coefficients wy and pressures of carbonate digital rock C1 at their
original size. (a) The calculation results of coefficients wy for one-cell thick layer in direction of y.
(b) The fluid pressure distribution of carbonate digital rock C1. The constant pressures at the inlet
and outlet faces are 10 Pa and 0 Pa, respectively.
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Figure 19. Comparison between the permeabilities calculated by LBM [50] and IFDM for digital
rock images at their original size. (a) Permeabilities calculated in macroscopic flow direction of
x; (b) Permeabilities calculated in macroscopic flow direction of y; (c) Permeabilities calculated in
macroscopic flow direction of z.
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Figure 20. The distribution of coefficients wy and pressures of carbonate digital rock C1 after grid
coarsening two times. (a) The calculation results of coefficients wy for one-cell thick layer in direction
of y. (b) The fluid pressure distribution of carbonate digital rock C1. The constant pressures at the
inlet and outlet faces are 10 Pa and 0 Pa, respectively.
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Figure 21. Comparison between the permeabilities calculated by LBM [50] and IFDM for digital rock
images after grid coarsening two times. (a) Permeabilities calculated in macroscopic flow direction of
x; (b) Permeabilities calculated in macroscopic flow direction of y; (c) Permeabilities calculated in
macroscopic flow direction of z.
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Figure 22. The distribution of coefficients wy and pressures of carbonate digital rock C1 after grid
coarsening four times. (a) The calculation results of coefficients wy for one-cell thick layer in direction
of y. (b) The fluid pressure distribution of carbonate digital rock C1. The constant pressures at the
inlet and outlet faces are 10 Pa and 0 Pa, respectively.
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5. Conclusions

We introduced an IFDM to model the flow of fluids at pore scale and calculate the per-
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tion of a discrete model. The technique is more amenable for calculating the permeabilities
of model one and model two, compared with the analytical solution. The permeability
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and the permeability calculated by IFDM is compared with the semi-empirical Kozeny
equation for model four. The error in all comparisons is below 10%. Moreover, we also
demonstrate the validity of the IFDM by comparing its results with those of LBM for digital
rock images. In order to improve the efficiency of the IFDM, grid coarsening is necessary.
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C1 Carbonate digital rock
CT Computed tomography
D Darcy
d Digital equivalent of r
dmax Digital equivalent of rmax
dp/dz Pressure gradient in direction of z
f Shape factor
FDM Finite difference method
fi Ratio of volumetric flow rate in tube i
g The gravitational acceleration
i Horizontal coordinate on the cross section normal to the macroscopic flow direction
IFDM Improved finite difference method
Jij Mass flux of one cube on a one-cell thick layer normal to the macroscopic

flow direction
J Mass flux
j Vertical coordinate on the cross section normal to the macroscopic flow direction
K Effective permeability
kkc Effective permeability calculated by the Kozeny equation
Krectangular Analytical permeability of the straight tube
k1 Permeability of this model in one direction
L Length of the porous media in the macroscopic flow direction
Le The total length of the tube in model four
LBM Lattice-Boltzmann method
Nx The number of pixels in the direction of x
Ny The number of pixels in the direction of y
Nz The number of pixels in the direction of z
Qtot Total volume flow rate of the porous media in the macroscopic flow direction

PO: outlet pressure
p The pressure in the model
P Unknown column vector consisting of the pressures of the center of the cubes
PI Inlet pressure
FDGPA Finite-difference geometrical pore approximation
Q Volume flow rate
rmax Largest inscribed radius
r Distance to the pore wall
S The number of different regions
Si Length of tube i
Sr Specific surface area per unit pore volume
W Coefficient matrix
3D Three dimensional
µ Fluid viscosity
ρ Fluid density
wx Coefficient in direction of x
wy Coefficient in direction of yd
wz Coefficient in direction of z
w Coefficient of one cube
∆pij Pressure drop between this cube and the adjacent cube in the macroscopic

flow direction
φ Porosity
τ Hydraulic tortuosity
δa The diameters of tube 1 and 5 in model three
δb The diameters of tube 2 and 4 in model three
δc The diameters of tube 3 in model three
∆η Applied piezometric head drop
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